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Abstract

Microcystis aeruginosa is a toxin producing cyanobacterium 
responsible for dangerous Harmful Algal Blooms (HABs) in Lake 
Okeechobee Florida as well as worldwide. We investigated the 
potential utilization of organophosphates, as Dissolved Organo-
phosphates (DOP), by this species to expand the knowledge of 
and eventually controls on nutrient sources and pollution. Axen-
ic M. aeruginosa (PCC7806), which grew well on standard BG-11 
media containing potassium dibasic hydrogen phosphate (K2PO4), 
was found to be unable to utilize certain organo-phosphates (D-
Glucose-6-Phosphate {DG6P}, B-Glycerol-Phosphate {BGP}, Phytic 
Acid {PhA}). Non-axenic M. aeruginosa (UTEX LB2385) grew well 
on both standard BG-11 and BG-11 media in which the normal in-
organic phosphate was substituted with DG6P or BGP but not with 
PhA. Heterotrophic bacteria in the non-axenic culture likely cleaved 
ortho-phosphate from the organophosphates while utilizing the or-
ganic portion as ‘food’. The addition of alkaline bovine phosphatase 
to the axenic cultures did not facilitate utilization of organophos-
phates. Letting the axenic cultures enter the lysis (death) phase 
did not allow activation of intrinsic phosphatase enzymes as added 
orgo-phosphates did not reactivate growth. Co-culturing M. aerugi-
nosa with Anabaena flos-aquae, known to utilize phosphatase en-
zymes, did not provide phosphorus for M. aeruginosa. Collectively, 
these results reconfirm the concept of a synergistic microbiome 
(phycosphere, ‘interactome’) being required for the utilization of 
organophosphates as a phosphorus source by Microcystis aerugi-
nosa.

Keywords: Harmful algal blooms (HABs); Microcystis aerugino-
sa; Organic phosphorous; MicrobiomeIntroduction

The following quote is from a US-EPA Funding Opportu-
nity (Number EPA-G2017-STAR-A1) “The occurrence of HABs” 
{Harmful Algal Blooms} is increasingly common in inland fresh-
water ecosystems. --- Yet basic questions of HAB occurrence, 
extent, intensity, and timing are largely unanswered.” South 
Florida has been and still is experiencing nutrient (N,P) excess-
es in surface waters and sediments in Lake Okeechobee [1-5], 
coastal estuaries [6-9], and the Greater Everglades [10-14]. 
Sources include sewerage, notably septic systems (aka OSTDS, 
Onsite Sewerage Treatment and Disposal Systems) [15-18], ag-
ricultural operations [19-23], and a growing equestrian industry 
[24-27]. 

Drastic cyanobacterial blooms in Lake Okeechobee during 
the 1980s were due to the anatoxin producing diazotrophic 
(Nitrogen-fixing) species Anabaena flos-aquae and reductions 
in phosphorus loading in the 1990s appears to have help con-

trol that species [28,29]. However, as seen starting in 2005 and 
continuing to date, increasing dual nitrogen and phosphorus 
pollution now favors non-diazotrophic blooms of the toxic (mi-
crocystin) cyanobacterium Microcystis aeruginosa [30]. Cyano-
bacterial blooms dominate an ecosystem by blocking sunlight 
from photosynthetic organisms below. As a bloom senesces and 
dies, its organic matter is decomposed, removing available oxy-
gen and leaving anoxic conditions leading to massive fish kills 
[31,32]. When the freshwater cyanobacterium M. aeruginosa 
begins to die, it releases large amounts of the hepatotoxic pep-
tide microcystin [33] that can then leach into surrounding es-
tuaries or marine waterways, expanding the detriment of the 
bloom. Microcystin-LR and its congeneric toxins are often re-
sponsible mammalian deaths such as dogs and cows [34-36]. In 
estuaries, this can pollute the water and decrease the success 
of many species that use these estuaries as safe havens for re-
production. 
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M. aeruginosa growth is facilitated by eutrophic conditions in 
lakes, which can be excessively fueled by pollution from various 
anthropogenic sources [37]. Nonpoint nitrogen and phospho-
rus pollution is a well-known worldwide problem [38,39,70]. 

It is known that the mucilaginous masses of cyanobacteria 
that cause these cyanoHABs are not homogeneous and it has 
been hypothesized that the “interactome” in these globs of 
bacteria, or a microbiome, are facilitating the metabolic reac-
tions needed to fuel massive blooms [41]. Since then, the idea 
of an active synergistic phycosphere of these microbial colonies 
has expanded [42,43].

