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Abstract

Mercury concentrations were determined in water, sediment and fish from 
the Meiliang Bay of Taihu Lake, China, during June (summer) and December 
(winter) in 2016. The mercury concentrations were higher in the water 
sample in June, whereas in sediment they were lower in December season. 
Similarly, the trend of mercury concentration found in the fishes in the mean 
concentration were in decreasing order Carassius carassius, Cyprinus carpio 
and Pelteobagrus fulvidraco, respectively (p<0.01). The tissues captured during 
June accumulated a higher significant different amount of mercury compared 
to the December, which was attributed to a higher influx of agricultural waste, 
sewage and sludge by heavy rainfall and floods from the river mouth to the 
northwest of Meiliang Bay, which must entering from Zhihugang river therefore, 
it is in fact difficult to utilize information of sediment erosion. In addition, fish 
tissues of gills, liver, kidney and intestine showed greater accumulation then 
muscle. This investigation indicated that fish products from the Meiliang Bay 
of Taihu Lake were still safe for human consumption. The tissues accumulated 
non-essential metal mercury, which is also found June was high concentrations 
in both sediment and water, is primarily the results of anthropogenic activities. 
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Introduction
Lake Taihu is the third largest freshwater lake in China. Located 

in the Changjiang (Yangtze) River delta in eastern China, Taihu 
(meaning ‘‘Great Lake’’ in Chines) is a large shallow (mean depth ~ 
2 m) eutrophic lake, with an area of 2338 km2 and a volume of 4.4 
billion m3 [1]. Approximately 40 million people live in cities and 
towns within the Taihu watershed. The climate in the Taihu Lake area 
is controlled by subtropical monsoons, and the water temperature 
ranges from 1.5-32.5 ºC, averaging 17.6 ºC between 1991 and 1999 
and 18.2 ºC during 2005 and 2006 [2]. The lake is a key drinking water 
source for the local human population (estimated to be ~10 million), 
with tourism, fisheries, and shipping being additionally important 
economic functions [3]. A large volume of waste water id discharged 
directly through the mouths of rivers entering Taihu Lake without 
treatment, which results in severe water pollution [4]. Meiliang Bay 
is one of the most eutrophied bays in the northern part of Taihu 
Lake [5], Dramatic increases in nutrient loading, resulting from 
urban and agricultural development in its watershed have fueled 
accelerated eutrophication [6], characterized by increasingly severe, 
toxin producing cyanobacterial blooms during summer months [7,8]. 
Such blooms can affect the drinking water supply [9]. This symptom 
of eutrophication represents one of the greatest threats to the quality, 
safety, ecological integrity and sustainability of our water resources 
worldwide [10-12]. Lakes may serve as the main sink of anthropogenic 
pollutants from terrestrial ecosystems. Mercury produced by human 
activities is indirectly or directly transported into lakes in particulars 
and/or dissolved states. Generally, particulate state is the mail form of 

the mercury in the freshwater bodies. Mercury can also be transported 
in the particulate form and settled in sediment. Moreover, the mercury 
contents in suspended solids (SS) are generally several times higher 
than those of bottom sediments, and are hundred times higher than 
those of dissolved state in the water body [13,14]. With climate change 
all over the world, many studies on the influence of rainfall and runoff 
on reservoirs and lakes have been reported [15]. Mercury has become 
of increasing concern because of its toxicity, non-biodegradable 
and persistent nature, and the bio-enrichment ability in food chain 
[16]. In our daily life, we are all exposed to some forms of mercury 
through the air we inhale, the water we drink and the food we eat 
[17]. The signal of mercury pollution has been found worldwide in 
various archives such as sediments, peat bogs and glacier ice. Among 
these archives, a great number of studies have indicated that mercury 
in sediments plays a critical role in the cycle of mercury in aquatic 
ecosystem [18]. Mercury discharged from anthropogenic sources may 
accumulate in bottom sediments as the suspended particles on which 
they are adsorbed settle out [19]. On the other hand, coagulation, 
flocculation and co-precipitation can also cause removal of mercury 
from the water column to sediment due to changes in pH of waters 
during estuarine mixing [20]. As estimated by [21], the total mercury 
concentrations in surface sediments fluctuate from 0.02 to 0.4 mg/
kg in uncontaminated or less contaminated rivers, and can be as 
high as100 mg/kg in urban, industrial or mining areas. As the major 
sink for mercury in aquatic systems, sediments have been suggested 
as more significant tools for the better understanding of mercury 
pollution status than the analysis of the overlying water column as a 
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result of discontinuity and fluctuation in water flows [22]. 

