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Abstract

Prolactinomas are the most frequent pituitary adenomas. Most are 
successfully treated with Dopamine-Agonists (DA) and Cabergoline (CAB) 
is recommended as a first line therapeutic option. However, up to 20% may 
present primary or secondary DA/CAB resistance. Primary resistance is more 
frequent in macro- and/or invasive prolactinomas, in males and in the presence 
of inherited genetic predisposition to pituitary adenomas. Secondary resistance 
develops during follow-up, possibly indicating a change in tumour behaviour. 
Whereas partial resistance can be frequently overcome by increasing the weekly 
CAB dose above the labelled dose, severe resistance is typically associated 
with more aggressive features, often requiring a multimodal approach. Surgery 
may be indicated to improve neurological symptoms, before pregnancy, or to 
reduce pharmacological requirement. Because highly aggressive and malignant 
prolactinomas are life-threatening diseases, a panel of clinical, pathological and 
molecular features may be considered in order to achieve an early diagnosis 
and plan an adeguate follow-up and treatment. In addition to surgery and/or 
radiotherapy, Temozolomide (TMZ) currently represents the best option for highly 
aggressive/malignant prolactinomas. However, up to 30-40% of these tumours 
may not respond satisfactorily to TMZ and require innovative and personalized 
therapeutic approaches, such as molecular or radionuclide therapies targeted 
upon further characterization of the tumour. Increasing knowledge about the 
pathways involved in severe DA resistance and the aggressive behaviour of 
prolactinomas should help improve the clinical outcome of such patients. 
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relationship obseved between DA resistance and aggressive behaviour 
in prolactinomas.

Definition and Epidemiology
The prevalence of prolactinomas has been variably appreciated 

in the literature, due to variations in diagnostic criteria and 
recruitement bias. Since 2006, case-finding studies have reported 
an overall clinical prevalence of PA around 1/1000 inhabitants, with 
prolactinomas accounting for 57-66% [6-8]. Among these, about 20% 
were macroprolactinomas (maximal diameter > 10 mm). A minority 
of prolactinomas (1-4%) are giant (> 40 mm) [9,10]. Athough 
prolactinomas are particularly frequent in young females, the male-
to-female ratio increases with age (1:1 after the age of 50). Macro- and 
giant prolactinomas are more frequent in males, regardless of patient’s 
age [11]. Prolactinomas should not be missed in the perimenopausal 
age as they can present later as large tumours [12-14]. Because of 
the relationship between tumour volume and PRL secretion in 
prolactinomas [11], huge tumours are typically associated with very 
high PRL levels, which may be missed in sandwich immunometric 
assays unless the serum is appropriately diluted (e.g. 1:100). This so-
called “hook effect” [15] should be considered in all patients with 
large pituitary tumours, regardless of age and gender, in order to 
avoid unappropriate surgical approaches. 

The prevalence of aggressive prolactinomas has not been 

Introduction
Prolactinomas are the most frequent Pituitary Adenomas (PA) 

and a large majority are successfully treated with Dopamine-Agonists 
(DA), in particular Cabergoline (CAB), which has become the first 
line drug due its excellent efficacy and tolerability [1]. However, 
a minority develop aggressive features, which may be present at 
diagnosis or develop during follow-up. Resistance to DA is more 
frequent in invasive prolactinomas. Aggressive prolactinomas 
represent an ill-defined group of invasive tumours characterized by 
uncontrolled growth/recurrences and increasing Prolactin (PRL) 
secretion despite increasing doses of DA, often requiring repeated 
surgery and/or radiotherapy. Malignant prolactinomas are defined by 
the presence of metastasis and are typically resistant to high dose DA. 
The large majority of them arise from invasive macroprolactinomas 
and, until the last decade, their outcome was poor despite multimodal 
approaches including conventional chemotherapy [2,3]. The 
introduction of Temozolomide (TMZ) has greatly improved the 
treatment of aggressive and malignant prolactinomas, rapidly 
becoming the first line chemotherapy in these patients [1,4,5]. 
Based on increasing knowledge about abnormal pathways involved 
the pathogenesis of aggressive/malignant prolactinomas, molecular 
target therapies represent promising additional tools [4,5]. The aim 
of this review is to summarize current knowledge and prospective 
views on this challenging topic, with special reference to the frequent 
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specifically adressed, probably due to the absence of specific 
diagnostic criteria and the frequent need for a sufficient follow-up 
to disclose tumour aggressiveness. For example, giant prolactinomas 
have reached a sufficiently aggressive potential at diagnosis to grow 
outside the sella and invade surrounding structures. However, 
most of them are slowly growing and will respond to DA, with 
PRL normalization in 60-80% and significant tumour shrinkage 
since the first weeks/monthsof treatment [9,10]. These latter cases 
may therefore exit the subgroup of clinically aggressive/challenging 
prolactinomas. In contrast, a subset of prolactinomas will show an 
aggressive, uncontrolled growth despite increasing doses of DA/
CAB and seldom evolve towards malignancy. The large majority of 
them present as macroprolactinomas. We found 77/92 prolactinomas 
resistant to standard doses of CAB to be macroadenomas at diagnosis 
(83.7%), out of which 15 were giant [16]. Overall, 7.6% developed 
highly aggressive or malignant features, 4.8% died from neurological 
complications or metastasis [16]. Thus, in clinical practice, resistance 
to DA may be a stronger negative prognostic factor than initial 
macroscopic characteristics and severe DA resistance is a serious 
concern. 

