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Abstract

Hypoglycemia, which refers to dangerously low glucose level in blood, 
is a potential life-threatening condition. The causes of different types of 
hypoglycemia could vary. Multiple preventive and therapeutic managements 
for hypoglycemia are currently under investigations. Pancreatic and Duodenal 
homeobox 1 (PDX1), also known as insulin promoter factor 1, is one of the most 
important transcriptional factors for insulin and glucose regulation in pancreatic 
islet beta cells. Herein, this topic will review several aspects of hypoglycemia, 
including the causes of hypoglycemia, PDX1 function in insulin regulation, 
existing hypoglycemia animal models and the potentials of PDX1 targeted 
therapy in treating patients with hypoglycemia.
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Adenocarcinoma; TK: Thymidine Kinase; GCV: Ganciclovir; RIP: 
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Introduction
Hypoglycemia, the technical term for low blood sugar (blood 

glucose), is a clinical syndrome defined by abnormally low blood 
glucose concentrations, usually less than 3.0 mmol/L (55 mg/dl) in 
adults, 3.9 mmol/L (70 mg/dl) in diabetic patients or 2.2 mmol/L 
(40 mg/dl) in infants. The symptoms caused by hypoglycemia 
usually come very quickly and include a feeling of hunger, shakiness, 
nervousness, sweating, confusion, sleepiness, dizziness, anxiety and 
weakness and can lead to unconsciousness and death [1-7]. In healthy 
human body, the concentration of blood glucose is closely controlled 
and normally maintained in a narrow range, approximately between 
4.0 to 6.0 mmol/L (70 to 110 mg/dl). While glucose homeostasis 
is very complex, for the sake of this review, glucose homeostasis is 
mainly regulated by two hormones insulin and glucagon (Figure 1), 
which are both secreted by the islets of Langerhans within thepancreas 
[8-13]. The regulation of blood glucose homeostasis is involved in 
multiple layers of regulative mechanisms [12-20]. Insulin secretion 
from β cells of the pancreatic islets is stimulated by high glucose 
concentrations, which in turn, helps transport glucose from blood 
into cells for proper cellular function. Secondly, extra glucose can be 
stored either in liver or in skeletal muscle as glycogen to prevent high 
glucose concentrations in bloodstream. Thirdly, when blood glucose 
concentration falls after a meal or during exercise, insulin secretion 
decreases and glucagon, produced by alpha cells in the pancreas, 
signals the liver to break down glycogen and release glucose back 
into the bloodstream. In this case, stored glycogen can be used for 
energy between meals and blood glucose will rise to normal levels. 
β cells constitutively secrete a small amount of insulin into blood 
stream throughout the day and night, which is also essential to 
maintain blood glucose concentration and prevent the liver from 
over secreting glucose. In general, all these protective mechanisms for 
regulating blood glucose hemostasis prevent the human body from 
hypoglycemia [21-23]. Derangements in these mechanisms can lead 
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to hypoglycemia. 

Hypoglycemia
Hypoglycemia occurs in people of almost all ages, although the 

causes of hypoglycemia for infants, adults and the elderly may vary. 
Hypoglycemia can be classified as fasting, reactive, surreptitious, 
and artifactual [2,24-30]. Common causes of hypoglycemia include 
prolonged fasting, excessive effects of diabetic medicines, such as 
insulin, strenuous physical activity, or alcohol overconsumption 
[2,26-30]. 

Fasting hypoglycemia
Fasting hypoglycemia, which is also called post absorptive 

hypoglycemia, is diagnosed when a patient has low blood glucose 
concentration after physical activity, an overnight fast, between 
meals, usually 8 hours or longer in a patient after a meal. Common 
causes of fasting hypoglycemia include excessive effects of diabetic 
medications, strenuous physical activity, or alcohol overconsumption; 
Most cases of fasting hypoglycemia are believed to have underlying 
diseases (Table 1). 

Insulinoma is another cause for fasting hypoglycemia and affects 
relatively young patients. Insulinoma is a rare neuroendocrine 

Figure 1: Regulation of glucose homeostasis by islet hormones. 
Derangements of these mechanisms can lead to hypoglycemia.
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tumor of the pancreas. The diagnosis of insulinoma relies on the 
demonstration of Whipple’s triad, consisting of symptomatic 
hypoglycemia, documentation of hypoglycemia and resolution of 
symptoms upon glucose administration as well as imaging using 
CT scanning, endoscopic ultrasound and octreotide scanning. 
Insulinoma are benign in 90% of cases, however can cause severe 
and even lethal hypoglycemia. The treatment is surgical resection for 
benign insulinoma, however 10% of insulinoma are malignant; the 
patients suffer horribly from uncontrollable hypoglycemia for which 
there is no effective treatment. 