Because of mercury has been listed as one of the priority 
pollutants by many international agencies [23], such as United 
Nations Environment Programme, World Health Organization and 
Food and Agriculture Organization of the United Nations. Many 
previous studies have shown the contributions of mining and smelting 
activities to the concentration of mercury in ecosystems [24,25]. 
Chinese researchers have also conducted several investigations on 
mercury enrichment characteristics in fluvial, lacustrine and estuarine 
sediments [26,27] investigated the surface sediment in the north part 
of the Taihu Lake and reported that the mercury concentration was 
between 0.034 and 0.046 mg/kg. Whereas, and [28,29] studied surface 
sediment from more than 20 sites in the Taihu Lake and indicated 
that the concentration of mercury varied between 0.063 and 0.33 mg/
kg with a mean value of 0.097 mg/kg, far above the mean earth crust 
concentration (0.04 mg/kg). 

Fishes is an important part of the human diet because of its high 
nutritional quality [30]. However, non-essential trace elements in the 
edible tissues of fish have been detected due to the bioaccumulation 
in organisms and the highly persistent and non-biodegradable 
properties of these elements [31]. In a freshwater system, fish is 
usually among the topper consumers. Some of these elements (such 
as Hg) have been reported to be biomagnified via food chains both 
in marine and freshwater systems [32]. If the trace element levels 
are elevated enough, they can pose potential health risks to humans 
via fish consumption [33]. Many factors, such as environment 
conditions, contaminant levels, the length of food chains, and the 
physiochemical properties of contaminants, can influence the trophic 
transfer behavior of mercury in aquatic biota is complex and needs 
more field research.

Hg in sediments has correspondingly received more and more 
worldwide attention. A search on Web of Science using “mercury; 
sediment” as search phrases will give almost 6000 records in return 
since 1900. Researchers have studied Hg enrichment in part of rivers, 
lakes, estuaries and reservoirs throughout China [18,34]. The Taihu 
Lake is a significant drinking water resource and a typical shallow 
hyper-eutrophic lake in China. A lot of researches have been carried 
on the pollution of Taihu lake and its catchment but most of them 
considers the issue of sediments pollution. Through the research 
conducted investigation had shown mercury pollution in Taihu 
Lake was mainly come from the northern part of Meiliang Bay [35]. 
However, as a large and shallow lake, mercury pollution did not 
affect the lake uniformly; the seasonal distribution and pollution 
levels of mercury in Taihu Lake need to be systematically evaluated. 
Concentrations of total mercury in the range of 0.063-0.99 mg/
kg with an average of 0.091 ± 0.19 (n=290) mg/kg were reported 
in surface sediments from Lake Taihu; the highest concentration 
was approximately one order of magnitude greater than that in the 
background lakes [32], Similarly literaturereported that the mercury 
showed obvious biomagnifications along the food web in the lake, 
although the bioaccumulation factor of mercury was relatively low 
compared to that of other aquatic ecosystems [36,37] observed that 
some heavy metal concentrations a total of 198 samples of 24 fish 
species from Taihu Lake. The presence of mercury element is evident 
in Lake Taihu. At present, regulation of pisciculture, dredging, waste 

disposal and the water diversion project from Changjiang River to Lake 
Taihu have been used to ease pollution pressure and to meet the water 
demands of the lower areas of Lake Taihu since 2007[38]. Recently 
studies have been reported focusing on the seasonal pollution levels 
of heavy metals contamination in water, sediment, fish and oyster 
from Meiliang Bay, Taihu Lake 2019. Only a few studies have been 
conducted to investigate the distribution and diversity of mercury 
element in the different azimuths of water, sediment and different 
fish species around the lake. Therefore, in the present study, the main 
objectives were accumulation and two seasonal pollution of mercury 
in water, sediment, fish species from in the Meiliang Bay, Taihu Lake.

Materials and Methods
Study area and sampling

We selected seven sampling sites based on pollution sources from 
different land used types in the Meiliang Bay, Taihu Lake as follows: 
S1 is located in the north outer bay were believed to be affected by 
intense levels of anthropogenic activity; S2 were located in the 
central area of the lake and the reservoirs; S3 drinking water resource 
area free of nearby factories and other pollution sources; S4-S5 are 
located in the north of bay former drinking water resource (now area 
stop); S6 is located in the north of bay usually suffer heavy blooms 
in summer; and S7 is located near the north of bay where there is 
less anthropogenic pollution coming from the surrounding land. In 
recent years, physicochemical problems and heavy metal pollution 
have increased dramatically due to release of pollutants from 
sediment and storm runoff, leading to serious water quality problems 
in Xi’an City, and suffered serious heavy metals contamination due to 
nonpoint and point source pollution. Two sampling campaigns were 
conducted from during June when the biomass began to increase, and 
from during December, 2016. 

