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Abstract

Background and Objective: Intensive care is very important in modern 
health care. Mortality prediction models are good outcome predictors for 
intensive care and resources allocation. Many research used the information 
technologies to construct new mortality prediction models. This study used the 
Support Vector Machine (SVM) to construct a better mortality prediction model.

Methods: This study collected 695 patients (230 women and 465 men) who 
were admitted to the surgical intensive care unit in a 600-bed hospital as training 
data from January 1, 2005 to December31, 2006. Among the 695 patients, 538 
(77.41%) patients were alive and 157 were dead (22.59%). This study selected 
the Gaussian RBF kernel to build a mortality prediction model with empirical 
data. All variables were included in this model.

Results: The precision rate, recall rate and F-Measure of the SVM model 
were 0.899, 0.902 and 0.899, respectively. The area under ROC curve (AUR) 
of models was calculated. The SVM model (AUR=0.932) is better than SAPS II 
(AUR=0.883) and APACHE II (AUR=0.885) (p<0.01).

Conclusion: The SVM can manage the twin peaks phenomenon which is 
one of the characteristics of health or medical data.

Keywords: Acute Physiology and Chronic Health Evaluation System, 2nd 
version (APACHE II); Decision support system; Intensive care; Medical decision 
making; Mortality prediction; Simplified Acute Physiology System, 2nd version 
(SAPS II); Support Vector Machine

collected 70 variables of patients and scored these variables from 
1 to 4 in terms of severity. They evaluated the severity of patients 
by summing the collected scores. This is called the Therapeutic 
Intervention Scoring System. The Glasgow Coma Scale (GCS) is also 
a severity tendency model [20,21]. Recently, some researchers have 
simplified the GCS for outcome evaluation, and the simplified models 
are as good in terms of mortality prediction as the GCS [22]. These 
models focus on the tendency of mortality, and are pure scoring 
systems rather than probability systems. Some models constructed 
based on the probabilities and statistical methodologies. APACHE II 
and SAPS II are the two most popular models [4,5,7,23]. These models 
are constructed with Probity regression and use probabilities as the 
outcome description of mortality. The 2nd version of the Mortality 
Probability Model (MPM II) is also an intensive care unit (ICU) 
outcome prediction model with probabilities [9] and new versions of 
these models have been constructed in recent studies [5,6,8]. Recently, 
researchers have constructed some mortality prediction models using 
artificial intelligence technologies [1,17,23-25,50]. These models can 
add to the health information system as an intensive care facilities 
decision support system and improve the quality of medical care and 
facilities allocation.

There are some important characteristics of medical data to 
consider. One of the most important characteristics is the twin 
peaks phenomenon. For example, the “within normal range” systolic 

Introduction
Intensive care is very important in modern health care [1] and 

the outcome evaluation for intensive care can help to make decisions 
regarding intensive care facilities [2,3]. Some researchers used 
mortality prediction models as outcome predictors for intensive care. 
Popular mortality prediction models include the Acute Physiology 
and Chronic Health Evaluation System, 2nd version (APACHE II) 
[4], 3rd version (APACHE III) [5], and 4th version (APACHE IV) [6]; 
the Simplified Acute Physiology System, 2nd version (SAPS II) [7] 
and 3rd version [8]; and the Mortality Probability Model, 2nd version 
(MPM II) [9] and 3rd version (MPM III) [10]. These models are good 
outcome prediction models for intensive care [11], and are general 
mortality prediction models for any kind of patient admitted to an 
intensive care unit. Some mortality prediction models are constructed 
for a special purpose. For example, the Multiple Organ Dysfunction 
Score (MODS), Sequential Organ Failure Assessment (SOFA) score 
and Sepsis-related Organ Failure Assessment are frequently used to 
assess the outcome of sepsis or multiple organ failure [12-17]. These 
models are constructed for different purposes.

