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Abstract

Metabolic Syndrome (MetS) substantially increases one’s risk for type 2 
diabetes (T2D) and cardiovascular disease. It now affects more than one 
third of adults in the U.S. and has similar impact on other societies globally. 
Results from recent genome-wide association studies (GWAS) have suggested 
that the inherited variance in anindividuals’risk of expressing MetS traits 
cannot be completely explained by variation in the primary sequence of the 
genome; mechanisms beyond the genetic sequence variants are increasingly 
compelling for researchers in the field. Epigenetic modifications such as DNA 
methylation and histone modifications are hypothesized to play important roles 
in the pathophysiology of diseases including MetS and may explain some of 
the missing heritability. Recent pilot studies conducted in humans and animals 
have also suggested epigenetic changes such as CpG methylation modify 
one’s susceptibility to developing MetS in response to prenatal and postnatal 
environmental exposures. Although these findings are intriguing, more work is 
needed in order to unravel a map of epigenetic determinants of MetS. 
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study population [16]. It is also known that the atherosclerotic process 
starts in childhood and is accelerated in individuals who are insulin 
resistant, dyslipidemic and/or show signs of systemic inflammation 
[17-19]. At a molecular level, the mechanisms by which obesity 
leads to the development of insulin resistance, dyslipidemia and 
associated phenotypes are poorly understood but necessarily involve 
long-term changes in genetic regulation and gene expression. Since 
the underlying DNA sequence remains unchanged, these changes 
in gene regulation and function must be mediated by epigenetic 
mechanisms. These mechanisms, including methylation of CpG sites 
of DNA, are some of the most important processes by which genetic 
function is regulated and altered by development and by the external 
environment [20-26].

Why study epigenetic in MetS
Epigenetic mechanisms, which involve DNA and histone 

modifications, mediate the interaction between gene and environment 
throughout the lifespan; while the underlying genetic sequence does 
not change, environmental influences can alter epigenetic marks 
and thus alter gene expression and induce long term changes in 
phenotype and disease susceptibility [27]. The gradual accumulation 
of epigenetic changes in critical genes may contribute to the observed 
age-related increase in the prevalence of various chronic disorders 
[28-31]. Epigenetic changes are known to be heritable across more 
than one generation of offspring in plants and mammals [32-37] 
and there is evidence that transgenerational epigenetic inheritance 
also occurs in humans [38-41]. Such transgenerational inheritance 
of epigenetic states may contribute to the observed inherited risk of 
various chronic disorders, including metabolic disorders [42].

DNA methylation is one of the most extensively studied 
epigenetic mechanisms and plays an important role in the process 

Introduction
Chronic diseases such as cancer, type 2 diabetes (T2D), 

metabolic syndrome (MetS), cardiovascular disease and dementia 
constitute the most common health problems seen in developed 
societies (increasingly, in developing societies) and their prevalence 
increases with age in all populations [1-4]. It is well established that 
environmental exposures, especially in early life, can alter the risk of 
various chronic diseases later in life [5, 6] and while the mechanisms 
involved in this “programming” of future risk are not yet understood 
in detail, epigenetic changes are believed to play an important role 
in this process [7, 8]. Epigenetic mechanisms are also postulated to 
be involved in modifying the risk of MetS secondary to postnatal 
exposures and may explain the “missing heritability” of chronic 
diseases like MetS. In this mini-review, we discuss the historical 
context of the concept of MetS epigenetic, the recent evidence and 
our current opinions about this rising field. 

The Metabolic Syndrome
The Metabolic Syndrome (MetS) is a form of obesity characterized 

by a cluster of phenotypes that includes increased abdominal fat 
mass, impaired insulin responsiveness, dyslipidemia with increased 
plasma triglycerides and decreased HDL-cholesterol, increased blood 
pressure and elevated circulating cytokines and adipokines [9]. It is 
estimated to affect 34% of adult Americans [10] and adds an extra 
$2,000 per person in annual health care costs [11]. Its prevalence is 
low in childhood and increases with advancing age [12, 13]. 

The prevalence of MetS-associated cardiovascular (CV) risk 
factors is relatively low during early childhood but increases during 
adolescence and thereafter tends to persist into adulthood [12-15].  
We have observed a similar trend in adolescents in our cross-sectional 
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of development and differentiation [43]. There is evidence from both 
human and animal sources that prenatal nutritional deprivation 
can permanently alter DNA methylation at multiple loci and these 
changes play a role in the observed alteration of future risk of chronic 
diseases like obesity, insulin resistance and diabetes [44-50]. It is 
also known that DNA methylation patterns continue to change after 
birth, at least partly in response to environmental influences [51-
53]. Environmental factors can alter epigenetic features and change 
the future behavior of target cells and may therefore play a role in 
susceptibility to chronic diseases, including MetS [54-56]. In the next 
section, we will briefly review the role epigenetic mechanisms play in 
the development of MetS. 

