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Abstract

We found that inert fluoro-carbon skeletons of Perfluorooctanoic Acid (PFOA), 
Perfluorooctane Sulfonate (PFOS) and 1H, 1H, 2H, 2H-perfluorooctanesulfonic 
acid (6:2FTS) could be broken down by potassium permanganate as oxidant 
in acidic liquid phase at room temperature. This opened a new Approach to 
the Remediation of Aqueous Film Forming Foams (AFFFs). The breakdown 
was confirmed from the HPLC-MS and Ion Chromatography (IC) data. Due the 
oxidization’s contribution, those fluoro-carbon skeletons’ half-life was estimated 
to be approximately 3 months, much shorter than the several decades that 
occur in nature. 
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carbon (C3-C6) [15,16] and fluorine-free surfactants [17]. 

Previously we used chemical oxidant (potassium permanganate, 
KMnO4) to break down the derived groups of fluoro surfactants 
because the non-fluoro-carbon can be broken down much more easily 
than fluoro-carbon skeleton [18]. However, we found that the fluoro-
carbon skeleton could potentially be broken down, although the 
process was slow. This particular phenomenon is interesting because 
it might lead to a new degradation approach that is different from 
previous ones, for example Fenton reaction of hydrogen peroxide 
[19], persulphate [4], advanced electrochemical oxidization [20], 
Sonolytic conversion [21] etc. Compared to the heat-up approach 
[22], this mild condition (occurred at room temperature) offers the 
promise to scale-up its application. The additional advantages of 
this oxidant include cost-effectiveness, stability, environmentally 
safe, easy to operate etc [23,24]. Here we selected 3 common fluoro 
surfactants - PFOA, PFOS and 6:2FTS - to verify the possibility of 
breaking down these ingredients using KMnO4.

Materials and Methods
All chemicals including PFOA, PFOS and 6:2FTS, potassium 

permanganate (KMnO4, ACS reagent, ≥99.0%), hydrogen chloride 
(HCl, 37%, w/w, AR), methanol and ammonium acetate (NH4Ac) 
were purchased from Sigma-Aldrich (Australia). Only polypropylene 
containers/pipette tips were used throughout to avoid any potential 
interference from Teflon containers/caps. Milli-Q water was used (> 
18 MΩ•cm) in the present study. 

All samples were diluted in Milli-Q water in centrifuge tubes 
(polypropylene) without pre-treatment. 0.1% KMnO4 + 0.36% HCl 
(w/w) was placed in the tubes for the oxidization process [4,23,24]. 
The tubes were kept at room temperature (~24˚C) and not shielded 
from the laboratory fluorescent lamp for the purposes of domestic 
lighting. The tubes were occasionally shaken (once per day) during 
oxidization. Samples were filtered with nylon syringe filters (0.2µm) 
prior to HPLC-MS analysis HPLC-MS (Agilent 1260 + Quadrupole 
6130) before and after the oxidization [25,26]. 

Introduction
Poly- and Perfluoroalkyl Substances (PFASs) exhibit unique 

physical and chemical properties, such as hydrophobicity and 
oleophobicity, which are not evident in other components, and also 
extreme stability with respect to thermal, chemical and biodegradation 
[1]. Due to their important anti-wetting and anti-staining properties, 
they have been used widely and domestically in such activities as 
clothing, upholstery, carpeting, painted surfaces, food containers, 
cookware, etc [2]. However, since their fluoro-carbon skeletons are 
inert and resistant to biodegradation under natural environmental 
conditions (CF3-CF3 of 99 kcal/mol vs CH3-CH3 of 89 kcal/mol) 
[3,4] this has led to their global accumulation and distribution in the 
environment. This has in turn raised serious concerns about their 
impact on the environment and public health [5-7]. 

