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Abstract

Background: The worldwide growing pandemic of diabetes necessitates 
much attention to combat the pathogenetic metabolic syndrome. 

Aim: The present study aimed at investigating the possible ameliorative 
effect of oral administration of each of Quercetin (Q), O-Coumaric Acid (CA) 
and Berberine (BB) natural phytochemicals on pancreatic β-cells and glycemic 
control impact of High Fats/High Sucrose (HFS) diet in Wistar Albino rats. 

Methods: Fifty young adult animals (100-120 g body weight) were classified 
into 5 groups; normal diet-fed control group, HFS diet-fed control group, and, 3 
HFS diet-fed treatment groups. After 6 weeks of induction, each of HFS diet-fed 
treatment groups was treated with Q, CA, or BB for a further 6 weeks. Light 
and EM histopathological changes, morphometric pancreatic islet mass and 
glycemic control indices (fasting serum glucose and insulin levels and insulin 
resistance) were evaluated. 

Results: Rats fed HFS diet suffered from hyperglycemia and 
hyperinsulinemia that both caused insulin resistance accompanied with 
increase in islet mass and degeneration of β-cell granules. Treatment with Q, 
CA or BB reversed the biochemical and histological changes, albeit, BB was the 
most efficient. Conclusion: The investigated phytochemicals restored glycemic 
control and insulin sensitivity in rats fed HFS diet with BB as the strongest 
β-cells pancreato-protective.
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induces adipocyte hypertrophy [15] and hypertriglyceridemia [16].

Complementary and alternative medicine possess broad spectrum 
arena of anti-diabetic therapeutics [17]. Phytochemicals - not yet 
classified as essential nutrients, have health-promoting properties 
[18]. They include phenolic compounds such as Quercetin (Q) and 
utilize multiple mechanisms to combat the hyperglycemia-related 
diseases [19,20]. Fruits, vegetables, grains, tea, coffee, and spices 
consumed daily are rich in such phytochemical phenolics [21,22]. 
Alkaloids such as Berberine (BB) as another class of phytochemicals 
potently reduce body weight, improve glucose tolerance and insulin 
action in obese and/or diabetic subjects [23,24]. 

Antiobesogenic antioxidant phenolics, e.g., o-Coumaric Acid 
(CA) block various stages of adipocyte development culminating into 
its apoptosis, and stimulate lipolysis while inhibiting lipogenesis – 
as reflected on reduced adipose tissues mass and body weight. For 
that, they reduce the expression of each of glycerol-3-phosphate 
dehydrogenase, PPARγ, C/EBPα and leptin while up-regulating the 
expression of adiponectin at the protein and mRNA levels [25-29]. 
The present study aimed at investigating the potential ability of oral 
administration of each of Q, CA or BB against high-fat/high-sucrose-

Introduction
Generations born after the year 2000 have tripled obesity 

prevalence compared to those of the 1980s. This is reasoned to 
their physical inactivity and obesogenic diet and contaminants 
[1]. Pathogenesis of metabolic syndrome implicates metabolic 
dysregulation of lipid and glucose along with islet and/or insulin 
dysfunction [2]. Accumulated adipose tissue and subsequent 
changes in cytokines/fatty acids pattern affect glucose uptake, lipid 
metabolism, inflammation, and vascular homeostasis. This is due to 
peripheral Insulin Resistance (IR) in insulin-dependent tissues (liver, 
adipose tissue and skeletal muscle) [3,4]. Clinical and preclinical 
studies indicate that body lipids loss/gain correlates closely with 
increasing/decreasing insulin sensitivity [5,6]. Hyperinsulinemia 
ensues because of the adaptative compensatory pancreatic β-cells 
hyper function to overcome peripheral IR [7-9]. On the long term, 
however, β-cells failure ensues [10], leading to the development of 
type 2 diabetes [11]. High fat and high sucrose foods are the main 
elicitors of the metabolic syndrome complex [12,13]. Long-term 
administration of diets containing 40 - 60% lipids promotes the 
induction of obesity and IR experimentally and in human [14], and 
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induced metabolic syndrome/type 2 diabetes in Wister Albino rats 
utilizing histopathological changes, islet mass and glycemic control 
indices (fasting serum glucose and insulin, and insulin resistance) as 
end-point biomarkers.

