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Abstract

Crop yield prediction is an essential component in agricultural management 
decisions. The meteorological yield could more accurately evaluate the 
weather impact without agricultural technology progress. The meteorological 
yield of spring maize was assessed by an Integrated Climatic Suitability (ICS) 
model with a daily climate factor, such as temperature, moisture, sunshine, 
and precipitation, in the Liaoning province of China. The result showed that 
the and predicted yield of spring maize was significantly correlated among 
maturity types (R2=0.46-0.52, P<0.01) and among different regions (R2=0.34-
0.68, P<0.01). The yield of most years was accurately forecast with the Relative 
Standard Errors (RE) < 5%, which mainly resulted from the differences of daily 
average climatic suitability (F) and cumulative climate suitability index (Bjk) 
among regions, chronologies, and coordination diversity. Thus, the ICS model 
is suitable for forecasting the meteorological yield of spring maize for arranging 
farming activities in this region.

Keywords: Agricultural management decision; Climatic suitability model; 
Forecast; Physiological growth period; Spring maize; Yield

of meteorological conditions on spring maize production has 
always been one of the essential meteorological services. With the 
development of agricultural meteorological modernization business, 
traditional qualitative evaluation could no longer meet the needs of 
business work. 

In this study, we collected historical data of meteorological 
elements and historical data of 9 physiological development stages of 
spring maize by an improved ICS model with a daily climate factors 
to calculate and study the influence of meteorological conditions on 
the growth of maize in different growth periods in Liaoning Province, 
China. And then we dynamically predicted maize yield with a daily 
time step by an yield model based on meteorological Yield (Yw).

Materials and Methods
Study area

Liaoning Province is located in northeastern China (118°50’E 
-125°47’E, 38°43’N -43°29’N) with the area of 14.8×104km2. The 
region is characterized by a temperate continental climate with an 
average annual temperature of 5.2-10.9°C, annual precipitation of 
445-1067mm and a frost-free period of 131-223 d [17]. The spring 
maize planted in the region exceeded 2.0×104km2 since 2016. 
Typically, spring maize is planted in spring (mid to late April-early 
May) and harvested in autumn (October), with only one planting 
season per year [18].

Data collection
The 13 meteorological stations were located at Haicheng, 

Wafangdian, Benxixian, Chaoyangxian, Suizhong, Xinmin, Xiuyan, 
Zhuanghe, Kuandian, Fuxinxian, Zhangwu, Jianchang and Changtu 
in Liaoning Province (Figure 1). The average daily air temperature, 
total precipitation, sunshine hours, and soil moisture from 1981 

Introduction
Climate change is becoming a very important aspect of agriculture 

problem for the world population [1,2]. It is globally recognized by 
scientists and the governments. China’s climate has also undergone 
a significant change resulting in significant impact on agricultural 
production of the country [3,4]. Agricultural producers, researchers, 
consultants, and industry representatives are faced with crop 
management and decisions throughout the growing season [5]. If this 
crop is in threat that means food supply will be affected. It plays a vital 
role of the grain output forecast in the entire government regulation. 
Grain yield forecasting technology has always been an important 
research topic.

It is the popular research about the impact of climate change on 
agricultural output in the world. However, it has always been difficult 
to accurately forecast the yield [6]. In recent years, many scholars have 
studied the relationship between climate resources and ecological 
adaptability of the crop [7,8]. And they have made certain progress 
in crop climate suitability index assessment, crop yield forecasting, 
agro-ecological zoning, etc [9-12]. Crop modeling is important to 
enhance the understanding of plants because they are complex and 
dynamic [13]. Previous studies are mostly based on the whole growth 
period [14,15]. Their methods of crop yield predicting are static 
analysis and paid little attention to the response regular pattern to the 
light, temperature and water.

Liaoning Province is located in the south of the northeast region 
of China. Various agro-meteorological disasters occur frequently 
causing by global warming, which exacerbates the uncertainty of 
agricultural production. Spring maize is the primary grain crop in 
Liaoning Province, and its planting area accounted for 2.18×104 

hm2 about 6% of China in 2017 [16]. The analysis of the influence 
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to 2010 were obtained from China’s National Meteorological 
Information Center of China.