Aqueous Film Forming Foam (AFFF) is a good example that has 
been widely used to extinguish fires [8,9]. Its main ingredients are 
anionic fluoro surfactants such as Perfluorooctane Sulfonate (PFOS) 
and perfluorooctanoic acid (PFOA). Due to serious misgivings 
about their biological and environmental impact and their persistent 
nature, PFOS was phased out in the early 2000s. Lots of alternatives 
were found on the market. These include, for example, 1H, 1H, 
2H, 2H-perfluorooctanesulfonic acid (6:2FTS)-, and 1H, 1H, 2H, 
2H-perfluorodecane sulfonic acid (8:2FTS)-based fluoro surfactants 
[10]. Those fluorotelomers were synthesised via telomerisation with 
linear structures that differ from the products of electrochemical 
fluorination, such as PFOS containing linear and branched 
isomers [6,11]. Although they are re-ported to be environmentally 
safe their fluoro-carbon skeletons still raise concerns about their 
biodegradability in the natural environment [12]. For example, the 
half-life of 6:2FTS is estimated to be >10 years 12, which is shorter but 
still similar to >41 years for PFOS, and >92 years for PFOA (USEPA 
505-F-14-001), respectively. It should be noted that those values 
depend on estimating approach, initial concentration, degradation 
conditions, etc., and consequently they have varied in the literature 
[12-14]. New ingredients thus include short chains of the fluoro-
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For HPLC-MS analysis, we followed the standard method 
(EPA/600/R-08/092) [27]. In general, 10µL sample solution was 
injected into Agilent 1260 high-performance liquid chromatography 
fitted with an XDB-C18 column kept at 40˚C. Its dimensions were 2.1 
mm internal diameter, 100 mm length and 5µm particle size. The 
flow rate was 0.5mL/min for gradient mobile phase of methanol: 
5mM aqueous NH4Ac for separation. Quadrupole 6130 detector was 
maintained at 70 V under negative mode for scanning. Extraction 
of the molecular ions was conducted at m/z 413 for PFOA, 499 for 
PFOS and 427 for 6:2FTS, respectively. Quantification was done 
by producing a calibration curve using external standard solutions 
of PFOA, PFOS (only linear isomers were quantified) and 6:2FTS 
with correlation coefficients higher than 0.99 and limit of detection 
being ~0.2 ppb (signal: noise > 3). Blank samples of Milli-Q water 
and methanol were run prior to each set of test to minimize any 
background contamination that could have originated from the 
Teflon components of the HPLC instrument itself. The nebulizer gas 
(nitrogen) pressure was set at 40 psi, drying gas flow rate was 9L/min 
and temperature 325 ºC, capillary voltage was + 3500 V and skimmer 
voltage was – 15 V. More details are listed in Ref [21]. 

Free fluoride (F-) and sulphate (SO4
2-) were detected using Ion 

Chromatography (IC), which was conducted using DIONEX (ICS-
2000, RFIC, and Thermo Scientific). The ion exchange column was 
IonPacTM AS18, 2 × 250 mm and kept at 35 ºC under 2230 psi 

pump pressure. Following 25µL sample injection, 10 mM KOH was 
gradually flow at 0.25mL/min. Conductivity detector was employed 
with a suppressor of 43mA.

Note that each time we ran at least 6 samples in parallel (3 samples 
without addition of oxidant as controls and the other 3 samples with 
oxidant) for quality assurance and quality control (QA/QC) [28]. 

Results and Discussion
Figure 1 indicates that the colour change depends on the 

oxidization process. At the beginning, the purple solution confirms 
the existence of KMnO4. The colour became increasingly darker and 
changed to brown after 3 months, suggesting the decomposition of 
oxidant KMnO4. With this decomposition some targets have been 
oxidized, such as PFOA, PFOS or 6:2FTS in the solution, although 
the nature of the decomposition of KMnO4 should not be ignored 
[23,24].

After 6 months, the solution became transparent and some 
precipitates were observed on the bottom of the containers, these 
being the products of the oxidization, such as MnSO4, MnO2, etc. 
Those precipitates should not be injected into the HPLC column so 
that they need to be filtered off for HPLC analysis.

Figure 2 shows the HPLC-MS results when fluoro surfactants 
were subjected to the oxidization using 0.1% KMnO4 + 0.36% HCl 
(w/w). All 3 samples, including PFOA (a), PFOS (b) and 6:2FTS (c), 
feature the decreased peak heights after the oxidization (marked as 
“after”) compared to the absence of oxidant in the solution as controls 
(marked as “before”), suggesting the breakdown of the fluoro 
surfactants. (d) high lights the quantitative data where PFOA, PFOS 
and 6:2FTS were calibrated using external standards. Here the multi-
peaks in (b) are assigned to its isomers. We just analysed the linear 
isomer using its standard. Basically, after 3 months’ oxidization, a 
significant decrease in the 3 samples’ concentration, from 62% to 
45%, was observed.

