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Abstract

Background: Acute myeloid leukemia is a heterogeneous disease. ldentify
the prognostic biomarker is important to guide stratification and therapeutic
strategies.
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Results: Upon 168 patients whose expression level of ALDH1 family
members were available. We found that the level of ALDH1Al1correlated to the
prognosis of AML by the National Comprehensive Cancer Network (NCCN)
stratification but not in other ALDH1 members. Moreover, we got survival
data from 160 AML patients in TCGA database. We found that high ALDH1A1
expression correlated to poor Overall Survival (OS), mostly in Fms-like Tyrosine
Kinase-3 (FLT3) mutated group. HighALDH1A2 expression significantly
correlated to poor OS in FLT3 wild type population but not in FLT3 mutated
group. High ALDH1A3 expression significantly correlated to poor OS in FLT3
mutated group but not in FLT3 wild type group. There was no relationship

between the OS of AML with the level of ALDH1B1, ALDH1L1 and ALDH1L2.

Conclusion: The prognostic impacts were different in each ALDH1 family
members, which needs further investigation.
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Introduction

Acute Myeloid Leukemia (AML) is one of the most common
leukemia in adults and it is a heterogeneous population [1,2]. Despite
major improvements has been made in pathogenesis and therapeutics
in AML, some types of AML eventually relapse and caused patients
death [3,4]. Prognostic molecular markers and therapeutics are
urgently needed. Recently larges of molecular alterations such as
mutations or copy number variations have been discovered through
next generation sequencing (NGS) approach. Some of the driver
mutations or passenger mutations were distinguished through animal
models [5-7]. Some of them are associated with overall survival rate,
such as FLT3-ITD, ASXL1, et al. [8] However, thousands of genes are
regulated by genomic or epigenomic mechanisms and also associated
with overall survival [9,10]. Some of them were identified in the last
decades, such as CXCR4 [11], EVI1 [11,12], DNMT3A [13], Glil,
et al. [14]. Whether the expression of other genes is associated with
AML overall survival is still largely unknown.

Aldehyde Dehydrogenases (ALDH) are a group of enzymes that
catalyze the oxidation of aldehydes [15]. Recently, several studies
indicated that ALDHI1 was associated with cancer progression
[16,17]. Higher ALDH1 activities were found in cancer stem cells and
ALDHI had been identified as a marker of cancer stem cells in several
cancers [18]. ALDH1 could also be as a predictor of poor outcome in
clinics. Until now, at least six ALDH1 isoforms have been identified.
They are ALDH1A1, ALDH1A2, ALDH1A3, ALDHI1BI, ALDHIL1
and ALDH1L2. The impact of different isoenzymes on OS of cancer

patients remains controversial. For instance, higher ALDHIAI
expression might correlate to poor OS or have no relationship with
survival [19,20], ALDH1A2 was indicated with better OS [21] or
poor OS [22,23]. ALDH1A3 might correlated to poor OS [24,25]
or have no relationship with survival [21]. In AML, leukemia stem
cells are enriched in CD34+CD38 - population that exhibit high
ALDHI activities. Inhibit ALDH1 activities could eradicate leukemia
stem cell and sparing normal progenitors [26]. It is largely unknown
which ALDH1 family member are contributing to ALDH1 activities
in AML, also the OS impact of individual isoenzyme on AML are
needed to be clarified.

Here we mined The Cancer Genome Atlas (TCGA) database
from Natural Cancer Institute to distinguish the expression and the
prognostic impact of each ALDH1 family member in AML.

Results

Until now, six ALDH1 family members in human were discovered
and the tissue distribution and cellular location were reviewed before
[27]. All the six isoenzymes were found in TCGA database.