The first mortality prediction model was constructed by McCabe 
and Jackson. They collected 173 septicemia patients and divided 
patients into nonfatal, ultimately fatal and fatal groups. This model 
may calculate the tendency of mortality [18]. Cullen et al. [19] 
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blood pressure (SBP) is from 90 mmHg to 140 mmHg. We defined 
hypertension as a SBP greater than 140 mm Hg. Sometimes patients 
are defined as hypertension if their SBP is less than 90 mmHg [26,27]. 
Most laboratory or physiological data got normal range of data. It 
means that the data “within normal range” present that the result 
of this data is good. Patient with extreme data results will be worse 
than the patients who have data within normal range. Therefore, if 
we want to predict the tendency of mortality using these data, the 
twin peaks phenomenon needs to be solved. APACHE II and SAPS 
II solved this problem by ranking the raw data and summarizes them 
into one score as the tendency of mortality or probabilistic models 
[4,7]. Although many researchers have attempted to improve the 
accuracy of these mortality models, the definitions of ranking are still 
constructed subjectively.

Researchers solved medical problems with artificial intelligence 
technologies. These technologies are usually referred to as classification 
methodologies. Among the classification methods, the logistic 
regression (LR) method is one of the most popular methodologies 
for classification. LR uses a statistic method and builds a logical 
classification tool. Most studies have used artificial neural networks 
(ANNs) as the classification method for medical problems, even for 
mortality prediction in patients in intensive care units [23,28,29]. 
Muniz et al. [30] evaluated the effect of sub thalamic stimulation in 
Parkinson disease with probabilistic ANNs, Support Vector Machines 
(SVMs) and logistic regression models, and concluded that the ANNs 
are better than other models in this research. The accuracy of ANNs is 
influenced not only by the numbers of input nodes and the numbers 
of hidden nodes: large scale data are also required for training models 
[23]. Unfortunately, the logic of hidden layer cannot be explained.

Decision trees are another kind of classification technology and 
are more logical in terms of presentation than ANNs. These methods 
use statistic difference and/or entropy difference as a base to find the 
best decision nodes and trees [31]. The modeling may be applied to 
decision support systems and to manage data easily for problem-
solving [31,32]. Ting et al. [31] modified the Alvarado scoring 
system using C5.0 and constructed a better decision model for acute 
appendicitis diagnosis and improved the misdiagnosis rate. Abu-
Hanna et al. [24] combined decision trees with logistic regression 
and improved the evaluation power of intensive care prognosis. 
However, the decision tree methods are hard to manage the twin 
peaks phenomenon, which is one of the characteristics of health or 
medical data.

Support Vector Machine (SVM) was first proposed by Vapnik in 
1995 [33]. It is a kind of information technology which used on the 
problems of classification. The method uses both statistical learning 
and structural risk minimization to find an optimal separation 
hyperplane which can separate different class outcome in a multi-
dimensional space [33,34]. SVM uses both statistical learning and 
structural risk minimization (SRM) to find an optimal separation 
hyperplane which can separate different class outcome in a multi-
dimensional space [34-36]. It has been used on many problems in 
different fields, included text categorization; image recognition; 
face detection; voice recognition; genetic classification and medical 
diagnostic problems [34,37-40]. Zhu et al. [41] constructed a SVM-
based classifiers. It may has better performance to evaluate the 
pulmonary nodules found in computer tomography are malignant or 

not. Yamamoto et al. [40] also used the SVM technology to identify 
the possible multiple sclerosis lesions correctly in the brain magnetic 
resonance images. Verplancke et al. [25] constructed a novel mortality 
prediction model for hematological malignancies patients with 
SVM, which was better than logistic regression. It is good method 
for classification and they improved many classification problems of 
medical fields.

Based on the fitness of kernels distributions, the SVM is one of the 
classification models that can be used to manage this problem. A new 
mortality prediction model using SVM technology was constructed 
for the patients who are admitted to ICU in this study.