Regarding sources of phosphorus, specifically organo-phos-
phates, we previously found that sugarcane leaves, husks, 
stalks and roots contain beta-glycerol-phosphate, fructose-6-
phosphate, glucose-6-phosphate as well as phosphate mono- 
and di-esters in addition to ortho-phosphate [21]. Therefore, 
the leaching of organo-phosphates into adjacent water bodies, 
such as Lake Okeechobee, can well be expected from sugar-
cane and other land plants as well [44]. One study has revealed 
that meadow or forest soils had between 79-92% or 13-37% 
organic phosphorous compounds, respectively [45]. Organo-
phosphates are therefore phosphorus sources that need to be 
fully examined for their participation in the nutrient supplies 
creating harmful algal blooms.  

Microcystis aeruginosa must compete with all other auto-
trophic and heterotrophic organisms, as well as inorganic pre-
cipitation reactions (e.g. Fe3+ + PO4

3-  FePO4), for soluble reactive 
phosphorus (SRP, ortho-phosphate). Therefore, we undertook 
the current study to investigate the potential utilization of or-
ganic phosphorus by M. aeruginosa. 

Materials and Methods

Stock culture conditions utilized light at 70 μmol phota m-2 s-1 
in a 12hr light/dark cycle with BG-11 media [46,47] containing 2 
mM NaNO3 and 0.23 mM K2PO4. The nitrate concentration was 
reduced from the standard 17.6 mM to 2 mM to better mimic 
[48,49] the Redfield Ratio of 16:1 N:P [50]. Tests on the utiliza-
tion of organic-phosphates were performed by substituting the 
0.23 mM K2PO4 with an equimolar amount of D-glucose-6-phos-
phate {DG6P: Sigma Aldrich #G7375}, b-glycerol-phosphate 
{BGP: SigmaAldrich #50020}, or phytic acid {PhA: SigmaAldrich 
#P8810}. Bovine alkaline phosphatase (SigmaAldrich # API-RO) 
was utilized for testing exogenous phosphatase activity on dis-
solved organophosphates. Glyphosate (SigmaAldrich #45521) 
was also tested as a phosphorous source in place of dipotas-
sium phosphate. All samples were cultured in 125 mL PETG 
flasks (ThermoFisher # 50-233-5807) rotating at 130 rpm in a 
gyratory water bath shaker at 26ºC. To ensure the axenic stocks 
and inoculates stayed axenic, all culture manipulations were 
performed in a Baker Sterile GARD-111 biosafety cabinet with 
sterile conditions. Media was sterile filtered or autoclaved, de-
pending on the organic contents of the media. Extreme caution 
was taken when working with all stock and inoculates to ensure 
there was no contamination. Routine checks for contamina-
tion were performed using a fluorescent microscope and a light 
microscope, utilizing DAPI (ThermoFisher # EN62248) staining 
and the natural fluorescence of the cyanobacteria to evaluate 
contamination. All experimental trials were inoculated at a level 
of about 1x105 cells per mL and cultured in 50 mL of media. 
Growth was tracked over time utilizing cell counts (cells per mL) 
using a Thermo Fisher Invitrogen Countess II Cell Counter. The 
counter was checked for accuracy and precision. A standard 

curve was created with an r2 value of 0.996. All inoculates were 
grown into their stationary phase unless there was negative or 
no growth. Cell counts were performed every 3-4 days after an 
initial 4-day inoculation / lag phase period. Sterile procedures 
were ensured using the biosafety cabinet. It is estimated that a 
normal growth curve would take approximately 30-40 days, as 
cell counts will stop after reaching the end of their stationary 
phase (i.e., their lysis or death phase). 

Axenic Microcystis aeruginosa stock (PCC7806) was from the 
Pasteur Culture Collection of Cyanobacteria (Institut Pasteur of 
Paris). The culture was incubated for at least 5 days to allow 
for adequate growth prior to being separated further into ad-
ditional stock cultures. Stock solutions for these trials were kept 
under the same conditions as all other experimental trials. 

The non-axenic strain of M. aeruginosa previously studied 
by our group. The UTEX LB2385 strain is another widely used 
and studied culture of M. aeruginosa. This strain was obtained 
through the University of Texas at Austin’s Algal culturing center 
(UTEX). This species was grown in the same conditions given 
above and stocks were allowed to incubate and routinely re-
freshed. 

A culture of Anabaena sp., UTEX 2576, was acquired from the 
University of Texas at Austin’s algae culturing center (UTEX) and 
used as a potential source of phosphatase activity. This culture 
strain was also grown in the same conditions as the M. aerugi-
nosa strains of PCC7806 and UTEX LB 2385. The same gyratory 
water bath shaker with the same RPM and water temperature, 
as well as the 125 mL PETG flasks, were used. The Anabaena sp. 
stocks were also grown in BG-11 medium. Anabaena sp. cells 
could not be counted with the cell counter as they are filamen-
tous. Therefore, manual microscopic cell counts were utilized to 
assess growth.     