We first determined the expression of each ALDHI family
member in TCGA. In TCGA database, all AML patients were
stratified with NCCN guideline [28]. We grouped AML patients with
NCCN stratification and compared the expression of each ALDH1
isoenzymes. The gene expression data of 168 patients was available.
Figure 1 shows the expression of ALDH1A1, ALDH1A2, ALDH1A3,
ALDHI1BI1, ALDHI1L1 and ALDH1L2 with NCCN risk stratification.
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Figure 1: Expression level of different ALDH1 family members with NCCN stratification in TCGA database. Expression of each ALDH1 family member in 168 AML
patients from TCGA dataset stratified by cytogenetic risk according to NCCN. The ordinate value indicated the expression level of each gene. It is represented by
RSEM (RNA-Seq by Expectation Maximization). The differences between groups were analyzed by Unpaired Student’s t-test. The expression level of ALDH1A1,
ALDH1A2, ALDH1A3, ALDH1B1, ALDH1L1, ALDH1L2 were indicated in A-F, respectively.
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Figure 2: The prognostic impact of the expression level of ALDH1A1 in AML. A. Kaplan-Meier plots of OS of 160 AML patients whose OS values were available
from TCGA database divided by ALDH1A1 expression. Survival curves were compared by log-rank test. Kaplan-Meier plots of OS of FLT3 mutated AML patients
(B) and FLT3 wild type AML patients (C) divided by ALDH1A1 expression.
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Figure 3: The prognostic impact of the expression level of ALDH1A2 in AML. (A) Kaplan-Meier plots of OS of 160 AML patients divided by ALDH1A2 expression.
Survival curves were compared by log-rank test. Kaplan-Meier plots of OS of FLT3 mutated AML patients (n=44). (B) and FLT3 wild type AML patients (n=116).
(C) divided by ALDH1A2 expression.

High expression level of ALDH1A1 was found to correlate to poor
OS. In poor prognostic group, the relative expression value (RNA-
Seq by Expectation Maximization, RSEM) is -0.2753 + 0.5320,
which was significantly higher than in favorable (-4.1870 + 0.5155)
and intermediate (-1.454 + 0.2665) groups (p<0.05). Meanwhile,
the expression level of ALDHI1L2 was higher in poor group than in
intermediate group (p<0.05). However, there was no relationship
between gene expression of ALDH1A2, ALDH1A3, ALDHIBI,
ALDHILI1 with NCCN risk stratification (p>0.05).

To investigate the prognostic impact of ALDH1 gene family,

we collected all the survival data of 160 AML patients from TCGA
dataset and analyzed by Kaplan-Meier approach. The median follow-
up of this cohort is 557.4 days (0-2861 days). First, we evaluated the
prognostic impact of ALDH1A1 on OS of AML patients. We equaled
all the patients by ALDH1AI mRNA level. ALDHI1AI high group
(n=80, RSEM is set from -1.72 to 5.82) and ALDH1A1 low group
(n=80, RSEM is set from -7.96 to -1.85). As shown in Figure. 1G, high
ALDHI1ALI expression was significantly correlated to shorter overall
survival (p<0.05). As we know, AML patients who harboring the FLT3
mutation have poor prognosis. We did subpopulation test to figure
out the impact of ALDHI1A1 expression on FLT3 mutated patients
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Figure 4: The prognostic impact of the expression level of ALDH1A3 in AML. (A) Kaplan-Meier plots of OS of 160 AML patients divided by ALDH1A3 expression.

Survival curves were compared by log-rank test. Kaplan-Meier plots of OS of FLT3 mutated AML patients (n=44). (B) And FLT3 wild type AML patients (n=116)
(C) divided by ALDH1A3 expression.
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Figure 5: The prognostic impact of the expression level of ALDH1B1 in AML. (A) Kaplan-Meier plots of OS of 160 AML patients divided by ALDH1B1 expression.

Survival curves were compared by log-rank test. Kaplan-Meier plots of OS of FLT3 mutated AML patients (n=44). (B) and FLT3 wild type AML patients (n=116)
(C) divided by ALDH1B1 expression.
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Figure 6: The prognostic impact of the expression level of ALDH1L1 in AML. (A) Kaplan-Meier plots of OS of 160 AML patients divided by ALDH1L1 expression

Survival curves were compared by log-rank test. Kaplan-Meier plots of OS of FLT3 mutated AML patients (n=44). (B) and FLT3 wild type AML patients (n=116).
(C) divided by ALDH1L1 expression.
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Figure 7: The prognostic impact of the expression level of ALDH1L2 in AML. (A) Kaplan-Meier plots of OS of 160 AML patients divided by ALDH1L2 expression.

Survival curves were compared by log-rank test. Kaplan-Meier plots of OS of FLT3 mutated AML patients (n=44). (B) and FLT3 wild type AML patients (n=116)
(C) divided by ALDH1L2 expression.

and FLT3 wild type patients. Figure 1H showed that in the group
of FLT3 mutated AML, high ALDHI1AI expression significantly
correlated with shorter OS (p<0.05). However, the correlation was
not significant in FLT3 wild type group (p>0.05) (Figure 1C).

significant (p>0.05). The OS was no difference in FLT3 mutated
patients based on ALDHIA2 expression (p>0.05) (Figure 3B).
However, higher ALDH1A?2 expression indicated poor OS in FLT3
wild type group (p<0.05) (Figure 3C).

