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Abstract

Epilepsy is a common neurological disorder in elderly populations, often 
linked to age-related conditions such as stroke and neurodegeneration. 
Traditional EEG signal analysis for epilepsy diagnosis is time-consuming, 
subjective, and unsuitable for clinical use, emphasizing the necessity for 
automated approaches. This study evaluates the performance of Support 
Vector Machine (SVM) and Convolutional Neural Network (CNN) in classifying 
EEG signals for epileptic seizure detection, utilizing the Bonn University EEG 
dataset. Time- and frequency-domain features were extracted, and 10-fold 
cross-validation was employed to validate the results. The findings reveal that 
SVM achieved 100% accuracy in distinguishing simple EEG states, such as 
healthy versus seizure conditions. Meanwhile, CNN outperformed SVM in 
processing more complex signals, achieving an average accuracy of over 98%. 
The results highlight the potential of integrating traditional machine learning with 
deep learning methods to enhance diagnostic accuracy and efficiency. These 
findings lay a strong foundation for developing advanced EEG-based diagnostic 
tools tailored to elderly epilepsy patients, facilitating more timely and effective 
clinical interventions.
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Introduction
Epilepsy is one of the long-term, non-infectious neurological 

conditions that characterized by periodic seizures and temporary 
dysfunction caused by abnormal discharges of neurons in the 
brain. Seizures will arise movement issues, issues controlling 
urine or bowel movements, unconsciousness, or other cognitive 
impairment. Until now epilepsy can be examined or predicted using 
Electroencephalography (EEG) data [1,2].

Seizures are often investigated using a 20-minute pre-seizure 
recording. However, in the event of uncommon seizure identification, 
long-term EEG recordings are required, which takes time. The visual 
analysis of EEG to identify seizures is not the same as human expertise. 
For this reason, computerized epileptic seizure diagnosis is crucial 
in the clinical context. The process of extracting hidden patterns 
from EEG signals in order to identify seizures is known as pattern 
recognition [5,8]. Numerous feature extraction techniques, during 
EEG signal analysis, researchers typically perform feature selection 
before applying classification methods. EEG signals encompass 
various features, including time-domain, frequency-domain, peak, 
and time-frequency domain characteristics, which carry extensive 
information. Determining the most suitable features for different 
classification algorithms, such as support vector machines, Bayesian 
neural networks, decision trees, and random forests, represents 
a significant and challenging research focus. EEG signals carry 
extensive information about the human body, particularly in patients 
with mental illnesses. These signals can, to some extent, indicate the 

timing of seizures. In recent years, EEG analysis has been widely 
applied in disease detection, including conditions such as obsessive-
compulsive disorder, Alzheimer's disease, and epilepsy, with the 
latter being the most commonly detected and predicted disorder, 
and scholars have developed many automatic detection algorithms 
for EEG signal analysis, which are used to identify different epileptic 
states by converting the EEG information into different outputs, 
Epileptic seizures can be categorized into three phases: pre-seizure, 
inter-seizure, and seizure. The EEG signals during these phases 
exhibit significant differences, which can be effectively identified 
using distinct EEG signal characteristics. The main purpose of EEG 
signal-based detection algorithms is to make the detection process 
more accurate and faster, different machine learning algorithms have 
been applied in recent years, where semi-supervised learning and 
detection algorithms are combined to classify the epileptic status 
using EEG signals. Deep learning algorithms are also widely used for 
automatic classification of epilepsy, using the self-learning properties 
of deep learning algorithms to automatically classify epileptic and 
normal patients by features, deep learning has also achieved good 
results in this area, these algorithms employ time-frequency maps 
and integrate them with deep learning for algorithmic analysis, 
demonstrating high accuracy and precision. This suggests that 
combining imaging techniques with deep learning could be a 
promising approach to enhance the accuracy of EEG signal-based 
epilepsy detection algorithms in the future. Subasi (2007) proposed 
a classification scheme for epileptic EEG signals using Discrete 
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Wavelet Transform DWT, which first divides the EEG signals into 
several different frequency subbands, and by the different eigenvalues 
that can be obtained in the coefficients of the DWT, the appropriate 
eigenvalues are selected for classification, and this method achieves 
94.5% accuracy, 94% specificity and 95% sensitivity.