Daily climate suitability index 
An integrated comprehensive climate suitability model was An 

integrated comprehensive climate suitability model was established 
by considering Temperature (T), Precipitation (P), Sunshine (S), and 
Soil Moisture (W) at each growth stages of spring maize as follows:

( ) ( ) ( ) ( ) ( )i i i i iF C aF T bF P cF S dF W= + + +    (1)

Where F(C)i is the daily climate suitability index for the day i of 
each growth period of spring maize (The growth period of spring 
maize was divided into 9 stages: Sowing to germination (SOW), 
Germination to trefoil (GER), Trefoil to 7 leaves (TRE), 7 Leaves 
to jointing (7LE), Jointing to tasseling (JOI), Tasseling to flowering 
(TAS), Flowering to silking (FLO), Silking to milk (SIL), Milk to 
maturation (MIL)); a, b, c, and d are weight coefficients [19].

Cumulative climate suitability index
Based on the daily climate suitability index (Equation 1), 

cumulative climate suitability index (Bjk) of spring maize was 
calculated at each physiological growth period. The cumulative climate 
suitability index was regarded as the indicator of the physiological 
growth of spring maize. The Bjk at each stage are as follows [20]:

 )(
1
∑

=

=
m

i
ijk CFB      (2)

Where Bjk is cumulative climate suitability index at k stage in j 
year; m is the duration of each physiological growth stage (days); i is 
the day from 1 to m in the k stage (days).

Meteorological yield forecasting
The yield of maize is divided into the trend yield and the 

meteorological yield. The trend yield is characterization affected by 
social factors such as agricultural technology, which usually shows 
that the yield increases continuously with time. The meteorological 
yield affected by climatic changes may be positive or negative. Thus, 
the yield of spring maize is expressed in the Liaoning Province as,

Y=Yi+Yw     (3) 

Where Y is yield (g/m2); Yi is the trend yield; Yw is the 
meteorological yield. This article uses the yield before 5 years as the 
trend yield. 

Yw was established by the average daily F(C) with corresponding 
weight coefficient at each growth period as follows:

Yw=a+X1F1+X2F2+X3F3+X4F4+X5F5+X6F6+X7F7+X8F8+X9F9 (4)

Yw is the meteorological yield; X is weight coefficient. 1: SOW; 
2: GER; 3: TRE; 4: 7LE; 5: JOI; 6: TAS; 7: FLO; 8: SIL; 9: MIL. a is a 
constant;

Model testing
The Relative Errors (RE) was used to analyze the consistency and 

accuracy between the predicted yield and the investigated yield as 
follows:

(%) ( ) 100 /RE P M M= − ×    (5)

Where P is the predicted value, M is the investigated value.

Data analysis 
The climate factors and maize growth period were analyzed with 

C# software for the subordinate climate suitability models. Based on 
the meteorological variables and the yield of spring maize, the weight 
coefficients for Temperature (T), Precipitation (P), Sunshine (S), Soil 
Moisture (W) were determined in IBM SPSS Statistics 20 (SPSS Inc, 
Chicago, IL, USA). The prediction of the meteorological yield and 
yield of spring maize was carried out using R 2.11.1. Figures were 
drawn using SigmaPlot 14.0 and ArcGIS 10.2.2 software.

Results
Investigated and predicted yield of spring maize among 
maturity types

The investigated and predicted yield of spring maize among 
maturity types were compared in 1986-2010 (Figure 2). A linear 
relationship between the predicted and observed values were found 

Figure 1: Sampling sites in liaoning province.
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with the correlation coefficient (R2) of 0.46-0.52 with P<0.01. The R2 

was relatively low with the latest-maturation type, while the highest 
with the later-maturation.

Investigated and predicted yield of spring maize among 
different regions

The investigated and predicted yield of spring maize among 
different regions were compared in 1986-2010. The correlation 
coefficient (R2) of different areas was 0.34-0.68 with P<0.01(Figure 
3). A linear relationship in the southeast between the predicted and 
observed values was higher with the correlation coefficient (R2) 
of 0.34-0.36 than the ones in the northwest with the correlation 
coefficient (R2) of 0.65-0.68.