Epigenetic, prenatal exposures and MetS
Several studies have shown persistent epigenetic changes in 

humans who face nutritional stress during prenatal life and early 
childhood [45, 57-58]. Environmental exposures in early life 
can influence MetS phenotypes later in life through epigenetic 
mechanisms. Children exposed to prenatal famine and low birth 
weight has increased risk of T2D, hypertension and other CV disease 
[50, 58]. Furthermore, a large and extensive epidemiological study 
of humans who were prenatally exposed to famine during the Dutch 
Hunger Winter in 1944–1945 showed that 60 years later they had less 
DNA methylation of the imprinted IGF2 gene compared with their 
unexposed, same-sex siblings [44]. 

Transgenerational epigenetic influences on MetS
Recent genome-wide association studies (GWAS) of MetS and its 

traits individually [59-62] revealed tens to hundreds of DNA variants 
that are significant but with small effect size in explaining the total 
heritable variance observed in each phenotype [59, 61]. Increasing 
evidence now shows that environment-induced genetic effects can 
pass transgenerationally without changes occurring in the primary 
DNA sequence [63] and this epigenetic trait can be transmitted up 
to the fifth generation [64]. Therefore, some of the familial risk of 
MetS may actually be epigenetic in origin. In rats, female offspring of 
overweight fathers (on a high fat diet) had an early onset of impaired 
insulin secretion and glucose tolerance that worsened with time 
compared to controls [42]. A recent human study showed paternal 
pre-conceptual obesity was associated with hypomethylation of IGF2 
in newborns [40].

Global epigenetics markers are shown to be inherited from one 
generation to the next. In a family study conducted by McRae et al., by 
using subjects of 117 families the authors show the average heritability 
of DNA methylation measured at CpG sites with no known SNPs is 
estimated to be 0.187 [41]. Carless et al. conducted another study 
in Mexican American families with high prevalence of obesity and 
T2D and found 24% of CpG sites tested had nominal evidence of 
heritabilityand the average level of heritability of these sites is 36% 
[65]. Some of these heritable CpGs reside within genes of known 
functions in metabolism [Carless M.A., personal communication]. 
In our family cohort of Northern European descent, we have also 
observed a significant portion of the epigenome is heritable, including 
genes known to play roles in obesity, T2D and MetS [Zhang et al., 
unpublished]. 

Postnatal transient and long-lasting epigenetic changes 
associated with MetS

It is also known that DNA methylation patterns continue to change 
after birth, at least partly in response to environmental influences 
[51-53]. For example, studies show that identical twins have broadly 
similar epigenetic profiles in-utero but these profiles gradually diverge 
as they get older [20, 66, 67]. Female subjects exposed to the Dutch 
Famine Winter when they are in young exhibited a 1.3 to 1.6 fold 
increased risk of type 2 diabetes as compared to unexposed women 
[68]. Several studies have looked at the effect of aging on genome-
wide DNA methylation in adults and these studies show that age-
dependent methylation changes are found in a variety of tissues and 
correlate well enough with age that the methylation status of selected 
loci can be used to predict the age of a subject [53, 69-71]. Our data 
show that within families at high risks for developing obesity-related 
metabolic disorders, there are age-associated genomic loci densely 
situated near genes that function in the hedgehog signaling and the 
maturity-onset diabetes of the young pathways (MODY) [in review]. 
This suggests a novel mechanism underlying the gradual deleterious 
effects of multiple genes and their interactions with nutrition over 
time, which may contribute to obesity and its complications. Our 
study sheds light on the relationship between ageing and increased 
prevalence of obesity, T2D and their related abnormalities and a 
dynamic epigenetic landscape that changes throughout the life span. 

Exercise is an environmental factor that can also influence both 
DNA methylation and CV disease and obesity risk. A recent study 
on exercise epigenetics shows that DNA methylation of genes in 
retinol metabolism, calcium signaling pathways and with known 
functions in muscle biology and T2D decreased after exercise [72]. 
Some of these exercise-associated methylation changes accompanied 
differential gene expressions [72]. In another study using adipose 
tissues, 18 obesity and 21genes exhibited differential methylation at 
CpG loci in response to exercise.

These authors suggest exercise induces genome-wide changes 
in DNA methylation in human adipose tissue, potentially affecting 
adipocyte metabolism [73].

Conclusion
MetS has reached epidemic proportion in the last three decades 

and is still on the rise in essentially all populations. Epigenetic 
mechanisms such as genomic CpG methylation may play an 
important role in individual differences expressing MetS traits as 
these epigenetic markers are able to integrate environmental cues 
into gene expression.

Although it is a novel field, we see increasing amounts of 
interesting data supporting this theory (Figure 1). 

Future Directions
More genome-wide searches for MetS relevant epigenetic 

variants using human populations that are well-characterized for 
MetS are needed to map to the interesting regions for follow-up 
studies. Studies that combine human sample with animal models will 
be instrumental in delineating the mechanisms where by identified 
candidates work. In both humans and animals, it will be essential to 
know the epigenetic states of both surrogate tissues and MetS targets 
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such as adipose tissue, liver and muscle in relation to MetS expression. 
In addition, population studies using longitudinal samples as well as 
ones focusing on the effects of environmental cues such as diet and 
lifestyles will help us find novel targets for risk evaluation, diagnosis 
and treatment in the clinic. 
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