Water quality parameters
Physico-chemical parameters like temperature, pH and dissolved 

oxygen (DO) of the lake water were measured. Water samples 
were collected on spot using water sampler for the detection of 
physicochemical parameters. Temperature and pH were determined 
using a microprocessor pH meter (Model No. HI 98139, HANNA 
Instruments Ltd, Germany). Other parameters like dissolved oxygen 
(mg/L), Suspended soil (mg/L), Total nitrogen (mg/L), Total 
phosphate (mg/L), were analyzed on using kits (HANNA Test kits, 
Hanna Instruments Ltd., Germany).

Heavy metal analysis
Water: Prior to collecting the water samples, borosilicate bottles 

(125-mL) were cleaned with an alkali detergent, soaked overnight in 
dilute HNO3, and heated in a muffle furnace at 450 ºC for at least 
4 h; this pretreatment process removed any organic matter and 
trace mercury that was adsorbed on the vessels. In this, 100 mL of 
unfiltered water sample were gathered at seven sampling sites at two 
different seasons from within Meiliang Bay, Taihu Lake. An aliquot 
of water was filtered through a single use 0.45-lm Polyvinylidene 
Fluoride (PVDF) membrane (Millipore) with a single-use syringe. 
After rinsing the borosilicate bottles 3 times with the samples based 
on the liquid-liquid extraction methods as described by [39]. The 
mercury concentrations were measured using hydride generation- 
atomic fluorescence spectrometry HS-55/1 analytic Jena AG, 07745 
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Jena, Germany.

Sediment: Each sediment sample was placed in a 50-mL 
centrifuge tube, which was cleaned by acid washing, rinsed with 
double-deionized water to remove any organic matter, and Hg 
adsorbed on the vessel. All sample tubes were sealed with Parafilm to 
avoid cross contamination, transported in an ice-cooled container to 
the laboratory within 24 hr of collection, and stored in the refrigerator 
(4°C) until analysis. Lake sediment samples were subjected to acid 
digestion following (Liang et al. 2004) [40]: 0.1 g of dry weight (dw) 
sample (accurate to 0.0001 g) was placed inside a 25 mL glass tube 
covered with a glass ball; 5 mL double-deionized water and 5 mL 
fresh aquaregia (HCl+HNO3, V/V, 3:1) were added; digested at 95°C 
in water bath for 5 min. Subsequently, 1 mL Br Cl solution (1.08 g of 
reagent grade KBr and 1.52 g reagent grade KBrO3 dissolved in 100 
mL of low-Hg HCl, accurate to 0.0001 g) was added to oxidation at 
95°C in a water bath for 30 min, then the sample was diluted to 25 
mL with double-deionized water, and reacted overnight for complete 
digestion after cooling. Following oxidation, 0.2 mL NH2OH·HCl 
solution (25 g of reagent grade NH2OH·HCl was dissolved in 100 
mL double-deionized water, accurate to 0.0001 g). The final mercury 
concentration was measured using hydride generation- atomic 
fluorescence spectrometry HS-55/1 analytic Jena AG, 07745 Jena, 
Germany.

Fish tissues: C. carassius, C. carpio and P. fulvidraco have high 
market value and are the main fish products in Taihu Lake. Fish 
samples were bought immediately after they were caught by local 
fishers. The size of fish we selected was 17-21 cm for all species. 
Frozen fish samples were thawed at room temperature and dissected 
using stainless steel scalpels. 0.5 g of accurately weighed epaxial 
muscle on the dorsal surface of the fish, the entire liver, kidney and 
intestine and two gill racers from each sample were dissected for 
analysis. Dissected samples were transferred to Teflon beaker were 
performed in an acid digestion to prepare the sample for heavy metal 
analysis (Kenstar closed vessel microwave were digested with 5 mL 
of nitric acid (65%) and after complete digestion the samples were 
cooled at room temperature and diluted with Milli-Q water to 25 
mL. All the digested samples were analyzed three times for mercury 
using hydride generation- atomic absorption spectrometry HS-55/1 
analytic Jena AG, 07745 Jena and the instrument was calibrated with 
standard solutions prepared from commercially available chemicals 
Merck, Germany [41]. The accuracy of the mercury measurements 
for each analytical batch was determined using three certified 
reference materials: TORT-2 (Lobster hepatopancreas, National 
Research Council of Canada); NIST 1566b (Oyster tissue, National 
Institute of Standards and Technology, USA); NIST 2977 (Mussel 
tissue, National Institute of Standards and Technology, USA); and 
IAEA 433 (Marine sediment, International Atomic Energy Agency, 
Austria). The recoveries of the standard reference materials for Hg 
ranged from 96% to 104%, respectively. 