Pathological and molecular markers are being searched for in 
order to optimize the early identification and treatment of aggressive 
prolactinomas, hopefully reducing in the future the risk of uncontrolled 
growth or malignant evolution. The WHO 2004 classification defined 
as “atypical adenomas” a subset of PA characterized by active 
proliferation (Ki67 >3%, high mitotic activity), p53 immunoreactivity 
and cellular atypia [17]. Atypical prolactinomas may represent 2.9-
11% of surgically treated cases [18,19]. The prognostic value of this 
classification was recently investigated [20], confirming a higher 
rate of recurrence in atypical PA. However, atypical PA are largely 
represented by invasive macroadenomas [19,20], which are the 
most likely to recur. A recent classification also takes into account 
the presence of invasive characteristics, defined by pre- and intra-
operative criteria [21]. With a mean post-operative follow-up of 
8 years, this model showed that in prolactinomas, the presence 
of invasive features dramatically increased the risk of recurrence, 
with proliferative characteristics alone being associated with a 
mild increase only [21]. Limits in the use of Ki67 and p53 consist 
of tumour heterogeneity and methodological issues which may 
contribute to apparently conflicting data on their clinical significance. 
However, high Ki67 values with convincing p53 immunostaining are 
sufficiently negative prognostic factors to deserve special clinical 
attention [4,5,22]. An unresolved issue remains the impact of pre-
operative DA, which induces significant morphological changes in 
prolactinomas [23], on such parameters. Due to the anti-proliferative 
effects of DA, lower Ki67 values can be observed in treated patients 
[24,25], thoughthis has not been unequivocally reported [18,25]. This 
may reflect differences in DA sensitivity, since higher Ki67 values 
were found in bromocriptine-resistant tumours [26]. Therefore, 
a medium/high proliferative activity is likely to have a stronger 
negative prognostic value in prolactinomas treated with DA before 
surgery than in untreated cases.

Pituitary carcinomas are defined by the presence of histologically 
proven metastatic dissemination in the Central Nervous Sytem (CNS) 
or outside the CNS and represent< 0.4% of pituitary tumours [2-4]. No 
pathological feature is specific of pituitary carcinomas at the primary 

site [2-5]. More than 30% of pituitary carcinomas are PRL-secreting 
[2], with a mean time interval between the diagnosis of prolactinoma 
and metastasis around 7 years and large individual variations (1 
month-20 years) [27]. Up to 40% of malignant prolactinomas 
initially present as atypical adenomas, but active proliferation 
and pleomorphism are inconstant even in metastatic tissues [27]. 
Metastasis may be suspected in the presence of unexplained raising 
PRL levels or local compression symptoms, in particular for cranio-
spinal localisations [2-4,27], or be revealed by incidental imaging 
or at autopsy. Diagnostic pitfalls are mainly represented by co-
existing solid tumours of extra-pituitary origin. Although pituitary 
carcinomas are increasingly reported, it is likely that in the absence 
of a gold standard technique for advanced functional imaging, 
able to detect metastases at an early stage, their prevalence remains 
underestimated. Scintigraphywith isotopic ligands of the dopamine 
receptor D2R such as 123I-IBZM and 123I-epidepride, can be used 
[27-29], although it may not be sensitive enough in the presence of 
poor D2R expression [29,30]. Alternatively, somatostatin receptor 
imaging [31] and Positron Emission Tomography (PET) for D2R 
(11C-raclopride) and markers of metabolic activity (11C-L-methionine, 
18F-fluorodeoxyglucose/FGD) [32] may be proposed. Except for 
18F-FDG, these techniques are poorly available and there is limited 
experience in malignant prolactinomas [27,33].