Methodology
SVM model proposed by Vapnik [33] is an effective classification 

method and used in many different fields, including text 
categorization; image recognition; face detection; voice recognition; 
genetic classification and medical diagnostic problems [34,37-40]. 
It uses both statistical learning and structural risk minimization 
(SRM) to find an optimal separation hyperplane, which can separate 
different class outcomes in a multi-dimensional space [34-36]. Proper 
parameter selection can improve the classification accuracy of the 
SVM model. We describe some concepts of support vector machines 
below. Given training data , 1,...,  {1, i1}i ix i n y= ∈  the SVM 
requires the solution of the following optimization problem [42]: 

( )

T
1, ,

T

1min          W W+c
2

subject to  W (X ) 1 ,

l
iiw b

i i iy b

ξ
ξ

φ ξ

=

+ ≥ −

∑

ξi are slack variables used to tolerate the classification condition which 
cannot separate linearly (Figure 1).

A very important factor to improve the accuracy of the model for 
SVM models is penalty parameter C. The parameter C presents the 
degree of punishment and adjust on the models [43]. Proper tuning 
of parameter C is very crucial [44]. Another important factor for the 
accuracy improvement in SVM is kernel function mapping. Usually, 
we use kernel functions (Φ) to map xi into a higher dimensional space. 

Figure 1: Sets are not linearly separable.
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The SVM finds the linear separating hyperplane with the maximal 
margin in higher dimensional space (Figure 2).

Different kernel functions have their own different surfaces. The 
training vectors of SVM are mapped into higher dimensional space 
using kernel functions to map to feature space. A linear separating 
hyperplane with the maximal margin is obtained [11,34-36]. Selection 
of the proper kernel is very important. Different kernel functions 
have their own different surfaces and distributions. It will influence 
the accuracy of the SVM. Many kernels can be chosen from. The four 
most popular kernels of SVM, which are used in many fields, are as 
follows [42,43]:

•	 Gaussian radial basis function (RBF): K(xi; xj) = exp(-
γ∥xi - xj∥

2), γ> 0.

•	 Linear kernel: K(xi; xj) = xi
Txj.

•	 Polynomial of degree d: K(xi; xj) = (γxi
Txj + r)d, γ> 0.

•	 Sigmoid kernel: K(xi; xj) = tanh(γxi
Txj + r).

This study used Rapid Miner version 5.1.001 and it is a kind of 
free software for data mining [45]. We tried the mortality prediction 
data set to choose the best kernel first. Every kernel has a specialty 
for classification. Researchers concluded that the RBF kernel is better 
than other kernels for classification. It can handle the situation when 
the relationship between class labels and attributes is nonlinear. 
The polynomial kernel has more hyper parameters than the RBF 
kernel. The RBF kernel is simpler and faster than the others [42]. 
This study therefore used the RBF kernel, for which two factors, C 
(cost parameter) and γ (kernel function), must be selected. A10-fold 
cross validation procedure was also used to prevent the over-fitting 
problem. One subset was tested using the classifier trained on the 
remaining nine subsets sequentially.

The receiver operating characteristic (ROC) curves and the areas 
under the ROC curves (AUR) of the new model, SAPS II and APACHE 
II mortality prediction models were calculated and compared. The 
Wilcoxon signed rank test and the AUR were used to compare the 
accuracy of the two mortality prediction models. The Wilcoxon 
signed rank test was performed using SPSS version 12.0 (SPSS Inc., 
Chicago, IL, USA) and comparison of the significance between the 
ROC curves was performed using MedCalc Version 9.3.8.0 (MedCalc 
Software, Mariakerke, Belgium). Significant differences were defined 
as p<0.05.

Experiment Design
The structured and interactive approach CRISP-DM (Cross 

Industry Standard Process for Data Ming) provides guidelines 

for planning a data mining project [51]. This approach consists 
of six phases: business understanding, data understanding, data 
preparation, modeling, evaluation and deployment. The six phases 
are simplified and illustrated in Figure 3.