Statistical analysis
The data were statistically analyzed by the statistical package 

has done using SPSS software (version 20). The means and standard 
deviations of the water quality and mercury concentrations in water, 
sediment and fish tissues calculations were performed by Microsoft 
Excel 2010.

Results and Discussion 
Physicochemical parameters

The physicochemical parameters of the water column such as 
temperature, pH, DO, SS, TN, and TP significant different season 
are presented in (p<0.05) respectively. The physicochemical are 
very important because they have a significant effect on the water. 
Furthermore, anthropogenic activities results in significantly decrease 
of surface water quality of aquatic systems in watersheds. Among the 
external factors temperature and pH is one of the most important 
factors which influence the aquatic ecology [42]. Significant difference 
in the water quality was observed the surface water at each sampling 
site from in the Meiliang Bay, Taihu Lake. Seasonally, the average 
water temperature was 25.4 ± 2.64 ºC and 10.7 ± 0.38 ºC in June and 
December, respectively. The fluctuations in water temperature were 
relatively small during each sampling period; however, there was a 
significant difference in temperature between two seasons. The mean 
value of water temperature was found within the permissible limits set 
by [43]. The sites in aquaculture (Agricultural area), livestock farming 
(Live stock form), and urban residential areas (urban residential 
area) showed lower water transparency than those in agricultural 
(Agricultural area) and rural residential areas (rural area). The highest 
water transparency was recorded in the sites located in drinking water 
protection area (drinking water production area). The lake water 
showed neutral to alkaline conditions; the pH in June was in the range 
of 8.94 ± 0.4 which is distinctly lower than the range of 7.41 ± 0.33 
measured in December season. Dissolved oxygen refers to the oxygen 
gas that is dissolved in the water and made available to aquatic life. The 
solubility of oxygen increases with decrease the temperature [44]. As 
was expected the highest value of DO was recorded during December 
season might be due to temperature in this season was low [45]. This 
suggests that the discharge of industry and domestic wastewater 
induced serious organic pollution in these rivers, since the decrease of 
DO was mainly caused by the decomposition of organic compounds 
[46]. Moreover, extremely low DO content usually indicates the 
degradation of an aquatic system. The DO mean concentrations 
significant different were showed fluctuations between seasons, with 
the lowest value (11.1 ± 1.03 mg L) in June, and in December it was 
the highest value (11.97 ± 0.58 mg L), respectively. The lowest value 
of DO was observed during June that could be due to the less or no 
rainfall and increase in temperature that lead to decrease in dissolved 
oxygen results due to the rate of oxygen consumption from aquatic 
organisms and high rate of decomposition of organic matter. This 
can be ascribed to the discharge of industrial and domestic sewage, 
which put large amounts of alkaline ions into the river system, since 
conductivity depends mostly on ion concentration in surface water 
[47]. In addition suspended soil, total nitrogen and total phosphate 
showed wide fluctuation, the mean concentration ranged following 
order 107.5 ± 8.61, 1.92 ± 0.45 and 0.06 ± 0.01 during June and 
17.7 ± 8.61, 1.55 ± 1.10 and 0.03 ± 0.00 during December season 
respectively. The concentrations of SS, TN and TP were higher in 
June than December season due to the lower water flow during June 
which could assistance to accumulate the nutrients in water Taihu 
Lake. Similarly, the SS, TN and TP average concentrations significant 
different were fluctuations between two seasons, with the lowest 
value (47.26 ± 8.61; 1.55 ± 1.10 and 0.03 ± 0.00 mg/g) in December, 
and in June it was the highest value (101.57 ± 17.7; 1.92 ± 0.45 and 
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0.06 ± 0.01 mg/g), respectively.Result of SS, TN and TP investigation 
failed to reflect the current water pollution in the Meiliang Bay, 
Taihu Lake, whereas SS, TN and TP were a better indicator of today’s 
water pollution than the sediments. This suggests that measures of 
nutrient abatement from domestic wastewater are strongly needed to 
recover the water quality of this river considering that it receives large 
amounts of wastewater from households every year [48]. Although 
a series of countermeasure to the eutrophication of Lake Taihu has 
been implemented, the impact of these countermeasures needed to be 
evaluated. From the SS, TN and TP investigation, it can be concluded 
that mercury pollution has not been effectively controlled and 
Zhihugang River still acted as the main contributor of mercury in the 
Meiliang Bay which was the main reason for the hypertrophic state of 
the northern part of Taihu Lake [14]. This suggests that it is urgent to 
control point pollutions in the Meiliang Bay, Taihu watershed.