Pathogenesis
The pathogenesis of PA is a complex multistep and multifactorial 

process, which includes early initiating events, growth promotion 
by a variety of extracellular growth factors, abnormal transduction 
and proliferative pathways [34,35]. Genetic and epigenetic events 
may be involved in the initiation of PA and contribute to tumour 
progression, invasiveness and exceptionally metastasis. These include 
gene promoter methylation, histone modifications and an anbormal 
expression of non-coding RNAs, in particular microRNAs [34,35].

Most prolactinomas are believed to arise from the sparsely 
granulated PRL-secreting cells, which actively release PRL, rather 
than from the densely granulated cells, considered as resting storage 
cells [36]. Indeed, densely granulated prolactinomas are rare [18,37]. 
A minority may also arise from GH/PRL-secreting cells [36,37], which 
is clinically relevant since it may impact tumour treatment and patient 
management. Hence, mixed GH/PRL-secreting adenomas should 
be recognized even in the absence of typical signs and symptoms of 
GH/IGF1 hypersecretion, especially in macroadenomas. Elucidating 
the molecular mechanisms of tumorigenesis in prolactinomas is 
hampered by their first line pharmacological approach, which not 
only limits the amount of samples available for molecular studies 
but potentially represents a con founding factor. Nonetheless, a 
subset of somatic alterations and abnormal signalling have long 
been reported in prolactinomas [36,38,39]. The development of 
powerful methodological approaches (genomics/epigenomics/
transcriptomics), able to explore hundred of genes simultaneously, 
has become an essential tool for the identification of new players 
in prolactinoma pathogenesis [40-44]. Because these studies are 
performed on a limited number of cases (including single tumours 
or pooled samples), results must then be validated by studies of gene/
protein expression on larger series. Elucidating the biological role 
of candidate genes/proteins may be challenging. Prolactinomas are 
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characterized by a very low rate of progression from microadenomas 
(< 10 mm) to macroadenomas, suggesting the presence of differential 
molecular mechanisms since an early stage of tumour development. 
Recent evidence for a pituitary niche of stem cells in the adult 
pituitary raises the possibility of tumour formation from incompletely 
differentiated cells, with a a more aggressive potential than tumour 
arising from mature cells [45]. This would also explain considerable 
overlap between pathways involved in tumour aggressiveness and 
in DA resistance. Interestingly, some developmental signaling 
molecules are overexpressed in prolactinomas (e.g.BMP4, Notch3) 
[Table 1], Alternatively, progressive tumour de-dedifferentiation 
may occur. Most prolactinomas are believed to be monoclonal in 
origin but somatic initiating events are poorly understood. Animal 
models represent essential tools to unravel the capacity of single gene 
abnormalities to drive prolactinoma pathogenesis [46,47]. In human 
prolactinomas, multiple somatic abnormalities have been reported, 
none of which being identified as an initiating event. Among 
cytogenetic abnormalities, trisomies involving chromosome 5,8 and 
12 have been observed [48] and their molecular implications are being 
increasingly unravelled. For example, polysomy of chromosome 12, 
as well as rearrangements in 12q14-15, contribute to the frequent 
overexpression of the HMGA2 oncogene in prolactinomas [47] which 
may in turn be responsible for Pit-1 upregulation [36,43,49]. Among 
the several abnormalities in chromosome 11 reported in PA, allelic 
loss in 11p and in 11q were observed in aggressive and malignant 
prolactinomas, respectively, with transcriptomic and proteomic 
analysis identifying a subgroup of dysregulated genes in 11p [50]. 

Allelic loss of the whole chromosome 11 was reported in aggressive 
and malignant prolactinomas [33]. In contrast, classical somatic 
mutations of oncogenes and inactivating mutations of Tumor 
Suppressor Genes (TSGs) are rare [36,38,39]. Recently, H-Ras and 
PIK3CA mutations have been reported in invasive prolactinomas [51] 
and an activating GNAS1 mutation (Gsp)was found in an aggressive 
prolactinoma shifting to a mixed GH/PRL-secreting tumour [52]. 
Rather, overexpression of oncogenic proteins and/or downregulation 
of TSGs occur [Table 1], with accumulating evidence for underlying 
epigenetic changes [34,35]. This may translate into the identification 
of immunohistochemical markers of aggressiveness, as proposed for 
nuclear PTTG [42] or strong galectin-3immunostaining [53]. A set 
of prognostic biomarkers have been proposed [54], though they may 
not invariably apply to all functional phenotypes. Increased apoptosis 
has been reported in invasive/aggressive and especially in malignant 
prolactinomas [54,55].