Material and Methods
Animals

Fifty young adult Wistar rats (six-week old 100-120 g body 
weight) were purchased from the Animal House, Faculty of Medicine, 
Assiut University, Assiut, Egypt. They were housed and acclimatized 
for experimentation at Zoology Department. All of the animal 
procedures were performed in accordance with the guidelines for the 
care and use of experimental animals established by the Committee 
for the Purpose of Control and Supervision of Experiments on 
Animals. In a well-ventilated room and in metal cages, animals were 
maintained under standard laboratory conditions (25 - 30 °C, 60 - 
70% relative humidity and a 12-hour light/dark cycle).

Experimentation
Rats were randomly divided into 2 main groups: a normal diet 

control group of 10 rats that were fed a standard diet ad libitum 
(SD; 80% carbohydrates, 18% proteins and 2% fats) and 40 rats that 
were fed High Fat-High Sucrose (HFS) diet (55% SD diet, 15% beef 
tallow, 10% sucrose, 5% roasted peanuts, 5% milk powder, 5% whole 
eggs, 3% sesame oil and 2% NaCl) plus 10% sucrose in their drinking 
water; both ad libitum. After 6 weeks of induction, these 40 rats were 
subdivided into four groups. The first HFS diet control was left to 
continue untreated on HFS for the further 6 weeks. Each of the other 
3 groups was treated with daily gavage of Q (50 mg/kg b.w.), CA (75 
mg/kg b.w.) or BB (50 mg/kg b.w.) for the further 6 weeks on top of 
the continuing HFS diet. Q and CA were dissolved in 10% DMSO 
and BB was dissolved in warm saline solution. The 3 compounds and 
solvent were purchased from Sigma-Aldrich Co. (St Louias, MO, 
USA). 

Sampling and biochemical investigations
Overnight fasting animals were bled from jugular vein under light 

diethyl ether anesthesia to recover morning (from 8 to 9 am) serum 
after clotting and centrifugation at 6,000 rpm for 10 minutes at 4°C. 
Sera were aliquot stored at -80 °C. Rats in the different groups were 
then killed by cervical dislocation. The pancreas was quickly removed 
and fixed in 10% neutral buffered formalin for the histopathological 
investigations. Serum glucose was determined enzymatically 
using commercially available reagent kit (Egyptian Company 
for Biotechnology, SAE, Cairo, Egypt). Insulin was measured by 
sandwich DRG insulin ELISA kit (EIA-2943, DRG International, 
Inc., Springfield, New Jersey 07081, USA - with lower detection limit 
of ≤0.020 µg/L = 0.46 mU/L = 2.76 pM/L). Insulin Resistance (IR) 
was calculated using the Homeostatic Model Assessment (HOMA) 
assuming normal insulin resistance of ≤1 [30]. HOMA-IR = Fasting 
insulin (μU/mL) X Fasting glucose (mM/L) / 22.5. Literatures show 
its applicability to rats with possible advantages over tolerance tests 
[31-35].

Histopathological examination and electron microscopic 
study

Parts of pancreatic tissues fixed in 10% neutral buffered formalin 
were processed according to standard procedures. Sections (7 μm) of 

the different groups were mounted on slides and dried overnight at 37 
°C. The sections were de-waxed in xylene, hydrated in a graded series 
of alcohol solutions and then stained with hematoxylin and eosin for 
histological evaluation. Other small pancreatic tissue fragments were 
cut into 1-mm3 sections, immediately fixed in 2.5% glutaraldehyde 
and rinsed in 0.1 M phosphate buffer. After fixation in 1% osmium 
tetroxide and rinsing in 0.1 M phosphate buffer, the samples were 
dehydrated in a graded series of alcohol solutions and embedded in 
pure epoxy resin. Ultrathin sections (50-80 nm) were cut with a Leica 
AG Ultra microtome and stained with uranyl acetate and lead citrate. 
The sections were examined with a TEM (Jeol, 100 CXII) operated 
at 80 KV at the Electron Microscopic Center, Assiut University. The 
mean diameter of pancreatic islets was measured by histopathological 
examination of 3 sections from different parts of the pancreas for 
each animal. Semi quantitative morph metric analysis of the diameter 
of the islet mass was expressed as % of normal control and was done 
by research microscope (Carl Zeiss Axiovision Product SDVD 30) as 
we had previously described [36]. 

Statistical analysis
The data were tested for normality using the Anderson-Darling 

test and for homogeneity of variances prior to further statistical 
analyses. The data were normally distributed and were expressed as 
the mean ± Standard Error of the Mean (SEM). The significant of 
differences among groups was analyzed using a one-way ANOVA 
followed by a Newman-Keuls multiple comparisons test using PRISM 
6 Statistical Software (GraphPad Software Inc., San Diego, CA, USA). 
Differences were considered statistically significant at p<0.05.