Metal concentration 
Water: The results of mercury increased were significant different 

average mean concentrations in selected seven sampling sites from 
in the Meiliang Bay, Taihu Lake shown in (p<0.05). In general the 
concentration pattern of the mercury in water sample indicted an 
average expressed in Hg µg/L of 0.034 for Tuo shan, 0.068 for Meiliang 
Hu, 0.058 for Sha zhu nan. 0.053 for Xiao wan li, 0.041 for Mashan 
shui chang, for 0.052 Long tou zhu and 0.035 for Wu tang men during 
June season respectively. During in December season of the mercury 
mean concentration in water sample indicted an average expressed 
in Hg µg/L of 0.054 for Tuo shan, 0.075 for Meiliang Hu, 0.068 for 
Sha zhu nan. 0.057 for Xiao wan li, 0.059 for Mashan shui chang, 
for 0.062 Long tou zhu and 0.035 for Wu tang men respectively. 
Based on the average of mercury in sampling sites the following 
decreasing sequential order is observed S1 > S3 > S6 > S5 > S4 > S2 > 
S7 respectively Higher values of mercury observed in the discharging 
from Zhihugang River mouth/channels closed to the Meiliang Bay 
[49]. The average concentration of mercury in water 0.048 and 0.058 
µg/L was observed significant different during June and December 
season respectively which was much lower than the WHO standard 
level for drinking water. 

Interestingly, the lower value of mercury was observed 0.048 
± 0.005 µg/L during December which the lower concentration of 
heavy metals might be due to the dilution effect of water [32,50]. The 
metals in water were seasonally varied, where June season exhibited 
higher than 0.058 ± 0.003 µg/L during June might be attributed to 
the domestic sewage and effluents from the port area (Wang et al., 
2012) [32]. In the study, the concentration of mercury in Taihu Lake 
was significantly lower than that found in a previous investigation 
conducted by [32], who reported that the mercury concentrations in 
the lake water varied from 140-760 ng/L. However, the present results 
show that the mercury concentration in water from Taihu Lake is 
much greater than in background lakes in the USA [51], Sweden 
[52] and even reservoirs in geologically mercury -enriched areas of 
China [53]. Eleven percent of the water samples exceeded the second 
class mercury standard of the Chinese environmental standards 
for surface water (0.001 mg/L) (GB 5749-2006). The data indicate 
that there was a significant difference in the mercury concentration 
between the two seasons. [32] a similar reported seasonal variation 
was observed for mercury reported that the concentration of mercury 
in water from Lake Taihu was higher in May than in September. 

These measurements were recorded on the same boat and during the 
same period as the samples for the present study. The low in dissolved 
oxygen concentration in June season indicated that the primary 
productivity was higher in this season. Therefore, the increasing 
mercury concentration in the lake water in June may lead to higher 
concentrations of mercury than December season.