Nesidioblastosis can cause hyperinsulinemic hypoglycemia 
because of neoformation of Langerhans islets, and it has 
been recognized in both adults and infants [31,32]. In adults, 
nesidioblastosisis associated with Roux-en-Y gastric bypass surgery 
requiring recurrent hospitalizations for hypoglycemia [33-45]. 
Congenital nesidioblastosis is also commonly referred to as persistent 
hyperinsulinemic hypoglycemia of infancy. It is usually caused 
by a number of genetic mutations, and symptoms can range from 
mild to severe. Severe cases can manifest as cyanosis or seizures, 
which can then lead to developmental delay if brain damage occurs. 
Although the clinical presentation between hypoglycemia induced 
byinsulinoma and nesidioblastosis might be similar, the symptoms in 
patients with nesidioblastosis occur mainly postprandially (reactive 
hypoglycemia) and only rarely while fasting. In contrast, most 
patients with insulinoma have fasting hypoglycemia.

Reactive hypoglycemia
Reactive hypoglycemia, also called postprandial hypoglycemia, 

usually happens when blood glucose levels become dangerously 
low within 4 hours after a meal. Although the symptoms of reactive 
hypoglycemia are similar to that of fasting hypoglycemia, these two 
types of hypoglycemia have different causes (Table 1). It is believed 
that reactive hypoglycemia results from excess insulin secretion 
by islets following a large carbohydrate-rich meal. However, the 
mechanism of continuous elevated insulin secretion is still unclear. 
Possible causes include a pre-diabetic condition that results in 
improper regulation of insulin secretion or rare enzyme deficiencies 
that remain food undigested [46-56]. It is important to note that the 
symptoms of reactive hypoglycemia can occur without low blood 
glucose levels and therefore no immediate medical treatment is 
required for these cases of reactive hypoglycemia.

Hypoglycemia and diabetes
Diabetic hypoglycemia is diagnosed when low blood glucose 

concentrations of 3.9 mmol/L (70 mg/dl) or lower happen in patients 
with diabetes mellitus. It usually occurs as a consequence of diabetic 
therapies, especially exogenous insulin. Remarkably, of all the causes 
listed in (Table 1), hypoglycemia occurs most frequently in patients 
with diabetes as a result of diabetic therapies [57-59]. However, 
diagnosis and management of hypoglycemia in diabetic patients are 
quite different from non-diabetic ones [57,58,60-62].

Diabetes mellitus: It has been cited as one of the most 
challenging health problems in the US. It is a group of metabolic 
disorders characterized by hyperglycemia, in which the patients have 
very high blood glucose over a prolonged period of time, because of 
either inadequate insulin secretion, or improper responses to insulin, 
or both [63-65]. For patients with diabetes, insulin therapy and other 
diabetes medications are designed to decrease the high blood glucose 
levels back to a normal range. Over-dose of insulin or other diabetic 
medications can cause blood glucose level to drop too low, resulting 
in hypoglycemia. Therefore, diabetic hypoglycemia usually occurs as a 
consequence of anti-diabetic therapies in these patients. Other causes 
of diabetic hypoglycemia include prolonged fasting and excessive 
body activity without proper adjustment of food and medications. 

Hypoglycemia and T1DM: T1DM, also known as juvenile-onset 
or insulin-dependent diabetes, is a type of diabetes where the auto 
immune attack destroys the insulin-producing β cells of the islets of 
Langerhans in pancreas, leading to insulin deficiency [64]. Patients 
with T1DM do not produce insulin, and must receive frequent 
insulin injections or reply on insulin pumps for continuous insulin 
supply [66,67]. Insulin injection for T1DM is the most common 
cause of severe hypoglycemia in young adults. These patients have 
to carefully monitor their blood glucose level and regulate insulin 
supply accordingly; however blood glucose levels can easily fall and 
result in severe hypoglycemia. Islet transplantation can potentially 
restore the function of islet cells and successfully stabilize glycemic 
control in these patients.