Business understanding
Intensive care is very important in modern health care and 

mortality prediction models are used for outcome predictors for 
intensive care and resources allocation. Many researchers continue 
to use the information technologies to construct better mortality 
prediction models. This study used the Support Vector Machine 
(SVM) to construct an innovative mortality prediction model.

Data understanding and data preparation
This study retrospectively collected training data from 695 

patients (230 women and 465 men) who were admitted to the surgical 
ICU in a 600-bed hospital (12-bed surgical ICU) from January 1, 2005 
to December31, 2006. All patients’ data were collected confidentially 
with randomized codes. The average patient age was 57.26 (SD = 
20.41) years. Due to these cases were used for the training data, both 
the attributes of APACHE II and SAPS II were collected without 
missing data. The mean scores of APACHE II and SAPS II were 13.6 
(SD=7.8) and 37.8 (SD=16.8). The mean probabilities of APACH 
II and SAPS II were 0.2456 (SD=0.2003) and 0.2698 (SD=0.2618) 
(Table 1). The age, type of ICU admission (medical disease, elective 
and emergency surgery) and Glasgow coma scale (GCS) were all 
included in the attributes. The definition of being alive is that the 
patients were discharged alive or stayed in hospital for at least 30 
days. The definition of being dead is that the patients died before 
being discharged from the hospital. The mean scores and mortality 
probabilities of the dead group were significant higher than the alive 

Figure 2: Kernel functions mapping to feature space.
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Figure 3: Simplified CRISP-DM approach.

Variable Alive (SD) Dead (SD) Total (SD) p 
value

APACHE II*** 11.0 (5.6) 22.6 (7.2) 13.6 (7.8) 0.000
Probability (APACHE 

II)***
0.1763 

(0.1313)
0.4828 

(0.2142)
0.2456 

(0.2003) 0.000

SAPS II*** 32.2 (12.1) 57.2 (16.3) 37.8 (16.8) 0.000

Probability (SAPS II)*** 0.1779 
(0.1739)

0.5845 
(0.2687)

0.2698 
(0.2618) 0.000

Table 1: The scores and probabilities prediction of APACHE II and SAPS II.



Austin J Emergency & Crit Care Med 2(2): id1017 (2015)  - Page - 04

Chia-Li Chen Austin Publishing Group

Submit your Manuscript | www.austinpublishinggroup.com

group (p<0.001), no matter the APACHE II or SAPS II prediction 
systems (Table 1). A new model was constructed containing the 
recorded data of all of the patients.

Among the 695 patients from whom training data were collected, 
538 (77.41%) patients were alive and 157 were dead (22.59%). Among 
these patients, 238 (34.24%) did not undergo surgery, 153 (22.01%) 
underwent emergency surgery, and 304 (43.74%) underwent elective 
surgery. The emergency surgical patients died more frequently than 
they remained alive. There was a significant difference in surgical 
status between the alive group and the dead group (p < 0.001) (Table 
2).

Eighteen variables related to patients’ laboratory and 
physiological data were collected. Twelve variables of patient data 
differed significantly between the dead and alive groups. These 
variables were systolic and diastolic blood pressure; heart rate; urine 
output; sodium; blood urea nitrogen (BUN); creatinine; blood sugar; 
haematocrit; arterial pH; bicarbonate; and Glasgow coma scale 
(GCS). The GCS included 3 components. The other 6 variables did not 
differ significantly between the dead and alive groups. The standard 
deviations (SDs) of the variables in the dead patients were all larger 
than the SDs of the variables in the alive patients, with the exception 

of age. This means that the data variation of the dead patients was 
larger than the data variation of the Alive patients (Table 3). The SD 
of age did not differ significantly between the Alive group and the 
Dead group. The demographic data of the Glasgow coma scale (GCS) 
are shown in Table 4. There were significant differences in the GCS 
between the alive and dead patients (p < 0.001) (Table 4).