Extracellular signalling also plays an essential role in the control 
of PRL secretion and cell proliferation, the development of invasive/
aggressive features and angiogenesis. The best characterized model 
is represented by estrogen-induced prolactinomas developing in 
some strains of rats [56,57], which illustrates the complex cascade of 
events induced by a single molecule (e.g. 17βestradiol): (i) estrogens 
exert direct transcriptional effects on a panel of genes including PRL, 
molecules involved in cell cycle progression (e.g.PTTG, c-myc, E2F1), 
Growth Factors (GFs)/neuropeptides and their receptors, (ii) some 
of these factors will contribute to stimulate cell proliferation (e.g. 

Table 1: Genesdysregulated in prolactinomas.

Legend: This table presents a non exhaustive list of dysregulated genes in prolactinomas; most are issued from transcriptomic studies. References for genes identified 
by specific studies can be retrieved from reviews indicated by “rev in.” ° as compared with DA responders.

Function Upregulatedgenes Note Ref Downregulatedgenes Note Ref

Pituitary development

Pit1 (POUF1)
OCT2 (POUF2)

ASH1
TLE4

Notch3
BMP4

40,43
43

41,43
41
43

rev in 34,35

Pitx1
Frizzled homolog 7

ID2

Aggressive 42
43
41

Cell cycle

PTTG
CCNB1(Cyclin B1)

AURKB
ASK

CENPE
HMGA2
HMGA1

Aggressive (?)
Aggressive
Aggressive
Aggressive
Aggressive

42
42
42
42
42

rev in 47
rev in 47

PTTG
P16

GADD45β/GADD45G

41
40
43

Growth factors/receptors

EGFR/ErbB1
HER2/ErbB2

ErbB3
Angiopoietin1

VGF
FGF4 (hst)/ptdFGFR4

Aggressive/K

rev in 34,35
60
59

41,43
41

rev in 34,35

TGFβ1, TGFβR3
VEGF
NGF Resistant (°)

43
41
87

cAMP signalling D2R
GNAS1

43, rev in 38, 83
43, rev in 38, 83

D2R°
Gi2

Resistant (°) rev in 38, 83

Extracellular matrix ADAMTS6
MMP-9

Invasive/Aggressive
? 42 E-cadherin/β-catenin

N-cadherin Invasive rev in 35

Miscellaneous

PIK3CA
LGALS-3/Galectin-3

LAPTM4B
Ras-induced senescence 1 (RIS1)

Bcl-2-associated anathogen 
(BAG1)
DNAJB5

ATM
RAB-25

Invasive/Aggressive

51
41, 53

40
43

40,43

43
41
41

LGALS-6
IGFBP3

41
43
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downregulation of TGFβ1/2) and angiogenesis (e.g. upregulation 
of FGF2, VEGFA). Angiogenesis, which results from an imbalance 
between angiogenic and anti-angiogenic factors, plays a peculiar role 
in the progression of prolactinomas [58]. As it increases with tumour 
volume and invasiveness, evaluation of Microvascular Density 
(MVD) with endothelial cell markers may be proposed as a marker 
of aggressiveness in these tumours [33,39] and for the design of anti-
angiogenetic treatments. Among GFs/GFRs involved in prolactinoma 
pathogenesis [34,35], theEGF/EGFR family has also received much 
attention [59,60]. 

Inherited predisposition to prolactinomas
A subgroup of patients may develop prolactinomas in a 

genetic setting [61-63]. MEN1 and AIP-related prolactinomas are 
frequently more aggressive than their sporadic counterpart and 
their identification may have significant implications for patient’s 
management and/or genetic counselling. In contrast, prolactinomas 
represent a very minority of PA associated with pheochromocytomas/
paragangliomas, a new syndrome linked to germline SDHx genes 
mutations [64]. Although hyperprolactinemia frequently develops 
in patients with McCune albright sydrome or Carney complex, 
characterized by mutations leading to a costitutive activation of 
the cAMP pathway and frequent somatolactotroph hyperplasia 
[65,66], PA develop in about 15% and are typically associated with 
acromegaly. Thus, no genetictesting for these rare conditions is 
justified in prolactinoma patients unless a specific clinical context is 
present. 