Results and Discussion

Growth of Axenic and Non-Axenic M. Aeruginosa on BG-11 
Media

Both the axenic (Figure 1a) and non-axenic (Figure 1b) M. 
aeruginosa cultures grew well on normal BG-11 in which phos-
phorus is provided as a form of ortho-phosphate (PO4

3- as K2H-
PO4). Each of the three separate trial data sets are plotted as 
the mean of three runs, equaling nine trials for both the axenic 
(1a) and non-axenic (1b) cultures. Cell counts and growth was 
stopped when the cultures were more than 10 days int the sta-
tionary phase.

Figure 1: Growth of (1a) axenic PCC-7806 and (1b) non-axenic 
UTEX-LB2385 Microcystis aeruginosa in standard BG-11 media.

https://www.fishersci.com/shop/products/pierce-dapi-nuclear-counterstain-1/EN62248#dapi solution
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Zero (0.00E+00) on the Y-axis in these and following plots 
indicates the inoculation stage of ~ 1E+05 cell / mL.

Growth Trials of Axenic and Non-Axenic M. Aeruginosa 
with Organophosphate Substituted BG-11 Media

Next, we substituted the standard Dissolved Inorganic Phos-
phate (DIP), dipotassium phosphate, with various Dissolved Or-
ganic Phosphate (DOP) species. These are coded within the leg-
end for Figure 2. As always, each set of trial data plotted is the 
mean of triplicate cultures. Each trial also included a reference 
run (black trendline) with standard BG-11 for both the axenic 
and non-axenic cultures.  

The axenic M. aeruginosa cultures were unable to grow 
on any of the three DOP compounds provided as a potential 
phosphorus source. This indicates a lack of ‘active’ phosphatase 
enzymes in this species, or at least this clade. The very slight 
increase in cell density for the phytic acid and b-glycerol-6-
phosphate trials on the axenic culture is attributed to the use of 
‘storage’ phosphorus reserves [51-53]. The non-axenic culture 
grew equally well on D-glucose-6-phosphate and b-glycerol-
phosphate but was unable to utilize the hexaphosphate com-
pound phytic acid. The activities if coincident heterotrophic 
bacteria in the microbiome [42,43,54] forming the “interac-
tome” [41] of this culture are responsible for the cleavage of 
phosphate from the organophosphate species.

Aside from synergistic heterotrophic bacterial activities re-
leasing phosphate from organophosphate compounds for use 
by M. aeruginosa, it is reported that high Ultraviolet (UV) radia-
tion can alter phosphatase activities and high Dissolved Organic 

Matter (DOM) can act as an antioxidant decreasing that effect 
[55]. This point should be remembered when dealing with the 
native ‘interactomes’ in waters such as Lake Okeechobee which 
is high in DOM. That is, the phosphatase activities of the coin-
cident heterotrophic bacteria would likely be little affected in 
high DOM containing waters.    

Growth Trials of Stationary-lysis Phase Axenic M. Aerugi-
nosa on Organophosphate Substituted BG-11 Media

Phosphate stress in M. aeruginosa may induce phosphatase 
activities [55,56]. We grew the axenic culture (PCC7806) on BG-
11 with limited (10% normal; 0.023 mM [23 mM] K2PO4) phos-
phate (Figure 3a). We then took the stressed M. aeruginosa 
 in the beginning of the death or lysis stage (~62) days and in-
oculated it into BG-11 media that had the DIP (K2PO4) replaced 
with B-Glycerol-6-Phosphate (BGP) or glucose-6-phosphate 
(G6P). The three runs with the BGP substituted BG-11 is shown 
in Figure 3b. A very small increase (appx. doubling) in cell den-
sity occurred within the first week, likely due to legacy (storage) 

Figure 2: Axenic (2a) and non-axenic (2b) cultures of M. aeruginosa 
grown on BG-11 (black) and BG-11 phosphate substituted with D-
glucose-6-phosphate (blue), β-Glycerol-phosphate (green) or phyt-
ic acid (red).

Figure 3: (3a) Axenic M. aeruginosa grown with 10% P for induc-
tion of P stress (3b) P-stressed cells incubated with B-Glycerol-6-
Phosphate substituted (BGP) BG-11.

Figure 4: Axenic Microcystis aeruginosa grown on standard BG-
11(reference, black trendline) and BG-11 media with dipotassium 
phosphate being substituted with an equimolar amount of b-
glycerol-6-phosphate (green trendline), glucose-6-phosphate (blue 
trendline), or phytic acid (red trendline). 

Figure 5: Axenic Microcystis aeruginosa co-cultured with Anabaena 
flos-aquae on standard BG-11 (reference, black trendline) and BG-
11 media with dipotassium phosphate being substituted with an 
equimolar amount of b-glycerol-6-phosphate (green trendline), 
glucose-6-phosphate (blue trendline), or phytic acid (red trendline).