Modeling, evaluation and deployment
This study selected the Gaussian RBF kernel with Lib SVM in 

Rapid Miner 5.1.001to build a mortality prediction model with 
empirical data. All variables were included in this model. The most 
important factor was BUN (13.08%); the second most important 
factor was the motor component of the GCS (GCSM) (11.18%); the 
third factor was surgical status (10.77%); and the fourth was sodium 
(10.27%). The weights of all of these four factors are count as more 
than 10%, respectively. Temperature, WBC and gender were not 
so important in this model, all of their weights are less than 0.005 
(Figure 4).

The precision rate, recall rate and F-Measure of the SVM model 

Surgical status Alive Dead Sum

No operation 144 94 238

Elective surgery 271 33 304

Emergency surgery 123 30 153

Sum 538 157 695

Table 2: Demographic data of surgical status.

Variable Alive (SD) Dead (SD) Total (SD) p value

Temperature (°C) 36.60 (1.46) 36.21 (2.58) 36.52 (1.78) 0.070

Systolic BP (mmHg) * 140.8 (30.4) 131.6 (49.0) 138.7 (35.6) 0.027

Diastolic BP (mmHg) ** 76.9 (19.6) 70.6 (24.7) 75.5 (21.0) 0.004

Heart rate (per min) *** 96.8 (20.6) 113.1 (32.6) 100.5 (24.8) 0.000

Breath rate (per min) 19.7 (5.5) 19.6 (7.0) 19.7 (5.8) 0.839

Urine output (c.c.) *** 2780 (2833) 5449 (8151) 3383 (4732) 0.000

Bilirubin (mg/dL) 0.44 (1.47) 0.48 (1.53) 0.45 (1.48) 0.743

Sodium (mEq/L) *** 140.6 (5.9) 145.7 (14.9) 141.8 (9.0) 0.000

Potasium (mEq/L) 3.80 (0.64) 3.86 (1.00) 3.81 (0.74) 0.487

BUN (mg/dL) *** 15.68 (12.28) 26.34 (27.82) 18.09 (17.62) 0.000

Creatinine (mg/dL) *** 1.1 (0.9) 1.6 (1.5) 1.2 (1.1) 0.000

Sugar (mg/dL) *** 142.0 (63.8) 168.6 (96.3) 148.0 (73.2) 0.001

Hematocrit (%) *** 34.0 (6.0) 30.8 (7.4) 33.3 (6.5) 0.000

WBC (/μL) 11126 (4961) 11757 (6138) 11268 (5252) 0.239

Arterial pH ** 7.408 (0.070) 7.367 (0.156) 7.398 (0.098) 0.002

HCO3 (mEq/L) *** 23.37 (4.07) 20.52 (5.70) 22.73 (4.64) 0.000

PaO2 144.3 (79.6) 153.4 (103.9) 146.3 (85.7) 0.311

Age * 56.43 (20.62) 60.10 (19.46) 57.26 (20.41) 0.042

Table 3: Attributes of the training data.

* p<0.05 ** p<0.01 *** p<0.001
BUN: blood urine nitrogen; WBC: white blood cell; HCO3: bicarbonate anion; 
PaO2: partial pressure of oxygen in arterial blood

Score
GCSE GCSV GCSM

Alive Dead Alive Dead Alive Dead

1 69 103 214 133 34 65

2 39 19 16 4 16 29

3 132 10 15 1 13 7

4 298 25 37 3 32 13

5 X X 256 16 115 21

6 X X X X 328 22

Table 4: Demographic data of the GCS.

GCSE: the eye component of the GCS; GCSV: the verbal component of the 
GCS; GCSM: the motor component of the GCS
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Figure 4: Weights of the SVM model with the RBF kernel.
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were 0.899, 0.902 and 0.899, respectively. The area under the ROC 
curve (AUR) of the SVM model was 0.932. The AUR of the SAPS II 
and APACHE II are 0.885 and 0.883, respectively. The new model is 
better than SASP II and APACHE II (p<0.01) (Figure 5).