Sediment: Seasonal distribution of mercury concentrations in 
sediment sample increased were significant different are presented 
from in the Meiliang Bay, Taihu Lake in (p<0.05). The mean 
concentration of Hg were observed during June season in Tuo 
shan (0.60 µg/g), followed by Meiliang Hu (0.63 µg/g), Sha zhu nan 
(0.50 µg/g), Xiao wan li (0.61 µg/g), Mashan shui chang (0.57 µg/g), 
Long tou zhu (0.59 µg/g), and Wu tang men (0.58 µg/g). During in 
December season in Tuo shan (0.66 µg/g), followed by Meiliang Hu 
(0.68 µg/g), Sha zhu nan (0.60 µg/g), Xiao wan li (0.61 µg/g), Mashan 
shui chang (0.59 µg/g), Long tou zhu (0.64 µg/g), and Wu tang men 
(0.52 µg/g) respectively. Mercury concentrations in sediment were 
higher significant different in June than December season due to the 
lower water flow during June which could assistance to accumulate 
in sediment [32]. The average concentrations of mercury in sampling 
sites were in the decreasing significant different order of: S1 > 
S2 > S5 > S6> S4> S3> S7 during both season June and December 
treated wastes from petroleum, fertilizers and pesticides industries 
[32,37,54,55], indicates its higher input, which might be originated 
from the urban and industrial wastes [56]. Whereas [57] and [58] 
found that a reduction in pH from 7.0 to 5.0 had a substantial effect on 
mercury, resulting in moderate to large increases in the net mercury 
rate at both low and high concentrations of DO. In Taihu Lake, 
intensive algal blooms may consume a high amount of CO2, creating 
a neutral-alkali water environment (8.94-9.31 in June and 7.41-
8.31 in December), which higher pH may inhibit Hg methylation. 
In the June seasons, when the freshwater inflow in the Taihu Lake 
is largely anoxic, dissolved metal concentrations tend to be very low 
and the metal partitioning in those conditions favours absorption to 
suspended particles and the sediment [59-61]. Generally increased 
dissolved oxygen level lead to the oxidation of the bottom sediments, 
which when re suspended brings metal in to the water column causing 
secondary pollution. Higher values were observed for mercury during 
June season is observed. The higher values of mercury in the sediments 
(in the discharge point from channels) is primarily attributed to the 
external source mainly due to manufacturing, channel, rubber paint, 
tannery and metal based industries located (industrial complexes) 
in the region and in the northern side [7]. In addition, coagulation, 
precipitation process which often happens during the mixing of 
freshwater and saltwater in the estuarine regions, where it could be 
the lower pH and dissolved oxygen that occurs due to the low flow 
condition in the creek region [57]. Whereas [62,63] also found that 
the northern region exhibited the highest Hg pollution in surficial 
lake sediments, which congruent with The mercury content in central 
area was significantly lower than that in any other region of the lake, 
indicating that the effects of anthropogenic mercury deposition 
on central Taihu Lake have been reduced due to gradual pollutant 
deposition during water flow transportation. However, the seasonal 
trends in the more polluted during June being very similar to those 
in the during December season suggest that the seasonal changes in 
metal concentration observed in fish are probably due to changes in 
the water and sediment quality influencing levels of metal exposure. 
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Earlier reports suggest that metal accumulation can be increase in the 
presence of dissolved organic carbon [64].

Fish species: The seasonal accumulation of mercury in fish species 
is important both with respect to nature management and human 
consumption. The present study documents accumulation of mercury 
in fish species from in the Meiliang Bay, Taihu Lake. However, 
the concentrations may be raised in coastal ecosystems due to the 
release of industrial waste agricultural and mining activities [65]. The 
aquatic organisms exposed to mercury from the run-off water tend to 
accumulated it in their body but fishes are more commonly affected 
than other species [66]. In the present study, the level of the mercury 
seasonal accumulation in muscle, gills, liver, kidney and intestine of 
C. carassius, C. carpio and P. fulvidraco was determined during June 
and December seasons are summarized In spite of living in the same 
ecological conditions, the three different fish species demonstrated 
variations in accumulation of metal which might be attributed to 
their feeding habits, trophic levels and the contamination gradients 
of these sources. The patterns of accumulation for mercury in the fish 
tissues were decreased significant different in the order of liver > gills 
> kidney > intestine > muscle in C. carassius; liver > gills > kidney > 
intestine > muscle in C. carpio and liver > gills > kidney > intestine > 
muscle in P. fulvidraco June season respectively. In December season 
following order of liver > gills > kidney > intestine > muscle in C. 
carassius, liver > gills > kidney > intestine > muscle in C. carpio and 
liver > gills > kidney > intestine > muscle in P. fulvidraco shown in 
Fig 4 respectively. The hierarchy of mean concentration of mercury 
analyzed is June as follows: C. carassius (0.069 µg/g) > C. carpio (0.065 
µg/g) > P. fulvidraco (0.068 µg/g) respectively. December as follows: 
C. carassius (0.163 µg/g) > C. carpio (0.134 µg/g) > P. fulvidraco 
(0.118 µg/g) respectively. The dissimilarities in the metal levels could 
be attributed to the habitat and feeding behavior of each individual 
species. Majority of the species thrive in shallow depths feeding on 
small algae, diatoms, detritus and organic matter. The species with 
the highest metal concentration, June then compare to December 
season. This seasonal variation has the highest possibility to intake 
contaminants from the land as well the untreated effluents from the 
industries. It was reported that C. carassius, C. carpio and P. fulvidraco 
are important freshwater fish which are resistant to highly polluted 
habitats and are used as bio-indicator species in understanding 
environmental pollution [67]. Whereas, [68] and [69] reported that 
O. niloticus and C. carpio contribute a lot in understanding toxic 
mechanism of cadmium exposure in aquatic organisms. The three 
economically important tropical fish C. carassius, C. carpio and P. 
fulvidraco are selected as study animals since they are known to have 
wide resistance to metal poisoning and are widely cultured in Taihu 
Lake region as a protein source. The purposes of this study were to 
determine mercury levels in these fish organs such as muscle, gills, 
liver, kidney and intestine and to compare accumulated levels in 
tissues of these three species under the same ambient conditions. 
Tissue accumulation and toxic effects of metals in fish largely depend 
upon the physical and chemical characteristics of water. It was shown 
that mercury toxicity is affected by water hardness, temperature, 
pH and dissolved oxygen [70]. Heavy metals accumulate mainly in 
metabolically active tissues such as muscle, gills, liver, kidney and 
intestine under the effect of low concentrations for prolonged periods 
[71]. The levels of mercury were found to be higher in liver followed 
by gills, intestine, and kidney and muscle tissues in C. carassius, C. 