Hypoglycemia and T2DM: T2DM, also known as noninsulin-
dependent diabetes mellitus or adult-onset diabetes [68], is the most 
common form of diabetes mellitus worldwide, accounting for more 
than 90% of cases. Different from to an absolute deficiency of insulin 
secretion from islets of pancreas in patients with T1DM, the T2DM 
is mainly characterized by hyperglycemia in the context of insulin 
resistance and relatively insufficient insulin secretion. Comparing 
to T1DM, patients with T2DM tend less likely to be hypoglycemic. 
The most common cause of hypoglycemia in T2DM is iatrogenic, 
which occurs when insulin analogues, insulin secret gouge drugs, or 
combined therapy cause blood glucose levels to fall below normal 
[69,70]. A retrospective review of 102 patients with diabetes reported 
that drug-induced hypoglycemic coma occurred in 97% patients out 
of the hospital. The annual prevalence of severe hypoglycemia caused 
by sulphonyl ureas in T2DM is 7% [71].

Hypoglycemia and T3cDM: The T3cDM is associated 
with exocrine pancreas disorders [72,73]. Chronic pancreatitis 
(approximately 78.5% of all T3cDM) is the most common cause for 
T3cDM, while pancreatic cancer (approximately 8% of all T3cDM) is 
the second most common cause according to recent studies [74,75]. 
The glycemic control for patients with total pancreatectomyis 
challenging, because of complete lack of both glucagon and insulin 

Types of non-diabetic hypoglycemia Potential causes References

Reactive hypoglycemia

Pre-diabetes [33,34]

Enzyme deficiency [35-37]

Carbohydrate-rich meal  [38-40]

Nesidioblastosis [41-43]

Fasting hypoglycemia

Medications  [44-46]

Alcohol  [47-49]

Exercise [50-52]

Liver disease [53,54]

Insulinoma [55,56]

Table 1: Types of non-diabetic hypoglycemia.
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secretions, as well as lack of a third islet hormone, pancreatic 
polypeptide. Hypoglycemia frequently happens in these patients 
due to the brittleness of their glucose regulation [72,74,76]. Islet 
transplantation restores functioning islet and can successfully 
stabilize glucose homeostasis in post-pancreatitis my patients [77]. 

PDX1 and Insulin Regulation
PDX1 regulates insulin expression

Pancreatic and Duodenal homeobox 1 (PDX1), also known as 
Insulin Promoter Factor 1 (IPF1), is a homeobox domain-containing 
transcription factor specific for pancreatic islet β cells. PDX1 functions 
as a master regulator for a variety of essential cellular events including 
embryonic pancreas development, maturation and maintenance of 
postnatal β cell functions [78-82]. PDX1 expression is firstly detected 
at embryonic day 8.5 in the dorsal and ventral buds that eventually 
fuse and give rise to pancreas. During embryonic development of 
pancreas, PDX1 is expressed in all precursor cells; while in the adult 
stage, PDX1 expression is more restricted to the nuclei of β cells and a 
small subpopulation of delta and PP cells in the islet [83]. It is known 
that PDX1 plays a central role in maintaining the mature β cell function 
and glucose metabolism through regulating the expression of multiple 
key endocrine β-cell-specific genes including insulin, glucokinase, 
islet amyloid polypeptide and the glucose transporter type 2 [84-89]. 
Deletion or homozygous inactive mutations in Pdx1 is lethal in mice 
due to whole pancreatic agenesis. Conditional knockout of Pdx1 
gene in β cells of mice leads to overt diabetes, whereas knocking-
down of Pdx1 expression results in decreased insulin secretion [90]. 
Pdx1 mutant zebra fish have the key diabetic features of reduced β 
cells, decreased insulin and elevated glucose levels [91]. In humans, 
heterozygous mutations in PDX1 have been associated with diabetes, 
including type 4 maturity-onset diabetes of the young (MODY IV) 
and non-MODY type 2 diabetes. In addition to diabetes, abnormal 
PDX1 is also involved in other Pathophysiologic conditions, such 
as chronic pancreatitis with decreased PDX1 expression and others. 
Overall, PDX1 has been demonstrated to directly regulate glucose-
dependent insulin expression and secretion. 