Multiple endocrine neoplasia type 1(MEN1) and related 
conditions

Prolactinomas are the most frequent phenotype encountered in 
patients affected by MEN1, a highly penetrant condition [67]. PA 
develop in about 40% of MEN1 patients, 15% as a first manifestation 
of the syndrome. In a multicenter study in which MEN1 patients were 
matched for age with sporadic PA patients, MEN1 prolactinomas 
were larger and more frequently invasive at diagnosis than their 
sporadic counterpart, suggesting an earlier onset [68]. Accordingly, 
MEN1 gene abnormalities have been recently reported in up to 6% 
of sporadic macroprolactinomas in young patients, which is twice 
the reported prevalence in unselected PA [69]. Similarly, we found 
clinical MEN1 in 5/92 resistant prolactinoma patients (5.4%), 
4/5 with a MEN1 mutation [16], which is consistent with a more 
frequent DA resistance in MEN1 prolactinomas [68]. Malignant 
transformation has been rarely reported in MEN1 [68]. The complex 
molecular effects of men in, the MEN1 gene productand its role in 
prolactinomas have been reviewed elsewhere [70]. Thus, MEN1 
should be taken in mind in apparently sporadic patients with 
macroprolactinomas, in particular if invasive, resistant or in young 
patients [62,69]. Prolactinomas may also be encountered in MEN1-
like conditions associated with mutations in genes encoding Cyclin 
Kinase Inhibitors (CKI), in particular MEN4, due to a CDKN2B/p27 
inactivating mutations, but these are very rare conditions [71,72]. 

The aryl hydrocarbon receptor Interacting protein (AIP) 
gene

AIP is another pituitary tumour suppressor gene located in 11q13 
[73]. Although the large majority of PA developing in patients with 
germline AIP mutations (AIPmut) are somatotropinomas (75%), 

nearly 10% are mixed GH/PRL-secreting PA and pure prolactinomas 
account for almost 15% [74]. AIPmut prolactinomas may occur 
in the setting of Familial Isolated Pituitary Adenomas (FIPA) or 
present as apparently sporadic cases. In FIPA, AIPmut prolactinomas 
occur in heterogeneous kindreds, i.e. in association with any 
other PA phenotype (mainly GH-secreting) [74]. Because AIP 
mutations account for only 15% of heterogeneous FIPA kindreds, 
additional genes should be involved, in particular in homogeneous 
prolactinoma kindreds. AIPmut prolactinomas account for only 4.5% 
of unselected prolactinomas [75], but this proportion increases in 
young macroprolactinoma and pediatric cases [74]. Somatic AIP 
downregulation is frequent in prolactinomas, regardless of tumour 
aggressiveness [76]. AIPmut prolactinomas are also frequently 
resistant to DA [74]. Recognizing AIPmut prolactinoma simplicates 
familial screening, although disease penetrance is incomplete [74]. A 
challenging issue may bere presented by the identification of variants 
of uncertain biological significance, which pathogenicity is generally 
estimated by combining data from in silico analysis and familial 
screening. Further search for AIP mutations in at-risk PA patients 
should help define guidelines for genetic counselling according to 
AIP sequence abnormalities. 

Resistance to DA
Current definition and clinical significance

The proportion of resistant prolactinomas has been variably 
appreciated [77-79]. There are many reasons for that: (i) in clinical 
practice, prolactinoma show a spectrum of DA sensitivity which 
translates into different doses of treatment required to normalize 
PRL secretion and obtain “significant” tumour shrinkage, so that 
any threshold based on the percentage of PRL decrease or tumour 
reduction is somewhat arbitrary; (ii) the duration of treatment may 
be critical to evaluate tumour shrinkage; (iii) former studies reported 
on bromocriptine resistance; (iv) the maximal tolerated dose of 
DA may be lower than the efficient dose. Due to its greater efficacy 
and tolerability, current guidelines recommend the use of CAB as a 
first line treatment, or switching to CAB when other DA drugs fail 
[1]. DA resistance is therefore currently defined as CAB resistance. 
Because 82% of 122 consecutive prolactinoma patients achieved PRL 
normalization with a median maximal weekly dose of CAB (Cabmax/w) 
<1.5 mg, this treshold was proposed to define resistant patients, who 
therefore accounted for 18% [80]. We defined CAB resistance on 
the basis of persistent hyperprolactinemia onthe maximal labelled 
dose of CAB (Cabmax/w> 2.0 mg/week) [16], which may be unable to 
normalize PRL in up to 18% of macroprolactinoma patients [81]. 
Whatever the definition retained for DA resistance, it is more frequent 
in macroadenomas and in males. An important clue in defining DA 
resistance on the basis of a moderate persisting hyperprolactinemia 
is to exclude the presence of macroprolactinemia in asymptomatic 
patients [82]. Other pitfalls are represented by unrecognized 
GH/PRL-secreting adenomas or by an incorrect diagnosis of 
macroprolactinoma – the so-called “pseudo-prolactinoma” due to 
functional hyperprolactinemia in the presence of any tumour of the 
sellar region due to a reduced dopaminergic tone–. In this latter case, 
however, PRL secretion typically normalizes on low dose CAB with 
no tumour shrinkage, highlighting the need for neuro-radiological 
follow-up on DA therapy for hyperprolactinemia.
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It may be of clinical interest to distinguish between “partially 
resistant” prolactinomas those tumours which will be controlled by a 
Cabmax/w> 2.0 mg and “severely resistant” those unresponsive to high 
dose CAB (e.g.> 3.0 mg), since they are likely to represent diseases 
with different prognostic and therapeutic indications. We observed 
that the mean Cabmax/w in resistant prolactinomas- 4.1±1.7 mg [range 
2.0-10.5] – significantly increased with treatment complexity: 3.4±1.2 
mg in patients treated by DAonly, 4.3±1.8 mg in patients treated with 
surgery and DA, and 5.5±2.0 mg in patients treated with DA, surgery 
and postoperative radiotherapy (P=0.003) [16]. All the patients who 
developed highly aggressive or malignant prolactinomas received 
and were resistant to Cabmax/w up to 3.0-8.0 mg [16]. In contrast, 
CAB could be progressively tapered during follow-up in a significant 
subset of patients who achieved PRL nomalization [16]. Another 
issue is represented by a progressive escape from an initial response 
to DA. We found 8.7% of CAB-resistant patients to have secondary 
resistance [16]. This occured more frequently in males, but initial 
tumour characteristics and the Cabmax/w dose required to normalize 
PRL were similar to those with primary resistance. Close follow-up of 
such cases is necessary, since increasingsecondary resistance is more 
frequently observed in aggressive/malignant prolactinomas, possibly 
due to tumour dedifferentiation [16,27].

