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Alteration in tissue pH is an indicator of many pathological 

processes. Noninvasive MR pH imaging will be much helpful 
for disorder characterization and therapy, even monitoring cell 
viability. Noninvasive brain pH measurements have routinely relied 
on 31P magnetic resonance spectroscopy techniques, which require 
additional hardware, take too long to be clinically useful, and provide 
very limited spatial resolution. Chemical Exchange Saturation 
Transfer (CEST) is a versatile technique for MR molecular imaging. 
The potential of Amide Proton Transfer (APT) had been proved for 
imaging pH effects in ischemic rat brain noninvasively [1].

With combination of amide and guanidyl CEST, the sensitivity 
of pH-weighted MR imaging can be enhanced for ischemic rat 
brain in a recent study [2]. Iopamidol, as a chemical exchange-
dependent saturation transfer contrast medium, has been used 
to measure extracellular pH (pHe) [3]. A single dose of cariporide 
can induce a rapid change of intracellular pH (pHi) in animal 
glioblastoma multiforme, which is observed by using Amine/Amide 
Concentration- Independent Detection (AACID) CEST MR imaging 
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[4]. The major contributors to in vivo T1 -normalized MTRasym (3.5 
ppm) contrast between white and gray matter in normal brain are 
pH-insensitive macromolecular Magnetization Transfer (MT) and 
nuclear Overhauser enhancement. The pH-sensitive amine and 
amide effects account for nearly 60% and 80% of the MTRasym changes 
seen in white and gray matter, respectively, after global ischemia, 
indicating that MTRasym  is predominantly pH-sensitive [5]. Clinical 
translation of pH-weighted MR imaging has been conducted for 
diagnosing human brain tumors [6].

In our most recent studies, in vivo gas challenge in an experimental 
glioma model of rats showed that enhanced pH-weighted MR imaging 
could more effectively localize tumor periphery. In addition, ioversol 
(a clinical CT contrast medium) CEST MR imaging can be exploited 
to achieve pHe mapping of human liver cancer microenvironment. 
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