Relative error between the predicted and measured yield
The yield of spring maize was predicted using the ICS model of 

different maturity types spring maize in 1986-2010 (Figure 4). The 
Relative Errors (RE) between the predicted and measured values were 
mainly concentrated in the range of less than 5% from 1986 to 2010. 
It reached 64%. The forecast yield of most years was accurate, but 
there were also rare cases where the RE was greater than 20% due to 

extreme weather conditions in some years (12%).

Regional error analysis
By comparing the distribution maps between climatic suitability 

and meteorological yield (Figure 5), there was a consistency of 
changes in the meridional distribution. Their contours showed a 
band distribution characteristic of high → low → high → low. Their 
synchronicity in zonality was not obvious. It indicated that there 
was a certain error about measuring meteorological yield in different 
regions from east to west by means of the climate suitability index.

Chronological error analysis
With the development of the times, it gradually develops from 

high climate suitability index , high climate yield or low climate 
suitability index and low climate yield to the opposite direction 
(Figure 6). The positive correlation between them gradually 
weakened. Its development process gradually incorporates factors 
other than climate conditions impacting on yields.

Error analysis of Coordination diversity between daily 
average climatic suitability and cumulative suitability 
index

It could be seen from the results of the relationship among daily 
average climatic suitability, cumulative climate suitability index 
and meteorological yield that meteorological yield as increased 
with a good coordination of daily average climatic suitability and 
cumulative climatic suitability, and the other with the climate 
conditions with higher climate suitability index or higher cumulative 
climatic suitability (Figure 7). When the climatic suitability was 0.610 
and the cumulative climatic suitability reached 90, there was a peak in 
meteorological yield. Therefore, if the meteorological conditions were 
nicer in the year, and what’s more, the maize growth period was longer, 
then the meteorological yield would be higher. If the meteorological 
conditions were particularly good or not, the growth period of maize 
could be shortened, which in turn led to a low cumulative climatic 
suitability and a decline in meteorological yield. If the meteorological 
conditions were not good enough to meet the normal growth needs 
of maize, the climatic suitability dropped. And then the growth of 
the maize slowed down. Its growth periods were prolonged. In that 
condition even if the cumulative climatic suitability was slightly 
higher, the meteorological yield could not be improved. In addition, 
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Figure 2: Correlation between the investigated and predicted yield of spring 
maize among maturity types in 1986-2010.
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Figure 3: Correlation between the investigated and predicted yield of spring 
maize among different regions of Liaoning Province in 1986-2010. (East: 
Benxixian, Kuandian; South: Wafangdian, Zhuanghe; West: Chaoyangxian, 
Zhangwu, Fuxin, Jianchang, Suizhong; North: Changtu; Central: Xinmin, 
Haicheng, Xiuyan).
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Figure 4: Relative Error between predicted and investigated yield in 1986-
2010. (Percentage of shares: the probability of Relative Error).
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when the climatic suitability was extremely low, if the cumulative 
climatic suitability could be still enough and remained high, high 
climatic yields could be unexpectedly got, in theory. However, this 
situation was not the actual measured data in this paper. So it does 
not exist. In actual production, it is hard to achieve.

Therefore, the same as the climatic suitability, cumulative climatic 
suitability is an important indicator of meteorological yield. If the 
yield of maize is needed to forecast in the early stage of growth during 
a growing season, the days from sowing to maturing for the maize 
were unknown, it was difficult to predict the cumulative climate 
suitability index. For that, a way to predict the length of the growing 
season must be found. The climatic suitability and cumulative climatic 
suitability were made to predict meteorological yield. The errors in 
forecasting climate output could be reduced to a great extent.

Discussion
Dynamic forecast model in the yield model

In recent years, many scholars have carried out a lot of research 
based on climate suitability theory [21-23]. It continuously develop 
and improve the climate suitability theory to measure the impact of 
various meteorological elements on crop growth, which is conducted 

and applicated in crop growth evaluation, growth period simulation, 
yield prediction, etc [14,24,25]. At present, it is always based on the 
yield forecasting models to analysis and forecast the crop yield every 
ten-days or a month, which undoubtedly weakens the differences 
in response of specific crops to different meteorological conditions 
during different growth periods [26]. The growth of crops is a 
continuous and dynamic process. It also changes continuously to the 
needs of crop for environmental conditions. Thus, the ICS model can 
be applied to forecast the yield for the growth period at the whole 
and most physiological stage of spring maize in Liaoning Province for 
the agrometeorological service. This method of predicting crop yields 
every one day will make forecasting results more accurate.