PDX1 is associated with PDAC and insulinomas
PDX1 is mainly expressed and functions in islet β cells in 

adults. However, aberrant elevated PDX1 expression in pancreatic 
cancer and neuroendocrine tumors, including insulinoma, strongly 
suggested that PDX1 as a fundamental transcriptional factor for 
pancreas development may play an important role in tumorigenesis, 
especially in PDAC [92-94] and insulinoma [95,96]. PDX1 is able 
to promote Kras G12D oncogenic protein-induced development of 
PanIN, metaplasia and pancreatic ductal adenocarcinoma [97-99]. In 
addition, over expression of PDX1 in both benign cells (HEK293 and 
Human Pancreatic Ductal Cells), as well as pancreatic cancer cells 
(PANC1 and MiaPaca 2) and insulinoma cells (Min6 and βTC6 cells) 
lead to significant increases in cell proliferation, invasion and colony 
formation in vitro, as well as promotion of tumor growth in xenograft 
SCID mice [92,93,95]. Therefore, these studies suggest that PDX1 is 
involved in tumorigenesis of both PDAC and insulinoma. 

A special type of pancreatic neuroendocrine tumor insulinomais 
a very rare benign tumor, raised from islet β cells that produce insulin, 
occurring in only 3-4 per million people [100-102], affect relatively 
young patients, mean patient age at diagnosis being 50 years old. 

These patients with insulinoma suffer horribly from uncontrollable 
hypoglycemia for which there is no effective treatment, because the 
expanded β cell mass continues to secrete insulin and disrupt the 
glucose regulation, causing severe hyperinsulinemic hypoglycemia. 

Nesidioblastosis in adults is a complication of Roux-en-Y 
gastric bypass surgery requiring recurrent hospitalizations for 
hyper insulinemic hypoglycemia. Congenital nesidioblastosis is also 
commonly referred to as persistent hyperinsulinemic hypoglycemia 
of infancy. It is caused by a number of genetic mutations, and 
symptoms can range from mild to severe. Severe cases can manifest 
as cyanosis or seizures, which can then lead to developmental delay 
if brain damage occurs. The abnormal histologic aspects of the tissue 
included the presence of islet cell enlargement, islet cell dysplasia, 
β cells budding from ductal epithelium, and islets in opposition 
to ducts. Most congenital hyperinsulinism is caused by different 
mechanisms than excessive proliferation of β cells in a fetal pattern 
and the term fell into disfavor after it was recognized in the late 
1980s that the characteristic tissue features were sometimes seen 
in pancreatic tissue from normal infants and even adults, and is 
not consistently associated with hyperinsulinemic hypoglycemia. 
As an important islet β cell specific transcription factor, PDX1 
exerts its cellular functions under normal conditions by regulating 
expression of genes critical for insulin synthesis. In insulinoma cells, 
PDX1 was significantly over expressed in both human insulinoma 
specimens and mouse insulinoma cell line [95]. Knocking down of 
Pdx1 expression using bi-functional shRNA resulted in significant 
inhibition of insulin expression, Pdx1 expression and glucose-
stimulated insulin secretion, as well as cell proliferation in mouse 
β TC6 cells. Nanoparticle capsulated bash RNA-mPDX1 prevented 
death from severe hyperinsulinemic hypoglycemia in insulinoma 
SCID mice (Figure 2) [95]. Overall, PDX1 plays a significant role in 
regulating insulin synthesis and the expression level correlates with 
its insulinoma. A novel therapeutic strategy targeting PDX1 gene has 
been proved effective in preventing mortality for hyperinsulinemic 
hypoglycemia in an insulinoma mouse model. 

Hypoglycemia Animal Models
Severe hypoglycemia is a life-threatening disease; therefore 

hypoglycemic animal models are essential for designing and 
testing preventive and therapeutic treatments. So far, drug-induced 
hypoglycemic effects have been observed on multiple animal models, 