Molecular basis
Inhibition of  PRL transcription and cell proliferation by 

dopamine and DA in lactotrophs are mediated by D2R, which 
is expressed as a short (D2Rs) and a long (D2Rl) isoforms. D2R-
deficient mice develop lactotroph hyperplasia and late-onset 
prolactinomas, especially in females [46]. No D2R mutations have 
been identified in resistant prolactinomas. Rather, underexpression 
of D2R, in particular D2Rs [83] or alterations in D2R signalling, 
such as a reduced expression of Gi2α or the cytoskeleton-associated 
protein filamin A may be present [83,84]. Interestingly, the genetic 
D2R polymorphism NcoI T was found to be associated with DA 
resistance regardless of tumour volume [85]. Estrogens may induce 
dopamine resistance [56], with a possible increase in DA requirement 
during sex steroid therapy in prolactinoma patients, but no specific 
alterations in ER expression was found in resistant prolactinomas 
[86,87]. NGF exerts autocrine anti-proliferative effects on lactotrophs 
and loss of NGF expression has been linked to D2R downregulation 
and pharmacological resistance [88,89]. Whether crosstalk with other 
abnormal extracellular signaling pathways may contribute to DA 
resistance, in particular in aggressive prolactinomas, has been poorly 
investigated yet. 

High dose CAB in resistant prolactinomas: pro and cons
Whereas increasing Cabmax/w above 2.0 mg is useful in most partially 

resistant patients, experience with very high doses (e.g.>3.5 mg) has 
lead to conflicting results. Ono et al. reported PRL normalization 
in up to 73.1%, 88.5% and 96.2% of resistant caseswhen increasing 
Cabmax/w to 6.0, 9.0 and 12 mg, respectively [81], whereas others found 
no significant advantage above 3.5 mg [80,90]. We observed PRL 
normalization in 5/19 patients receiving Cabmax/w> 3.5 mg (26.3%), 
with some degree of tumor shrinkage in 10/19 (52.6%). None had 
tumor disappearance but none had tumor progression [16]. Therefore 
a stepwise dose increase can be reasonably proposed in a compliant 
patient if: (i) each step determines a further PRL decrease; (ii) clinical 

side-effects are acceptable; (iii) echocardiographic monitoring is 
performed. If clinical side-effects associated with high CAB doses 
might be transient [81], the potential serotoninergic effects of CAB on 
the heart –long-term valvular thickening with potential regurgitation, 
mediated by the 5HT-2B receptor – should be considered [90]. 
The large majority of studies performed on prolactinoma patients 
receiving labelled doses of CAB showed no significant increase 
in valvular regurgitation, though subclinical alterations could 
be observed [1,78,91-95]. Since a cumulative dose-effect may be 
present and experience in DA-resistant prolactinomas is limited, 
echocardiographic monitoring should be performed [1,91]. In 
female patients, the risk of tumour enlargement in macroadenomas 
in pregnancy [96] may be even higher in uncontrolled tumours 
and progression from micro- to macro-adenoma may occur [16]. 
Because the tolerance and safety of high doses DA in pregnancy is 
largely unknown [97], pregnancy should be carefuly planned in such 
patients, keeping in mind that surgery is able to significantly reduce 
the risks of pregnancy-related complications [1,77,96] and drug 
requirement [16]. 