Results
Changes in serum glucose and insulin levels as reflected 
on insulin resistance

After 12 weeks on HFS diet, there were significant increases 
in serum glucose (mg/dL; p<0.001) in HFS fed rats as compared 
to normal control rats. Treatment with each of Q, CA or BB for 
the subsequent six weeks (after 6 weeks of induction on HFS diet) 
significantly reduced serum glucose level (p<0.001) as compared 
to HFS-fed control rats to a level non-significantly different from 
normal diet controls. There were non-significant differences among 
the 3 phytochemicals in normalizing serum glucose (Table 1). Serum 
insulin level (μU/mL) of HFS-fed rats increased significantly (p<0.05) 
in comparison with normal diet controls. Treatment with each 
of Q, CA, or BB caused significant decrease in serum insulin level 
as compared to HFS-fed control rats (p<0.05) without significant 
differences amongst them or comparing each of them vs. normal diet 
rats (Table 1). Insulin resistance calculated as HOMA-IR showed 
normalization of the HFS diet-induced insulin resistance to ≤1, the 
normal upper limit, following treatment with each of Q, CA and BB 
(p<0.001; Table 1). There were non-significant differences amongst 
the three treatments and comparing each of them vs. normal diet 
rats. Morphometric analysis showed that HFS-fed rats and HFS-fed 
rats treated with either Q or CA had significant increase in the mean 
diameter of pancreatic islets compared to normal diet rats (p<0.001, 
0.05, and 0.05, respectively) without significant difference among the 
three of them. Comparing HFS-fed rats treated with BB vs. normal 
diet rats there was non-significant difference although BB treatment 
was also non-significantly different from HFS-fed rats and those 
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treated with Q or CA (Table 1).

Light and electron microscopic changes in pancreatic 
islets

Staining with H&E revealed that the pancreas of normal diet rats 
showed the normal pancreatic acini and pancreatic islets (Figure 
1A). HFS fed rats showed marked enlargement and hyperplasia of 
pancreatic islets that was slightly reduced following treatment with 
each of Q, CA and BB (Figure 1B/C, D, E and F, respectively). 

Electron micrographs of pancreas from normal diet rats revealed 
healthy β-cells and organelles (nucleus, rough endoplasmic reticulum, 
mitochondria and Golgi complex) with a central dense core of typical 
insulin secretory granules (Figure 2A). HFS-fed rats showed β-cell 
containing degenerated granules of electron dense core with electron 
lucent halo (Figure 2B). Pancreas from each of Q or CA treatment 
groups showed β-cells with degenerated electron dense core granules 
having increased electron lucent halo (Figure 2C and D). Pancreas 
from BB-treated group showed β-cell with exhaustion and marked 
degenerative changes in secretory granules (Figure 2E). 

Discussion
The increased incidence of obesity, glucose intolerance and IR 

are major risk factors for type 2 diabetes with a consequent high 
mortality rate from its cardiovascular complications [37,38]. Current 
worldwide investigations aim at developing alternative therapeutic 
phytochemicals that would be more efficacious in counteracting 
insulin resistance with lesser side effects. The present study is a 
participation in such efforts studying the potential therapeutic 
benefits of each of Q, CA and BB against experimental feeding of HFS 
diet-induced β-cells adverse changes and its consequent alterations 
in glycemic control indices. Treatment with BB induced superior 
normalization as compared to each of Q and CA. The significant 
increase of serum glucose and insulin levels of HFS-fed rats in the 
present study was previously reported in mice model [39]. 

HFS diet is associated with pancreatic fatty infiltration resulting 
in increased insulin levels in obese non-diabetic humans due to 
impaired β-cell function [40,41]. Impairment in regulation of glucose 
transporter and pancreatic β-cell cAMP as well as mitochondrial 

Parameters NC HFS HFS+Q HFS+CA HFS+BB

Glucose, mg/dL 136.1 ± 2.39 191.5 ± 9.14a*** 149.6 ± 10.21b*** 145.5 ± 4.48b*** 150 ± 6.99b***

Insulin, µU/mL 1.59 ± 0.147 1.74 ± 0.317a* 1.51 ± 0.73b* 1.28 ± 0.202b* 1.36 ± 0.052b*

HOMA-IR 0.634 ± 0.04 1.171 ± 0.122a*** 0.657 ± 0.062 b*** 0.628 ± 0.053 b*** 0.532 ± 0.033b***

MIMD, μm 92 ± 14 232 ± 23a** 215 ± 29 205 ± 33 153 ± 32

Table 1: Effect of oral administration of each of Quercetin (Q), o-Coumaric Acid (CA) or Berberine (BB) for 6 weeks on glycemic control indices (morning fasting serum 
glucose and insulin levels and insulin resistance) and Mean Islet Mass Diameter (MIMD) of High-Fat/High Sucrose (HFS) fed Wister Albino rats. Data shown are mean 
± SEM, where n = 8 for each group.