Recently, some scholars have started to apply Support Vector 
Machine (SVM) algorithm to EEG signals, before that, SVM has been 
applied to image and video recognition in a large number of fields, 
and after the EEG signals processed by SVM have obtained excellent 
results, SVM is more and more used for epileptic seizure prediction, 
because SVM has been widely used in other fields researchers are 
very familiar with the algorithm, so applying SVM to new fields is 
reasonable and has a certain degree of sensitivity. Since SVM have 
been widely used in other fields and researchers are familiar with the 
algorithms, applying SVM to new fields is reasonable and has some 
advantages. The SVM is a widely used machine learning algorithm 
for epilepsy diagnosis and prediction. It efficiently processes EEG 
signal data to distinguish between seizure and non-seizure states. By 
extracting time-domain, frequency-domain, and time-frequency-
domain features from EEG signals, SVM achieves high accuracy in 
various classification tasks. EEG signals, characterized by complex 
high-dimensional features, are well-suited for SVM processing. By 
selecting appropriate kernel functions, SVM can handle both linear 
and nonlinear patterns in EEG signals effectively. Studies indicate that 
SVM-based EEG signal classification algorithms typically achieve 
accuracies exceeding 90%, particularly in detecting epileptic seizure 
states. However, the large volume of EEG data presents challenges, 
including the high cost of data labeling and the difficulty of selecting 
the most discriminative features for analysis.

Nicolaou (2012) used aligned entropy features together with SVM 
as a classifier to achieve 99.77% accuracy for ABCD-E in the Bonn 
dataset, and 93.55% accuracy for classes A-E. Gandhi, Panigrahi, and 
Anand (2010) also used SVM as a classifier. The feature extraction 
is done by first using wavelet transform to obtain features such as 
entropy, standard deviation etc. from the EEG signals and ABCD-E 
can also achieve 95.44% accuracy. The vast majority of the work on 
EEG signals for disease recognition can be done using Support Vector 
Machines (SVM) and Deep Learning, which are common classifiers 
used to differentiate between EEG signals of epileptic patients and 
normal people, where Support Vector Machines in support vector 
machine achieves a good accuracy for all A-E classes, but it is 
significantly less accurate than deep learning when dealing with other 
diseases (e.g., B-E, B-C, C-E).

Classification and quantity of features will affect accurate 
classification of patterns. To increase the classification accuracy 
of seizure detection, we combine several feature extraction and 
classification strategies and apply the pattern recognition methods 
described. It was suggested that the classifier has the greatest impact 
on the recognition results, followed by the selection of feature values, 
and the appropriate feature values paired with the classifier can greatly 
improve the recognition accuracy. The aim of this study is to evaluate 

the pattern recognition accuracy of deep learning and classical 
machine learning on the same set of wire data and to find out the 
best pattern recognition technique for accurate diagnosis of epileptic 
seizures. In which in the recognition distinction between groups A-E, 
both machine learning patterns achieved the best results reached 
100% accuracy, while in the other groups of comparative recognition, 
deep learning is greater than the traditional machine learning in 
terms of recognition accuracy.

Related Work

The interaction ideas and techniques that are closely related to 
integrated embodiment are presented in this section. These include 
shared agency, technological embodiment, and human-computer 
integration.

Dataset Description 

The training dataset used in this study is a publicly available 
dataset from the University of Bonn, frequently referenced in 
numerous published papers for epilepsy detection and prediction 
studies. Data acquisition was conducted by Andrzejak et al. in 2001 
using the standard 10-20 system of brain electrodes. After acquisition, 
the dataset was categorized into four groups: EEG signals from 
individuals without epilepsy with eyes open (A), individuals without 
epilepsy with eyes closed (B), individuals with epilepsy during 
interictal states (C), and individuals with epilepsy during seizure 
states (E). The data were recorded at a sampling frequency of 173.61 
Hz, with each segment having a duration of 23.6 seconds.

We aim to evaluate the performance of traditional machine 
learning and deep learning methods in seizure detection for epilepsy, 
focusing on both time efficiency and accuracy. However, the current 
dataset is insufficient for training deep learning models effectively. 
To address this, we propose augmenting the dataset to achieve a size 
suitable for deep learning training.