Alternative endocrinological approaches
The estrogen sensitivity of prolactinomas has long been thought 

as a potential pharmacological target. All prolactinomas express 
ERα [37]. Limited clinical experience with tamoxifen showed only 
a mild effect on PRL secretion and new generations of selective 
estrogen receptor modulators have not been used in humans so far 
[37]. However, encouraging experimental data have been recently 
obtained in vitro [98] and in vivo [99] with the use of fulvestrant, a 
pure antiestrogen compound. Despite prolactinomas also express 
variable levels of Somatostatin Receptors (SSTRs), they do not 
significantly respond to octreotide/lanreotide. Based on a preferential 
expression of SSTRs1/5, SOM230/pasireotide could be more 
effective, but this is not always the case in vitro [100] and no data 
are available in vivo. Preliminary studies with chimeric D2R/SSTRs 
analogues in vitro yielded disappointing results [100]. An interesting 
application of SSTRs expression is radionuclide therapy, which has 
been successfully used in a resistant prolactinoma [101], although 
further experience is needed [102]. 

Surgery
It is currently recommended that first line surgery in 

prolactinomas should be limited to neurological emergencies or 
extensive hemorragic/cystic changes [1]. Transcranial surgery is 
rarely necessary and debulking Transsphenoidal Surgery (TSS) 
should be performed in a specialised center. This approach is 
justified by the high percentage of PRL normalization and tumour 
shrinkage in macroprolactinomas treated with CAB (up to 90 and 
80%, respectively), with a rapid improvement of visual defects in 
reponsive cases [1,77,91]. Despite significant improvements in TSS 
approach, post-surgical PRL normalization still occurs in a minority 
of macroprolactinomas, especially if invasive, with a limited risk of 
post-operative complications and frequent recurrences [103,104]. 
Surgery is therefore proposed in patients who do not tolerate or 
respond to DA, with rare indications resulting from complications of 
DA in large tumours, such as CSF leak or intratumoral hemorraghe/
apoplexy [1,9,10]. For such reeasons, patients with huge tumours 
should be best started with very low dose CAB [9,10,91]. In our 
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experience, post-operative PRL normalization was achieved in < 10% 
of resistant prolactinomas but debulking TSS significantly reduced 
the weekly dose of CAB required to control hyperprolactinemia and 
tumour growth, which may be relevant for the long-term safety of 
treatment [16]. Higher rates of post-operative PRL normalization 
(>40%) were obtained on a series of resistant prolactinomas including 
a lower proportion of macro-and/or invasive tumours, but a similar 
reduction on post-operative CAB requirement was observed [104]. 
As discussed hitherto, surgery may also be safely offered before 
pregnancy to women with resistant prolactinomas, especially if 
persistent anovulation requires pharmacological induction. 

Radiotherapy
Prolactinomas have long been considered as being poorly 

sensitive to radiotherapy. PRL normalization has been reported 
in a minority of patients (about 1/3) and may require several years 
(up to 10-20 years), whereas de novo pituitary deficits develop in 
a large proportion of patients and increase with time [1,77,91]. 
Neurocognitive effects, an increased risk for delayed cerebrovascular 
events and radio-induced neoplasia should also be considered [105-
107]. However, radiotherapy may be useful in resistant prolactinomas 
[1,77,91,108] and significance advances have been made in pituitary 
irradiation techniques [109]. Stereotactic fractionated techniques are 
typically employed as post-surgicals tool to control the risk of tumour 
remants regrowth. Gamma-knife radiosurgery, which is suitable for 
small target volumes, has also been used in non-operated resistant 
prolactinomas, with a good tumour control, clinical improvement 
in a subset of patients, but a low rate of PRL normalization [110]. 
A precise definition of the target volume may in some cases allow a 
safe re-irradiationin the presence of localized tumour regrowth [109]. 
An advantage of multimodal therapy (DA, surgery and radiotherapy) 
of resistant prolactinomas is that, despite its use in more aggressive 
diseases, it may further reduce the requirement for high dose DA and 
increase the chance of CAB withdrawal [16]. Finally, radiotherapy 
may be used in the symptomatic treatment of metastasis.  