HOMA-IR: Homeostatic Model Assessment of Insulin Resistance; a: significant difference comparing Normal Controls (NC) vs. HFS groups; b: significant difference 
comparing HFS vs. each of Q, CA or BB-treated groups; * = p<0.05, and, *** = p<0.001.

Figure 1: Representative light microscopic H&E micrographs showing pancreatic islets of healthy normal diet control (A), High Fat-High Sucrose (HFS) fed (B/C), 
and HFS fed rats treated with each of Quercetin (Q; D), o-Coumaric Acid (CA; E) or berberine (BB; F). HFS induced significant increase in pancreatic islet mass 
was non-significantly reduced by each of Q and CA but almost normalized with BB (x400).



Austin J Endocrinol Diabetes 3(2): id1042 (2016)  - Page - 04

Hossam El-Din M Omar Austin Publishing Group

Submit your Manuscript | www.austinpublishinggroup.com

dysfunction, together with decreased adiponectin levels [42-45] are 
possible pathogenetic mechanisms for the HFS diet-induced insulin 
insensitivity in the current study. Oral treatment with Q, CA or BB 
induced significant decreases in serum glucose and insulin levels 
in accordance with previous researchers [27,46,47]. Stimulation 
of glycogenesis, up-regulation of key signaling proteins in insulin 
receptor-dependent pathways, reduction in fat stores and adjustment 
of leptin and adiponectin levels are potential mechanisms that 
improved insulin sensitivity following dietary supplementation of 
these phytochemicals [48]. 

The present β-cell histo-architectural change in HFS-fed rats was 
similar to previous findings [49]. Saturated fatty acids inhibit insulin 
signaling in liver, muscle, and fat cells [50-52] and induce β-cell 
lipotoxicity via pathways involving endoplasmic reticulum stress and 
generation of reactive oxygen species [53,54]. However, such insulin 
resistance mechanisms could be safeguarding measures against 
energy surplus-induced tissue damage [6]. 

BB supplementation is cytoprotective through increasing 
antioxidant enzyme activity and decreasing lipid peroxidation along 
with enhancing the regenerative capacity of β-cell [55]. Seemingly, 
its administration led to higher insulin-secreting ability of β-cell 

as manifested by high increment in the number of electron dense 
core and limited expansion in the size of pancreatic islet than Q 
and CA in our study. Flavonoids increase β-cell mass by inhibiting 
apoptosis and/or promoting proliferation of β-cells [56]. The lower 
cytoprotective efficacy of CA in HFS models as compared to its 
p-isomer, p-coumaric acid raises the importance of stereoisomerism 
of these two compounds. p-Coumaric acid has potent free radical 
scavenging activity and redox potential [57-59]. Similarly, we had 
shown that Q - as compared to BB and CA, failed to attenuate the 
deleterious effect of HFS-induced non-alcoholic fatty liver working 
through upregulating the peroxisome proliferator-activated 
receptor-γ, a master adipocyte metabolic regulator [29].

Conclusion
Each of the studied complementary phytochemical normalized 

the glycemic control indices in HFS diet-induced IR. In this model, 
BB was the most efficient anti-metabolic syndrome and pancreatic 
β-cell cytoprotectant. Further studies are currently planned to 
examine the potential cytokine, transcriptional and epigenetic 
molecular mechanistic pathway involved in the cytoprotective effects 
of these compounds particularly for BB that showed better potency 
and possible distinct mechanisms of action [29,60,61]. 

Figure 2: Representative electron micrographs for pancreatic β-cells of healthy normal control (A), High Fat-High Sucrose (HFS) fed (B), and HFS fed rats treated 
with each of Quercetin (Q; C), o-Coumaric Acid (CA; D) or Berberine (BB; E). HFS induced degeneration of β-cells electron dense core granules having electron 
lucent halo that was slightly ameliorated with the phytochemicals.
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