Then we determined the prognostic impact on ALDHIA2
expression. In figure 3A, high ALDH1A2 mRNA expression seemed
correlated to poor OS in all patients, but the difference was not

Figure 4 showed that the prognostic impact of the expression
level of ALDH1A3 in AML patients. We could not see the difference
of OS based on ALDH1A3 expression in all patients (p>0.05) (Figure

Submit your Manuscript | www.austinpublishinggroup.com Ann Hematol Oncol 5(1): id1189 (2018) - Page - 03



Austin Publishing Group

4A) and in FLT3 wild type patients (p>0.05) (Figure 4C). However,
when we focused on FLT3 mutated patients, lower ALDH1A3 mRNA
level correlated to better OS (p<0.05) (Figure 4B).

Figure 5 to Figure 7 indicated the prognostic impact of the
expression level of ALDH1B1, ALDHIL1 and ALDHIL2 in AML
patients, respectively. All the curves were not separated based on
ALDHIBI1, ALDHIL1 and ALDH1L2 mRNA expression, no matter
in FLT3 mutated or wild type patients groups.

Discussion

ALDHI enzymes play an important role in normal hematopoietic
differentiation and tumor progression [29,30]. Currently ALDH1
activity was measured by ALDEFLUOR approach and inhibited
by diethylaminobenzaldehyde (DEAB) reagent. Selected ALDHI
positive cells have self-renew capacity and increased cancer cell
regeneration in xenograft tumor model [31]. However, the function
and prognostic impact of each ALDH]1 family member in AML has not
been identified yet. In this study, we mined AML mRNA sequencing
and clinical dataset from TCGA and focused on the expression and
prognosis of each ALDH1 member. ALDH1A1 is the most dominant
enzyme of ALDHI1 [32]. It is reported to be as an independent
prognostic marker in triple negative breast cancer [33]. Here we
showed that high expression of ALDH1A1 correlated to poor NCCN
prognostic stratification, and ALDH1A1 was a prognostic marker in
AML, especially in FLT3 mutated AML. The expression of ALDH1A2
and ALDHI1A3 both have prognostic impact on defined group of
patients. But ALDH1B1, ALDHI1LI and ALDHI1L2 expression have
no meaning on prognosis of AML.

ALDHI1A1, ALDH1A2 and ALDHIA3 are highly conserved
isoenzymes. They are participating in the synthesis of retinoic acid
[34]. Recently all the ALDHIA family members were reported to
participate in neuroblastoma progression and drug resistance [35].
ALDHI1A family members were probably as potential tumor initiating
cells markers and take part in tumor cell self-renewal. In AML, we
found that all ALDHI1A family members were associated with poor
prognosis in defined group of patients, suggesting that they might
contribute to leukemia stem cell capacity, result in drug resistance
and shorter AML patients’ survival. Interestingly, ALDHIA1 and
ALDH1A3 both have poor OS indication in FLT3 mutated group of
AML patients, suggesting that they might have crosstalk with FLT3
signaling in AML. As we know, FLT3 mutation indicated poor OS in
AML. Aberrant FLT3 mutation caused ligand independent activation
of FLT3 receptor and amplified cell proliferation signals. Moreover,
FLT3 mutation could cause increased activated form of P-catenin
[36], suggesting FLT3 signaling enhanced stemness signaling
and increased cell self-renewal capacity. Whether ALDHI1A1 and
ALDHI1A3 could be amplified by FLT3 signaling or other signaling
has not been addressed yet. Our study indicated that if ALDH1A1
and ALDH1A3 were amplified in FLT3 mutated AML, the OS of
AML patients was extremely poor. They were prospective targets in
therapeutic strategy. How the regulation of FLT3 and ALDHI1A1/
ALDHI1A3 need further investigation. ALDH1B1, ALDHIL1 and
ALDHIL2 were not important to AML patients’ survival in our study.
They have not been extensively discussed in the literature [34]. The
functions of them in AML still need further investigation.

Taken together, our study demonstrated that ALDHI1AI,
ALDH1A2 and ALDH1A3 have prognostic impact in certain AML
patients. ALDHI1A isoenzymes could be measured in clinical samples
and guide clinical strategy. Clinical trial depended on ALDHI
enzymes are urgently needed to assess the prognostic impact of each
enzyme in real world in AML patients and provide better intervention
strategy.

Methods

Clinical AML survival data and next generation sequencing data
of transcriptome were available on http://tcga-data.nci.nih.gov/tcga/.
Expression values between groups were compared by two-tailed
Student’s t-test. Overall survival curves were plotted by Kaplan-Meier
methods and compared by log-rank test. P value were calculated and
shown in the plots.
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