We used a sliding window model for data augmentation, in (T. 
Zhang et al, 2017), the authors used a sliding window with a window 
size of 512 and a step size of 480, while we use a sliding window with a 
window size of 512 and a step size of 64 (87.5% overlap).

The signals are first divided into a training dataset and a test 
dataset, which account for 90% and 10% of the total dataset, 
respectively, and then expanded using a sliding window, so that each 
signal in the training set with a length of 4097 is partitioned into 57 
new signals, each of which can be considered independent. In this 
way new signals are created for each category, totaling 5130 signal 
instances, which are used to train the CNN model afterwards.

EEG Data Segmentation

The EEG dataset we used is from the open wire EEG dataset 
from the University of Bonn, Germany, which consists of five sets 
of EEGs in different states A-E, the data's were recorded for 23.6 
seconds and 100 different channels were recorded, A-E are the EEG 
data in different states, where A,B were recorded in five non-epileptic 

Table 1: Description of the Bonn data set.
Healthy people Epileptic

Z O N F S
Status Eyes open Eyes close interictal period interictal period seizure

Data type Cephalic layer Cephalic layer intracranial intracranial intracranial
Electrode position Scalp Scalp Hippocampal structures focal area focal area
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individuals in the eyes open and closed states, and the dataset C 
was recorded in epileptic patients during the pre-seizure period, the 
activity of the hippocampus, data set D is the epileptic data of the focal 
area during the pre-seizure period, and data set D is the epileptic focal 
area during the seizure period, all the recorded data went through 
a 128-channel amplifier with a sampling rate of 173.61 Hz, and the 
final data obtained were 4097 samples, and by segmenting the data 
to divide the 4097 samples into sizes of 512 data segments, finally 
we can get eight groups of data segments, we extract the statistical 
eigenvalues of the data by using discrete wavelet transform to obtain 
the statistical features of each data segment, and use the technique of 
pattern recognition for epileptic EEG segmentation.

Design Exemplar

In that part, we use both classic machine learning approaches and 
deep learning-based neural networks to detect the identical collection 
of epileptic EEG data. Subsection 3.1 describes a series of feature 
extraction using raw EEG signals in the traditional machine learning 
approach; DWT decomposition is used to obtain the feature values, 
and then SVM is used for classification; and subsection 3.2 presents 
the structural model of cnn and how to construct the classifier.

Traditional Classification of Machine Learning Methods

We utilize DWT to extract features because, from the perspective 

of the accuracy of the retrieved features, it is a better and more efficient 
procedure than typical machine learning approaches, which require us 
to have a process of processing the data to get the feature values. DWT 
is a multiscale signal analysis approach whose fundamental idea is to 
employ wavelet basis functions to divide the signal into several sub-
bands of different frequencies, after which the signal may be analyzed 
and processed. It is a multilayer decomposition, in contrast to regular 
orthogonal transformation. In the figure2, the signal is decomposed 
across three layers. In the first layer, it is split into a high-frequency 
component (D1) and a low-frequency component (A1), each with 
a length equal to half of the total signal length. In the second layer, 
the low-frequency component (A1) is further decomposed into a 
high-frequency part (D2) and a low-frequency part (A2), each with 
a length equal to half of A1. This process continues iteratively in 
subsequent layers. However, the total length of the decomposition 
results remains N. The signal is broken down into high-frequency 
part D3 and low-frequency part A3, each having length N/8, using 
continuous decomposition. remains N.

The approximate signal can be broken down into numerous 
low-resolution components by repeatedly undergoing a continuous 
decomposition procedure. Although the decomposition process can 
theoretically go on forever, in reality, the number of decomposition 
layers that is right for a given signal is typically determined by the 
signal's properties or other relevant factors.

In this study, the signal 'x' was decomposed into four levels of detail 
coefficients (D1, D2, D3, and D4) and approximation coefficients 
(A4) using the equation x=D1+D2+D3+D4+A4x = D1 + D2 + D3 + 
D4 + A4x=D1+D2+D3+D4+A4. Since epileptic seizure features are 
primarily concentrated in wavelets of levels 3 and 4, we focused on 
extracting and analyzing the wavelet coefficients from these specific 
levels.

a. Statistical Features: Statistical attributes, including mean, 
median, mode, standard deviation, minimum, maximum, skewness, 
and kurtosis, were extracted from the segmented EEG signals. Among 
these, mean, skewness, and kurtosis were highlighted due to their 
relevance to the analysis.                                                                                                                                                                                                                                                    

b. Non-linear features:

Hjorth parameters are a set of statistics used to characterize the 
time domain of a signal, including Activity, Mobility and Complexity. 
They can be used to analyses EEG signals, Electrocardiogram (ECG) 
signals, etc. Hurst components provide a way to measure fractals.