Figure 3 shows the HPLC-MS data and IC data after 6 months’ 
oxidization. In Figure 3 (a), we can see the concentrations of 
fluorosurfactants declined further compared to the results of 3 
months’ oxidization, suggesting that the oxidization process was 
gradual. The kinetics information was unclear from the limited data 
points. However, we can estimate the half-life to be approximately 
3 months for all 3 samples, which is much shorter than the several 
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Figure 1: Images depicting the oxidization process subjected to 0.1% KMnO4 
+ 0.36% HCl (w/w) at 3 months and 6 months. All samples were diluted to 
100 ppm (w/w).
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Figure 2: HPLC-MS data showing the breakdown of PFOA (a), PFOS (b) and 
6:2FTS (c) subjected to oxidization with 0.1% KMnO4 + 0.36% HCl (w/w) for 
3 months. (d) Illustrates a comparison of the fluoro surfactant concentration. 
All samples were diluted to 100 ppm (w/w).
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Figure 3: HPLC-MS data (a) and ion chromatograph data (b) showing the 
breakdown of PFOA, PFOS and 6:2FTS subjected to the oxidization with 
0.1% KMnO4 + 0.36% HCl (w/w) for 3-6 months. (b) Compares the free 
concentrations of F- and SO4

2- before and after oxidization for 6 months. All 
samples were diluted to 100 ppm (w/w).



Austin Environ Sci 1(1): id1005 (2016)  - Page - 03

Fanga C Austin Publishing Group

Submit your Manuscript | www.austinpublishinggroup.com

decades that occur in the natural environment [1,29], suggesting that 
the oxidant does make a contribution. We should also note that the 
oxidization capacity of 0.1% KMnO4 + 0.36% HCl faded with time 
and was not as strong as the fresh solution, as observed in Figure 
1. In other words, the breakdown process can be accelerated if the 
oxidant solution can be refreshed continuously. Another option is the 
temperature increase that warrants further research. 

Figure 3 (b) shows the IC data for the free ions of F- and SO4
2-

. We can see the concentration of F- significantly increased after 6 
months’ oxidization when compared to almost zero (less than 
the limit of detection, 0.5 ppm) for all 3 samples in the absence of 
oxidization. It confirmed the breakdown of the fluoro-carbon 
skeleton of the fluorosurfactants because the free ion of F- was 
released from the fluoro-carbon skeleton. For PFOS and 6:2FTS, we 
also observed the increased concentration of SO4

2- after oxidization, 
which originated from their sulfonic groups. Conversely, there is no 
detectable SO4

2- before or after the oxidization of PFOA, supporting 
the above assumption that sulfonic-containing groups were broken 
down and converted into SO4

2- because PFOA does not contain this 
kind of group. Note that the SO4

2- was detected before oxidization 
commenced, which may be due to the impurity from the original 
sample, or due to the partial breakdown by oxygen from air because 
we kept the control samples (without oxidant) in parallel including 
dilution and storage in air for 6 months.

The concentrations of F- were estimated to be ~1.2 ppm (~0.6 
mM) for all 3 samples and SO4

2- 6.5 ppm (~0.068 mM) for PFOS and 
6:2FTS, respectively. Considering the samples have been diluted to 
100 ppm (0.24 mM for PFOA, 0.20mM for PFOS and 0.23mM for 
6:2FTS), the measured concentration of F- and SO4

2- indicated the 
breakdown of fluoro-carbon is not 100% but 17-20% in terms of F-, 
25-30% in terms of SO4

2- (taking out the amount before the oxidization 
and only for PFOA and 6:2FTS), respectively. This agrees with the 
results in Figure 3 (a). Another possible reason is the fluoro-carbon 
skeleton were mainly broken down into fragments, but not completely 
into free inorganic ions, which requires more experimental research. 
The leakage of HF gas into air should also be considered.

In summary, we successfully demonstrated the degradation 
of PFOA, PFOS and 6:2FTS using KMnO4 as oxidant at the room 
temperature. Although the kinetics information is absent, the half-
life for all 3 fluorosurfactants was estimated to be ~3 months, which 
represents a rapid approach compared to natural degradation of 870-
1400 years or 10-17 years for surface-mediation [12]. Compared to 
30-60 min for advanced electrochemical oxidization 30 and catalyzed 
H2O2 propagation reactions [19], this approach is simple and cost-
effective for breaking down fluoro surfactant samples. Admittedly, 
the concentrations of PFOA, PFOS and 6:2FTS in this test are higher 
than the ones in nature, such as in contaminated groundwater [31]. 
Therefore, a pre-concentration module might be needed to improve 
the breakdown efficiency for the practical remediation. 
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