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Abstract

Inhibition of proapoptotic proteins by various intra- and extracellular factors 
have been shown to cause increased survival of EPCs. The aim of the present 
study was to investigate the effect of vitamin E on Tumor Necrosis Factor-Alpha 
(TNF-α)-induced apoptosis of CD34+- derived EPCs of healthy human adults. 
CD34+- derived EPCs were isolated from human Peripheral Blood Mononuclear 
Cells (PBMNCs) and treated in vitro with various concentrations of TNF-α to 
determine the dose inducing maximum apoptosis. EPCs were incubated at 
various concentrations of vitamin E or Erythropoietin (EPO) as control for 4 hours 
before adding 100 ng/mL of TNF-α (a dose producing maximum apoptosis). 
After 24-hour incubation, quantification of percentage of EPCs undergoing 
apoptosis was carried out by FITC-Annexin V and PI staining followed by flow 
cytometry. In a dose-dependent manner, TNF-α alone increased the percentage 
of early and late apoptosis of treated CD34+- derived EPCs. There was a 
significant difference in the mean percentage of TNF-α-induced apoptotic 
CD34+-derived EPCs in early and late apoptosis by vitamin E treatment (p 
value= 0.080) which was higher in early as compared to late apoptosis. There 
was a significant difference in the percentages of TNF-α induced early and late 
apoptosis of CD34+- derived EPCs by vitamin E treatment or EPO treatment 
when analyzed for a statistical interactive effect on early and late apoptosis 
and drug concentration (p value < 0.001).The study suggests a positive role of 
vitamin E in decreasing TNF-α induced apoptosis of CD34+- derived EPCs from 
healthy human adults. 

Keywords: Human erythroid progenitor cells; Vitamin E; Apoptosis; 
Erythropoiesis

Introduction
The maintenance of human erythroid homeostasis is 

dependent primarily upon a physiological balance between normal 
erythropoiesis, survival and programmed cell death (apoptosis) of 
Erythroid Progenitor Cells (EPCs) and erythrocytes [1]. The apoptosis 
of EPCs is regulated by a number of pro-apoptotic factors including 
B-cell lymphoma-2 (Bcl-2)-associated x (Bax), Bcl-2-associated death 
promoter (Bad), BH3-interacting domain (Bid), Bcl-2-interacting 
mediator of cell death (Bim), Bcl-2-antagonist killer (Bak), Bcl-2-
interacting killer (Bik), Cytochrome c, cysteine-dependent aspartate-
specific proteases (caspases), Caspase Activated Dnase (CAD), 
interferon gamma (INF-γ) and tumor necrosis factor-alpha (TNF-α) 
[2-5]. The major known factors that inhibit EPCs’ apoptosis include 
Bcl-2, B cell lymphoma extra-large (Bcl-Xl), intracellular Inhibitor of 
Apoptosis (IAP), Interleukin-3 (IL-3), Stem Cell Factor (SCF) and 
Erythropoietin (EPO) [6-9]. 

Some of the fat-soluble vitamins including vitamin K and all-
trans-retinoic acid had been suggested to prevent apoptosis of human 
peripheral blood EPCs and adult bone marrow CD34+ve cells in vitro 
[10,11]. Some of the earlier human and animal studies had shown 
the beneficial role of antioxidants in suppressing the oxidative stress-
mediated apoptosis of hematopoietic progenitor stem cells derived 
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from bone marrow and peripheral venous blood samples [12,13]. 
Moreover, abnormally increased levels of pro-oxidants and/ or 
decreased levels of anti-oxidants had been shown to inhibit human 
erythropoiesis and promote apoptosis of EPCs [14,15]. 

Some of the experimental animal studies showed that vitamin E 
treatment decreased radiation-induced apoptosis in bone marrow 
and peripheral blood hematopoietic stem cells [16,17] and in jejunal 
tissue slides [18]. Vitamin E supplementation had also been suggested 
to stimulate the proliferation and survival of hematopoietic stem cells 
[19,20] and promote the differentiation and maturation of EPCs in 
marrow of experimental animals [21,22]. All of the above mentioned 
studies are suggestive of a protective role of vitamin E on EPCs. 
However, there has been no reported study to determine the effect of 
vitamin E on CD34+-derived EPCs isolated from human PBMNCs. 

Therefore, the objective of this study was to investigate any 
protective effect of vitamin E on TNF-α-induced apoptosis of CD34+-
derived EPCs isolated from PBMNCs obtained from apparently 
healthy adult human volunteers.

Materials and Methods
Ethics statement

The present study was approved by the Ethical Review Committee 
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of the Aga Khan University, Karachi, Pakistan. A written informed 
consent was obtained from all the participants included in this study.

Participants’ enrollment
Volunteers included in this study were healthy adult males, 18-

45 years old who had no previous history of any systemic disease 
or injury, acute or chronic infection and blood loss during last six 
months. They were non-smokers and had no history of any alcohol 
use and had not taken vitamins or iron supplements during the last 
six months. 