carpio and P. fulvidraco [72].

Mercury is a neurotoxin that causes behavioral deficits in 
vertebrates, decreases in survival and growth rates, causes learning 
disabilities, and metabolism. The world Health Organization has 
recommended that dietary mercury should not exceed 0.001 µg/g 
(wet weight basis). It is well known that mercury accumulated in 
substantially high levels can be very toxic for fish, especially for young 
and eggs which are very sensitive to the pollution. Target organs, such 
as liver, intestine, kidney and gills are metabolically active tissues and 
accumulate mercury of higher levels. Thus, it is not surprising that 
the liver, intestine of C. carassius, C. carpio and P. fulvidraco had the 
highest levels of metals except in the case of other tissues. Especially 
the mercury contents in the tissues of fish were lower than Chinese 
Food Health Criterion. Previous studies also indicated that different 
contents of mercury in different fish species might be a result of 
different ecological needs, metabolism and feeding patterns [73,74] 
pointed out that Cd, Cu and Zn contents in edible muscles of pelagic 
fish species were lower than for benthic fish species. However, this 
study showed that the Hg contents in muscles of P. fulvidraco (pelagic 
fishes) were almost 8 times of that in C. carpio and 2 times of that 
C. auratus (benthic fishes). The concentration of mercury between P. 
fulvidraco and C. auratus also exhibited significant difference season 
(p<0.05). It is well known that substantial accumulation of mercury 
can be toxic for fish species [32,37]. 

The concentrations of mercury were highest in the sediments, 
intermediate in fish and lowest in the water. Fish generally had higher 
levels of mercury compared with those in fish at the upper-middle 
and middle-lower layers. Mercury concentrations were ranked as 
follows: sediments>fish>water. Our results support the hypothesis 
that the sediment is the major sink for mercury pollution and plays 
an important role uptake by fish [75]. The mercury contained in 
the sediment are then absorbed and stored in the tissues [76]. As a 
consequence, controlling the sources of contamination of water and 
sediments in the aquatic system is the key method for protection of 
the fish resource. The results of our study clearly demonstrated in the 
Meiliang Bay mercury contamination, and the seasonal pollution in 
sediments was closely related to industrial production, anthropogenic 
activities, and input and output channels, especially in the northern 
lake region. Lake sediment is considered to be an important source 
of inorganic and organic Hg in the water column. Overall, a lot of 
studies have been published on the heavy metal pollution in the water 
and sediments throughout the Taihu Lake, although analyses of the 
heavy metal contents of its sediments have been extensively used for 
monitoring pollution. Accompanying the extensive industrial and 
agricultural activity surrounding the lake, millions of tons of partially 
and untreated domestic and industrial sewage are discharged into the 
northern region of the lake every year from the Wuxi, Changzhou, 
and Wujin region [77-80]. However, they found that, in comparison 
with the eastern and southern parts of the lake, pollution was 
generally higher in the western parts; in particular pollution in the 
northern parts of the lake was most serious [78]. The concentration 
gradient between the fish and the water above the sediment drives 
the diffusion of mercury [53]. In general, the diffusion fluxes of 
mercury were higher significant different in June than in December 
season at all sampling sites from in the Meiliang Bay, Taihu Lake. 
The net depositional flux of mercury observed in June could be due 
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to an elevated mercury concentration in the interface water caused 
by disturbances of the sediment and anthropogenic input from a 
contaminated river. It is possible that the high mercury diffusion flux 
contributed to the higher concentration of mercury in the lake water 
in June, but a reasonable explanation for the higher mercury diffusion 
flux in June is still not forthcoming. 