Figure 6: Microcystis aeruginosa growth trials of in BG-11 media 
having inorganic phosphate (K2PO4) substituted with an equimolar 
amount (0.23mM) of glyphosate. Trendlines for means of triplicate 
runs of three different starting cell concentrations.
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P within the inoculum. After that cell death was very fast, again 
indicating that axenic M. aeruginosa cannot obtain phosphate 
from the cleavage of organophosphates without a synergistic 
microbiome. An identical trial (not shown) was performed with 
G6P substituted BG-11 and the results were essentially identi-
cal.

Growth Trials of Axenic M. Aeruginosa in Organophosphate 
Substituted BG-11 Media in the Presence of Alkaline Phospha-
tase

It is noted here that certain subspecies of Microcystis (e.g. 
have been shown to possess alkaline phosphatase enzymes [58] 
and/or activity [59,61]. However, as we have shown (Figure 2 
above), M. aeruginosa (PCC-7806) lacks Alkaline Phosphatase 
Activity (APA). This and the following section probe potential 
extracellular APA.

Bovine alkaline phosphatase was added as18, 36 or 73 mL of 
1500 U stock to BG-11 media that had the DIP (K2PO4) in BG-11 
substituted with D-glucose-6-phosphate, b-Glycerol-phosphate 
or phytic acid. The results of these culture trials are shown in 
figure 4. It is noted here that all trendlines are present in this 
figure but overlap to the point that they, especially the blue and 
green trendlines, are not apparent. The presence of extracel-
lular alkaline phosphatase without an organism’s participation 
did not result if phosphate cleavage from these three organo-
phosphates. Again, it is the activity of the microbiome [42,43], 
also called interactome [41], that is required to provide DIP 
from DOP for use by M. aeruginosa.

Growth Trials of Axenic M. Aeruginosa Co-Cultured with 
Anabaena Flos-aquae

Microcystis aeruginosa and Anabaena flos-aquae often co-
exist in Lake Okeechobee [62] and A. flos-aquae is known to 
utilize phosphatase enzymes [58,60]. We co-cultured these two 
species to determine if axenic M. aeruginosa could obtain DIP 
from the activities of A. flos-aquae.

The data in Figure 5 reveals that, even though A. flos-aquae 
can obtain its own inorganic P from the DOP compounds b-
glycerol-6-phosphate and glucose-6-phosphate, as seen by mi-
croscopic evaluation of its growth in the co-culture, it does not 
supply DIP for uptake by M. aeruginosa.

Growth Trials of Axenic M. Aeruginosa Substituting Glypho-
sate for Inorganic Phosphorus

Glyphosate (N-phosphonomethyl-glycine), the active ingre-
dient in Roundup® is a herbicide in widespread use [63] and 
degrades rapidly in the environment [63,64]. Its high use in 
agriculture [63], notably around Lake Okeechobee [65], and 
reports that it can serve as a phosphorus source for certain phy-
toplankton [66,67] prompted us to test it with axenic M. aerugi-
nosa. Figure 6 contains the results of three separate trials using 
glyphosate as the sole P source. Immediately apparent is that 
glyphosate did not aid growth but rather led to the rapid death 
of all M. aeruginosa cells.  Glyphosate in natural Lake Erie wa-
ters was shown lead to a decrease in M. aeruginosa abundance 
[68]. However, it is also known that glyphosate degradation by 
bacteria, fungi and light can lead to increases in dissolved inor-
ganic phosphorus which aids the growth of phytoplankton in P 
depleted environments [68-70]. 

Conclusions

Axenic Microcystis aeruginosa (PCC7806), grew well on 

standard BG-11 media containing potassium dibasic hydrogen 
phosphate (K2PO4), and was found to be unable to utilize cer-
tain organo-phosphates (D-Glucose-6-Phosphate (DG6P), B-
Glycerol-Phosphate {BGP}, Phytic Acid {PhA}). M. aeruginosa 
was found to not be able to use glyphosate directly as a phos-
phorus source. Non-axenic M. aeruginosa grew well on both 
standard BG-11 media and BG-11 media with DG6P and BGP 
as the sole phosphorus source but was unable to utilize phytic 
acid. It is apparent that heterotrophic bacteria in the non-axenic 
cultures were responsible for cleaving phosphate from the or-
ganophosphates. It is likely that the heterotrophic bacteria uti-
lize organophosphates for phosphate as well as organic matter 
as food. Therefore, once the phosphate requirements are met 
for the heterotrophs, additional phosphate cleaved from the or-
ganophosphates is released into the media for use by other or-
ganisms such as M. aeruginosa. This synergistic action whereby 
the heterotrophs release phosphate for use by M. aeruginosa 
substantiates the concept of a synergistic microbiome or “inter-
actome” [41].
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