Phase characteristics of climate change
As we all know, climate change is a quasi-periodic process with 

obvious characteristics of phase changes. The shorter process is short 
as a weather process (5-7 days) or weather stage (20-330 days). And 
the longer one is just like a climate phase (5-20 years) or Historical 
climate period (cold or warm). The characteristics of gradual climatic 
changes would be bound to cause the crop yield alteration. It has 
obvious gradual changes too. When the crop yield model forecast in 
this paper is applied in business, the parameters of the yield model 
and ICS model should be adjusted according to the characteristics of 
the climate change at that time. If then, the forecast results would be 
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more accurate.

Human wishes constantly change model parameters 
unawarely

Human activities are projected to lead to substantial increases 
in temperature. Therefore increases in yield and expansion of 
climatically suitable areas are expected to dominate in some districts 
[27-29], whereas disadvantages from increases in water shortage and 
extreme weather events (heat, drought, storms) will dominate in the 
other areas [30-32]. The adaptation options that may be explored 
to minimize the negative impacts of climate changes and to take 
advantage of positive impacts. Humans will take a variety of means 
such as changing in crop species, cultivar, sowing date, fertilization, 
irrigation, drainage and farming system seem to be the most 
appropriate [33]. These methods adopted by humans will undoubtedly 
cause great uncertainty to the output forecasting model. This article 
used climate yield instead of pure yield to measure, which minimized 
the crop yield errors due to technological development. Consequently 
the impact of meteorological conditions were attributed to the crop 
climate yield.

Regional characteristics and local microclimate change
Climate change always differently affect agricultural microclimate 

changes in various districts [34]. In order to make the evaluation 
of the impact of meteorological factors on the growth of corn 
more objective and comprehensive, we researched the growth and 
development of spring maize from its physiological needs. Also the 
changes of soil moisture caused by precipitation to the runoff, the 
precipitation infiltration, the delay of the impact of precipitation and 
soil texture in different regions variations was considered. The ICS 
model combinating of rainfall suitability and soil moisture suitability 
functions was used to construct the climate suitability index, which 
made the evaluation and forecast of spring maize growth more 
realistic, and improved the forecast accuracy. The effect of extreme 
meteorological conditions, such as hail, wind, and heavy rain, on 
maize growth, is not elucidated in this study. Therefore, further 
researches should focus on the effect of the meteorological disaster 
on the growth period prediction in the ICS model. In addition, 
this model needed to decrease the error of yield simulation due to 
factors such as local planting density, nutrient balance (nitrogen, 
phosphorus, potassium, etc.), diseases, insects, and grass damage.

Conclusion
The ICS model was constructed by setting individual weight 

coefficients and newly added subordinate function of soil moisture by 
using 30 years of agricultural meteorological observation data from 
1982 to 2010 in Liaoning Province of northeast China. The yield of 
spring maize was predicted by the yield model and the ICS model 
on a daily basis by the characteristic of each physiological stage. 
The weighting coefficient of climatic suitability for each growing 
stage of maize was calculated separately. The parameters of the 
subordinate function of temperature, precipitation, sunshine, and 
soil moisture were further adjusted according to the actual data at 
each physiological growth period of spring maize. The accuracy of 
the model was fully satisfied with the need in the agrometeorological 
forecast. Therefore, the yield model can be applied to forecast the 
yield of spring maize automatically correct daily in the Liaoning 
Province of northeast China. And what’s more, the emerging error 

was analysis including zonal discrepancy, chronological difference, 
and coordination diversity between daily average climatic suitability 
and cumulative climate suitability index during the growing season. 
That was objectively evaluated the cause of the model error, which 
provided a theoretical basis for the subjective judgment to revise the 
yield result in actual work.
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