Conclusion
The meaning of “within normal range” is that these data are 

normal and good for the health. Patient with extreme laboratory 
or physiological data are bad for the health than the patients who 
have “within normal range” data. There are special characteristic in 
medical data, the twin peaks phenomenon. For example, the “within 
normal range” systolic blood pressure (SBP) is from 90 mmHg to 140 
mm Hg. We defined hypertension as a SBP greater than 140 mmHg. 
Sometimes patients are defined as hypertension if their SBP is less 
than 90 mm Hg [26,27]. These definitions presented that the twin 
peaks phenomenon and most laboratory or physiological data got 
normal range of data. This phenomenon is very important if managing 
the medical data and data mining. The APACHE system and SAPS 
system consider the twin peaks phenomenon of medical data and 
constructed the new versions of models [4-6,8]. Unfortunately, they 
are constructed with subjective experiences and classifications. These 
methods may lose some information after transformation. Chan and 
Ting [1] constructed a novel mortality prediction model using linear 
regression, a genetic algorithm and Bayesian theory. Their model 
managed medical data with a mention of the twin peaks phenomenon. 
Unfortunately, the cut-off point for normal and abnormal data is still 
manually obtained. The present research used the Support Vector 
Machine (SVM) to construct a new mortality prediction model. 
The SVM managed raw medical data with their own characteristics 
automatically and easily, and may find the optimal cut-off point and 
weighting in these medical data automatically.

Most researchers solved medical problems with computers aids 
and decision support systems (DSS). The electronic medical record 
offers good resources for medical data. It is an advantage for DSS 
construction [46]. It can save many efforts to collect these data if the 
information infrastructures were all available. In contrast, these new 
DSS are one of the crucial components in the electronic medical record 
or electronic chart system. They can construct further values for the 

electronic medical record or electronic chart systems. Some models 
can also prevent medication errors and improved the health quality 
[47]. Gupta [48] construct electronic clinical decision support system 
to reduce this risk of epidural hematoma in some bleeding tendency 
patients. This study constructed a novel mortality prediction model 
with medical records. In the modern researches, the new versions 
of prediction models are more accurate but more complicated. 
APACHE mortality prediction model is a good example. Compared 
with the APACHE IV, it collects 142 variables (including 115 disease 
groups), the APACHE II just only collected for 12 variables and 
some chronic diseases items [6]. The cost of information collection 
increased for the new prediction models. Instead of new version 
of mortality prediction models, for example, the APACHE IV, this 
study used the variables of old version and constructed with SVM. 
Although the algorithm is complicated, they are more accurate 
than previous models and are very convenient for the medical data 
collection then new versions. Chan and Ting [1] constructed a new 
mortality prediction model with a genetic algorithm. The SVM model 
also finds the optimal weights with re-arranges the importance of 
variables. Different from the GA model, SVM presents a better way of 
finding the optimal weight and may explain the relationship between 
the model and the variables.

The standard deviations of the variables in the dead patients were 
all larger than the standard deviations of the variables in the alive 
patients, with the exception of the Glasgow coma scale (GCS) and 
age. The characteristics of GCS and age were different, because there 
is a positive correlation between these variables and the probability 
of mortality. The twin peaks distribution of the dead group will cause 
the SDs of the variables to be larger than those in the alive group. 
The standard deviation is an indicator of whether a variable is of a 
twin peaks distribution or not. The kernel fitness will influence the 
results of classification. Selection of an optimal kernel for medical 
problems is very important. Many researchers have modified kernels 
to improve the classification power of the SVM [43,49]. Some 
classification systems with a SVM solve problems using the Gaussian 
RBF kernel. This kernel may solve many problems, including medical 
problems [38]. This study found that the Gaussian RBF kernel is 
better than other selected kernels owing to the feature fitness between 
the distribution of the Gaussian RBF kernel and the medical data. The 
Gaussian RBF kernel may be chosen if the data showed the twin peaks 
phenomenon. INTcare is an Intelligent Decision Support System 
(IDSS) for Intensive Care Medicine [52]. We will apply our model to 
develop a system like INTcare in the future.
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