Table 2: Accuracy of traditional machine learning methods for epilepsy recognition for different combinations of datasets.
Case Accuracy Sensitivity Specificity Precision Recall F-measure

A-C 87.500000 100.000000 83.680000 84.000000 100.000000 0.893600
A-D 90.000000 100.000000 72.450000 86.666667 100.000000 0.928580
A-E 100.000000 100.000000 100.000000 100.000000 100.000000 1.000000
B-C 95.000000 95.450000 100.000000 100.000000 95.450000 0.954500
B-D 92.500000 100.000000 100.000000 100.000000 100.000000 0.938700
B-E 100.000000 100.000000 100.000000 100.000000 100.000000 1.000000

Figure 1: EEG data fragment from the University of Bonn. Figure 2: Process of DWT signal decomposition method.
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After obtaining the desired feature values, we use SVM to classify 
the extracted features which are used as inputs to SVM. After obtaining 
the desired feature values, we use SVM to classify the extracted features 
and use them as input to SVM. Here we obtain similar conclusions 
to those reached by Nicolaou and Georgiou (2012) using SVM as a 
classifier, where more than 99% accuracy can be achieved in the case 
of A-E in the University of Bonn dataset. The maximum accuracy for 
other diseases such as B-E, C-E, D-E, ABCD-E is around 95%.

Classification of Deep Learning Methods

Deep learning models automatically learn the structure of the EEG 
signals from the dataset and classify them autonomously, contrary to 
the traditional machine learning approach of SVM mentioned above, 
which requires the extraction of feature values, then the selection of 
a subset of the extracted features, and finally the use of a classifier 
to perform the classification. The convolutional layer is the most 
critical component of the CNN model, responsible for extracting local 
features from the input data. It performs convolutional operations by 
computing the dot product between the convolutional kernel and 
the input data as the kernel slides across the data, resulting in values 
for the feature map. This localized computation effectively captures 
spatial patterns in the input data, and the use of multiple convolution 
kernels allows for the extraction of diverse features. In this way, the 
CNN learns the hierarchy of discriminative information by analyzing 
the signal.

The deep learning-based EEG signal detection system for epilepsy 
comprises three components, as illustrated in the figure. The first 
component involves segmenting the signal into sub-signals using a 
fixed-size sliding window technique to increase the data volume. The 
second part of the article focuses on signal transformation. The signal 
is prepared for model training by converting it from the time domain to 
the frequency domain. For segmented signals, the Short-Time Fourier 
Transform (STFT) is used to perform this conversion before the data 
is input into the model. The third part involves constructing the CNN 
model. The CNN architecture includes an input layer, convolutional 
layer, activation function layer, pooling layer, fully connected layer, 
and output layer. Using the constructed CNN model, we train the 

epileptic EEG signal data. CNN offer a significant advantage over 
traditional classifiers when analyzing high-dimensional data. In the 
convolutional layer, CNN utilize a parameter-sharing scheme to 
control and reduce the number of parameters. 

As illustrated in Figure 2. X, the input layer receives raw data, such 
as images and EEG signals, and converts them into multidimensional 
arrays suitable for network processing. The convolutional layer then 
extracts local features from the data using convolutional kernels. 
Specifically, six feature maps are derived from the input layer through 
5x5 kernels that capture spatial structure information. Next, the 
activation function layer, typically employing ReLU, introduces 
nonlinearity to enable the network to learn complex patterns. 
Following this, the pooling layer down samples the feature maps 
using max pooling or average pooling, reducing dimensionality 
and computational complexity while retaining critical features and 
improving translational invariance. Finally, the fully connected layer 
consolidates the extracted features for classification or regression, and 
the output layer, often using Softmax or Sigmoid functions, provides 
predictions. For classification tasks, this includes outputs like seizure 
state detection or non-seizure identification.