Pearson’s correlation (PC) matrix results for the physicochemical 
parameters and dissolved mercury concentration in water, sediment, 
three common freshwater fishes C. carassius, C carpio and P. 
fulvidraco (muscle, gills, liver, kidney, intestine) was calculated to 
see i (p<0.05, p<0.01). The correlations between mercury and the 
physicochemical parameters depended on the chemical properties 
and migration forms of the elements, and were also restrained by the 
variations of the parameters in situ [81]. In present study, the external 
inputs (terrestrial, anthropogenic, sedimentary) of mercury appeared 
to play a more important role than the hydrography and biogenic 
processes [82]. The mercury in water and sediments did not show 
any correlation showed significant positive correlation suggesting 
similar sources of input (human or natural) for mercury in the river 
water [83]. High correlations between specific heavy metals in water 
may reflect similar levels of contamination and/or release from the 
same sources of pollution, mutual dependence and identical behavior 
during their transport in the lake system [18,84]. The similarity in 
mercury associations in the gills indicates that it is the principal tissue 
for concentrating these metals and also due to its contact directly with 
the pollutants in the aquatic medium. The large surface area of the 
gills is also a possible reason for the accumulation of mercury [85]. 
The changes or possible variations in the association of metals also 
depend on the feeding habits and growth period of individual species. 
The positive relationship also indicates that the input of dissolved and 
bioavailable metals is more compared to the flow condition, which in 
turn accumulates (or) increases in the organisms and in sediments 
in time.

Comparison study 
A comparative of the mercury concentration is presented for 

all the three components (water, sediment and fishes) from in the 
Meiliang Bay, Taihu Lake and with other water bodies studies shown 
in. There have been several studies on mercury concentrations in 
water, sediment and fishes conducted in the same lake. In the present 
study distribution of average concentration 0.05 and 0.02 Hg µg/L 
in surface water indicate are increased significant different June then 
December season and decreased of 25-50% for Hg than the stipulated 
Environmental Protection Agency (EPA) value. In sediment mercury 
concentration 0.58 and 0.01 µg/g increased significant different June 
then December season and increased with decreased a 25% of Hg than 
other water bodies  Mercury do not degrade in water but are generally 
not found in high concentrations, primarily due to deposition in 
sediments enter the food chain via the feeding of benthic animals [86]. 
The above concentration pattern clearly demonstrates that apart from 
natural source, considerable amount is available as bioavailable form 
the external input (anthropogenic source) which will be automatically 
absorbed into the organisms present in the Meiliang Bay, Taihu Lake. 
As a mercury concentration of most of the sampling sites exceed some 
well documented standard values and agreement with some previous 
studies in Taihu Lake and other water bodies In addition, metal levels 
in fish flesh from developed industrial areas (such as in an Canada 

lake) and mining areas (such as in an Bosnia river and Vietnam Delta) 
were usually higher than the present study are a and other areas. For 
the non-essential trace elements, were comparable with the previous 
results in fish from the same lake [87,88], our data was comparable 
to the results in fish C. carassius, C carpio and P. fulvidraco (0.16, 
0.13 and 0.12 µg/g during June and 0.06, 0.06 and 0.06 µg/g of C. 
carassius, C carpio and P. fulvidraco during December season) in fish 
collected from the same lake in 2016, except for the large largemouth 
bass, which had a mean concentration of 1.24 mg/g was reported by 
[32], and 0.04-0.28 mg/g in another study conducted by [53]. There 
are many studies monitoring the contamination levels of mercury in 
fish from other water bodies to explore the contamination status of 
mercury from in the Meiliang Bay, Taihu Lake, we listed some data 
published in recent years from other water bodies in USA, China, 
Canada, and Bosnia. Compared our data with the published results, 
the mercury concentrations in water, sediment and fishes from in the 
Meiliang Bay, Taihu Lake were similar to or lower than the values 
reported, demonstrating that the contamination levels from in the 
Meiliang Bay were low. 

Conclusion
In conclusion, results of the present study indicate that mercury 

concentrations in water, sediment and three common freshwater fishes 
demonstrated great two seasonality due to accumulation of mercury 
types. Generally increase in significant different concentrations of 
the tested, metals were found in the June compared to with those 
during December season [32,49,53]. This investigation is aimed at 
revealing differences in the accumulation pattern of mercury in fish 
and inhabiting sediments that are characterized by varying metal 
bioavailability. The overall pollution load was remarkably higher 
in June than in December season. The data also reveals that in the 
Meiliang Bay, Taihu Lake is getting polluted and necessary preventive 
measures must be adopted to make the best possible use of available 
freshwater resources in the study area [89-130]. 
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