Temozolomide
Until the last decade, chemotherapy regimen (mainly based on 

CCNU/lomustine and 5-FU) have been used for the treatment of 
highly aggressive or malignant pituitary tumours, with transient 
beneficial effects in some patients [3,4,111]. Since the first report 
of its remarkable efficacy in a PRL-secreting carcinoma [112], 
Temozolomide (TMZ) has become the first-line chemotherapy for 
pituitary carcinomas [1]. TMZ has anti-proliferative, anti-secretory 
and pro-apoptic effects in rodent pituitary cell lines [113]. TMZ is 
administered orally, side-effects are generally mild to moderate. 
Based on experience with gliobastoma patients, the preferred regimen 
is 150-200 mg/m2 dose for 5 days every 28 days, although daily low 
doses (50-75 mg/m2) have also been proposed [114-116]. Tumour 
control has currently been reported in about 60% of aggressive PA 
and carcinomas, which represents a significant advance as compared 
to previous chemotherapy regimen [114-116]. PRL-secreting tumours 
are among the most responsive, with tumour shrinkage (>20%) 
reported in 66.6% of treated cases (n=15, including 7 carcinomas) 
[114], so that TMZ represents a valuable option for selected resistant 
prolactinomas [116]. Tumour shrinkage is associated with a signifiant 
reduction in PRL secretion, which may eventually normalize. Because 
the O6-methylguanine-DNA Methyltransferase (MGMT) enzyme is 

able to reverse DNA abnormalities induced by TMZ, its expression 
may limit the efficacy of treatment [117]. Reduced MGMT expression 
may be driven by promoter methylation [117]. Current experience 
with pituitary tumours indicate that low MGMT expression, rather 
than MGMT promoter methylation, is significantly associated with 
TMZ response [118,119]. However, the negative predictive value 
of MGMT status is not strong enough to deny patients a 3-months 
TMZ trial, which is generally able toidentify responders [114,120]. 
Accordingly, we obtained a strong and sustained response to TMZ 
in a highly aggressive MEN1 prolactinoma displaying strong MGMT 
immunostaining and a fully unmethylated MGMT promoter [121]. 
A remarkable response was also reported in a MEN1 malignant 
prolactinoma with unknown MGMT status [122]. Expression of the 
mismatch repair enzyme MSH6 has been recently associated with 
pituitary tumour response to TMZ, potentially due to increased DNA 
damage signalling [123,124]. Open issues with the use of TMZ are 
the optimal duration of treatment, long term toxicity and follow-up 
after drug withdrawal, and potential acquired resistance. There are 
no recommendation about DA treatment on TMZ; our policy is to 
maintain CAB unchanged until the efficacy of TMZ is proven and 
there after taper the dose progressively. 

Target therapies
GRs, GFRs and related abnormal intracellular signalling 

pathways, the Raf/MEK/ERK and PI3K/Akt/mTOR pathways 
offer interesting opportunities for the development of molecular 
target therapies in resistant/aggressive/malignant prolactinomas 
[125,126]. Anti-VEGF therapy (bevacizumab) was effective in 
experimental estrogen-induced prolactinomas, including dopamine 
resistant tumours [127,128], but clinical experience is limited to a 
corticotroph carcinoma [129]. Tyrosine Kinase Inhibitors (TKI) have 
been proposed to target the EGFR/HER1 alone (gefitinib) or both 
EGFR/HER1 and Erb2/HER2 (lapatinib), with lapatinib inducing 
a higher reduction in PRL secretion from human prolactinomas in 
vitro [60]. Promising data also arise from experimental data using 
antagonism of the heregulin/HER3 pathway [59] or anti-angiogenetic 
thrombospondin-1 analogues [130]. Inhibitors of mTOR (e.g. 
rapamycin, RAD001/everolimus) reduce cell proliferation in GH3 
and MMQ cells [131,132] with a potential radiosensitizing effect 
[132], but experience with human pituitary tumours is limited to 
non-functioning PA in vitro [133]. Experimental studies based on the 
use of epigenetic drugs [134] and adenovirus-mediated gene therapy 
[135-138] remain at a very preliminary stage. 

Conclusion
Up to 20% prolactinomas may present partial or severe DA 

resistance, which is generally disclosed since the early phase of 
treatment, but may develop during follow-up. Primary resistance is 
more frequent in genetic forms, secondary resistance may reveal a 
change in tumour behaviour. There is significant overlap betweenDA 
resistance and tumour aggressiveness, and in some cases the evolution 
may be life-threatening due to intracranial growth or metastatic 
dissemination–indeed, a subset of highly aggressive PA may be 
viewed as “cancers without metastasis” [24,33,139]. The clinical 
mangement of DA-resistant prolactinomas may be challenging 
and a panel of clinical, pathological and molecular features may be 
considered in an attempt to recognize an aggressive potential at an 
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early phase and plan an adeguate follow-up and treatment [33,140]. 
Multimodal treatment is often necessary and TMZ has greatly 
improved the treatment of aggressive and malignant prolactinomas. 
Increasing knowledge about the molecular basis of tumour invasion, 
proliferation, metastasis and pharmacological resistance to DA and 
TMZ should help defining personalized strategies in aggressive and 
malignant prolactinomas. 
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