Result
After selecting different data models, we then perform different 

combinations of classifications from which we can see more clearly 
to distinguish epileptic EEG signals from non-epileptic EEG signals. 
These species combinations have been widely used in other studies 
such as (Sharmila et al, 2016).  All experiments utilized 10-fold cross-
validation, a model evaluation method where the dataset is randomly 
partitioned into 10 equal-sized subsets (folds). In each iteration, one 
subset is used as the validation set, while the remaining 9 subsets 
serve as the training set. Model training and validation are performed 
independently for each fold. After 10 iterations, the average of all 
validation results is calculated as the final evaluation metric for the 
model. This approach effectively minimizes assessment bias caused 
by a single dataset split, maximizes data utilization, and is particularly 

Figure 3: Classification results of CNN classifiers on the dataset.

Figure 4: Comparison of classification results between SVM and CNN 
classifiers.
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suitable for scenarios with limited sample sizes. Additionally, the 
stratified 10-fold cross-validation method ensures balanced category 
distribution, making it ideal for handling class imbalance issues in 
classification tasks.

In this paper, three commonly used performance metrics are used 
for experimental analysis, i.e., accuracy, sensitivity and specificity. 
They are defined as follows:

Accuracy = (IN+TP)/(TP+IN+FP+FN)

Sensitivity = TP/(TP+FN)

Specificity = TN/(TN+ FP)

In the formula presented above True Positive (TP): A correct 
prediction where the model identifies a seizure, and a seizure actually 
occurs. False Negative (FN): An incorrect prediction where the model 
fails to detect a seizure, even though a seizure actually occurs. False 
Positive (FP): An incorrect prediction where the model detects a 
seizure, but no seizure actually occurs. For real-time monitoring in 
medical devices, minimizing FN is critical to avoid underreporting 
and ensure patient safety. Conversely, for mass screening purposes, 
reducing FP is essential to minimize the disruptions caused by false 
alarms.

Results from Traditional Machine Learning

The accuracy for epilepsy detection using SVM classifier ranges 
from 87.5% to 100% The accuracy of this system for the combination 
of A-C, A-D and A-E datasets is 87.5%, 90.0% and 100% respectively. 
In addition, SVM has the highest accuracy for A-E, B-E datasets 
and the results are shown in Fig3. The program was written in the 
MATLAB package R2023b environment running on a machine with 
1.6 GHz HP CPU processor and 16GB RAM.

We have found that for all combinations of statistical features, the 
accuracy obtained using the SVM classifier is 100% for both normal 
eyes open and seizure EEG datasets. Moreover, it has been observed 
that the accuracy specificity and sensitivity are 100% accurate in SVM 
classifier for both datasets A-E and B-E.

Results from Deep Learning

Fig 4 shows the classification results of the CNN classifier on the 
datasets, from which it is clear that the CNN has improved all the 
classification results achieved for the feature values obtained from the 
DWT, with an average accuracy of 97.45%, and for the datasets A-E, 
both SVM and CNN have the best results.

Conclusion 

Examination and judgement of EEG by experts is a very time 
consuming and expensive way, for these problems EEG signal-
based epilepsy detection algorithms are very important, in medical 
diagnostic systems, pattern recognition methods are required to 
detect the medical data in a shorter period of time and to ensure a 
high level of accuracy. 

The novelty of this paper is to compare for the first time the work 
done by deep learning and traditional machine learning for EEG 
based detection, comparing the accuracy of both pattern recognition 
approaches using the same dataset. We extracted features from the 

dataset by using low pass filter, functions such as stat feat, wave feat, 
etc., and in stat feat we extracted the mean, maximum and minimum 
values as features. The results show that pattern recognition of normal 
eyes open and seizure EEG dataset using traditional machine learning 
SVM classifier can achieve more than 95% accuracy. Recognition of 
the same epileptic EEG data using deep learning was achieved with 
more than 98% accuracy, obtaining better accuracy and shorter time. 
Overall, experiments using deep learning CNN obtained higher 
accuracy than experiments using DWT wavelet transform function 
and SVM. In recent years, more and more new methods are being 
applied to automatic epilepsy detection, so faster and more accurate 
epilepsy detection algorithms will help doctors in clinical diagnosis, 
and future epilepsy detection models will be developed in the 
direction of more simplicity, efficiency and accuracy.
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