Figure 2: Duration of PDX1 targeted gene therapy in β TC6 and NIT1 
insulinoma-induced hypoglycemia mouse models. Liposomal delivered 
shRNA-mPDX1 and bishRNA-mPDX1 therapies successfully prevented 
the risk of hypoglycemia and hypoglycemic death in two mouse models of 
hypoglycemia.
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including mouse, rat, rabbit, dog and pig. Insulin administration 
induced hypoglycemia remains the most frequently use approach in 
animal models. Fasting-induced hypoglycemia rat models have been 
generated and studied since 1970s [103-105]. It has been reported 
that other medications including metformin, GLP1 analogs, DPP4 
inhibitors, methadone [106], sulfonylurea [107], and sunitinib 
[108] are known to trigger hypoglycemia in various animal models. 
Moreover, exacts from herbal medicines exhibit hypoglycemic 
effects, including Cordycepsmilitaris [109], Camellia sinensis [110]. 
Besides, there were genetic engineered animal models reported to 
have moderate to severe hypoglycemia. Sstr5gene knockout mice and 
Sstr1/5 double gene knockout mice demonstrated hyperinsulinemic 
hypoglycemia and improved glucose in tolerance associated with 
elevated islet PDX1 expression [111,112], suggesting that Sstr genes are 
negative regulators for PDX1 and controlling PDX1 expression level 
in islets is critical for prevention of hyperinsulinemic hypoglycemia 
[96,113-115]. Ubiquitous expression of the constitutively active form 
of Pik3ca (H1047R) leads to hypoglycemia and hypoinsulinemia 
in mice [116]. MiR-378/378* microRNA gene knockout display 
hypoglycemia and increased hepatic triglyceride level with enhanced 
insulin sensitivity in mice [117]. RIP-Tag2 transgenic mice develop 
pancreatic β cell tumors leading to progressive autonomous insulin 
secretion and hypoglycemia, which is lethal when these transgenic 
mice reach the age of 3 to 4 months [118]. Mouse insulinoma cell 
line NIT-1 and β TC6 were used to generate insulinoma SCID mouse 
models; when implanted within the peritoneal cavity, these mice 
uniformly succumb to hypoglycemia within a mean of 60 days and 
are therefore a mouse model to study the preventive and therapeutic 
strategies for severe hypoglycemia [113,119].

PDX1 targeted therapy for hypoglycemia
Unfortunately, there are no effective therapies for severe 

hypoglycemia caused by insulinoma and nesidioblastosis. Surgical 
removal of malignancy continues to be the treatment of choice 
because these tumors generally respond poorly to chemotherapeutic 
agent regimens (fluorouracil, doxorubicin, and streptozocin) [120]. 
PDX1-targeted therapies could provide an alternative strategy to 
conventional therapies [12,13]. For example insulinoma-specific 
cytotoxicity using the suicide gene Thymidine Kinase (TK) driven by 
Rat Insulin Promoter (RIP), which is activated by PDX1,and antiviral 
drug Ganciclovir (GCV) delivered by a nontoxic, non-inflammatory 
liposomal delivery system, was successfully prevent hypoglycemic 
death in an insulinoma SCID mouse model [119]. Using liposomal 
delivery of RIP-TK resulted in euglycemia of the mice, whereas 
adenoviral delivery of RIP-TK causes significant hyperglycemia 
due to damage to the islets. More recently, a novel bi-functional 
shRNA nanoparticle targeting PDX1 significantly and effectively 
abated PDX1 in insulinoma and in pancreas islets, therefore reversed 
hypoglycemia in vivo in two mouse models [95,96,121,122]. Bi-
functional shRNA nanoparticle prevented death from hypoglycemia 
in an insulinoma mouse model; glucose levels rose to 170mg/dl after 
three biweekly treatments then returned to normal by 90 days after 
treatment. In Sstr1/5-/- mice, fasting hypoglycemia was reversed by 
three biweekly treatments of bi-functional shRNA nanoparticles; 
glucose levels rose to slightly greater than 200mg/dl after treatment, 
the remarkably returned to euglycemia 90 days after therapy. Glucose 
levels before and after bi-shRNAmPDX1, shRNAmPDX1 and RIP-

TK (GCV) treatments in two insulinoma-induced hypoglycemia 
mouse models are summarized in (Figure 2). These studies suggest 
that PDX1 targeted therapies could represent a promising therapy for 
severe hypoglycemia induced by insulinomas. 

Conclusion
Severe hypoglycemia with extremely low blood glucose level 

is dangerous and a potential life-threatening condition. There are 
very limited therapeutic management options for multiple types of 
hypoglycemia and there are no effective therapies for hyperinsulinemic 
hypoglycemia due to malignant insulinoma and nesidioblastosis. 
PDX1 targeted therapies successfully restored glucose regulation 
in two mouse models of hypoglycemia and suggest a promising 
preventive and therapeutic strategy for severe hypoglycemia.
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