Separation of PBMNCs from human peripheral blood
Venous whole blood sample (10-20 mL) was collected at Stem cell 

laboratory of Dr. Panjwani Center for Molecular Biology and Drug 
Research, University of Karachi, Pakistan from healthy adult human 
volunteers. PBMNCs were separated from the blood sample using 
Ficoll-paque density centrifugation method [5]. Dulbecco’s Modified 
Eagle Medium (DMEM, Stemcell Technologies Inc., Canada) was 
added along with penicillin/streptomycin (Gibco, USA) into the tube 
containing PBMNCs.

Isolation and expansion of CD34+-derived EPCs from 
PBMNCs

CD34+- cells were isolated from PBMNCs using CD34+ selection 
kit (Stemcell Technologies Inc., Canada) through magnetic assisted 
cell sorting (MACS) [5,23].

The isolated CD34+ human PBMNCs were differentiated and 
expanded in vitro for 7-14 days in serum free DMEM supplemented 
with Stem Span TM erythroid selective expansion and differentiation 
supplement (Stemcell Technologies Inc., Canada), containing 
penicillin/streptomycin and 10% fetal bovine serum (FBS, Stemcell 
Technologies Inc., Canada) [24]. The density of the CD34+-derived 
EPCs was maintained at 2-4 x 105 cells/mL and the cultured cells were 
observed daily for any changes in the morphology [4,5].

The isolated CD34+-derived EPCs were stained with 
4,6-Diamidino-2-Phenylinode (DAPI) and mouse anti human-
CD34+-Phycoerythrin (PE), (Becton Dickinson Holdings, USA), 
mouse anti human-CD74+-PE (Becton Dickinson Holdings, USA) 
and mouse anti human-Glycophorin A+-PE (Becton Dickinson 
Holdings, USA), mouse anti human-CD3+ antibody (Becton 
Dickinson Holdings, USA) and mouse anti human-CD14+ antibody 
(Becton Dickinson Holdings, USA). The stained cells were then 
examined using the immunofluorescence microscope (Nikkon TE 
2000, Japan) [25-27]. 

Treatment of CD34+-derived EPCs with TNF-α, and vitamin 
E or EPO

In order to examine the effects of vitamin E and EPO on TNF-
α-induced apoptosis of CD34+-derived EPCs, the purified CD34+-
derived EPCs were treated in vitro with various concentrations of 
TNF-α (zero, 10, 50 and 100 ng/mL), (Thermo Fisher Scientific, 
USA) in serum free DMEM in the presence or absence Stem SpanTM 
erythroid selective expansion and differentiation supplement (three 
independent experiments) for 24 hours to induce apoptosis in EPCs 
[28,29]. The measurement of percent apoptosis of the treated CD34+-
derived EPCs was carried out by using FITC-Annexin V apoptosis 
detection kit (Becton Dickinson Holdings, USA) and propidium 
iodide ( PI, Sigma-Aldrich, USA) staining followed by flow cytometry 
(Biosciences, USA) [30-31]. The results were analyzed using the 
CellQuest software (Biosciences, USA). 10,000 events were recorded 
for each sample. Gated cells were then analyzed for the presence of 
Annexin V-FITC+ve and PI+ve cells. The maximum percent early 
and late apoptosis of CD34+-derived EPCs was observed at the 
TNF-α concentration of 100 ng/mL, and this dose of TNF-α was 
selected to study any protective effect of vitamin E on apoptosis 
of CD34+-derived EPCs. The EPCs were then treated in vitro with 
vitamin E (10, 50 and 100 µg/mL, Sigma-Aldrich, USA) or EPO (10, 
50 and 100 IU/mL, RG Pharmaceutica PVT LTD, Pakistan) in three 
separate wells for 04 hours followed by addition of TNF-α (100 ng/
mL) in each of the respective wells [19,32-34]. The CD34+-derived 
EPCs treated with vitamin E or EPO and TNF-α were then incubated 
in DMEM for 24 hours at 37oC in 5% CO2. Percentage values of early 
and late apoptosis of CD34+-derived EPCs treated with vitamin E 
or EPO was determined by using Annexure V-FITC and PI staining 
through flow cytometry [30,31].

Statistical analysis
The mean differences of the effects of treatment with increasing 

concentrations of vitamin E and EPO on TNF-α-induced early and 
late apoptosis and the interaction of these drugs and apoptotic status 
of CD34+-derived EPCs were statistically analyzed using Two-way 
analysis of variance (Two-way ANOVA) with replacement. A p value 
< 0.05 was considered statistically significant. 

Results
Purification of isolated and cultured CD34+-derived EPCs

The purified CD34+-derived EPCs were positive for CD34, 
CD71 and Glycophorin A (GPA). These cells were found to be 
negative for CD3 and CD14. One limitation of this experiment is 
use of PE conjugated to all surface markers which did not allow us 
to analyze for the presence of all antigen on one cell simultaneously. 

Figure 1: Effect of increasing concentrations of TNF-α on early and late 
apoptosis of CD34+-derived EPCs.
It shows the effect of in vitro treatment (24 hours) of cultured CD34+-derived 
EPCs with increasing dosages of TNF- α increased percent early apoptosis 
of treated EPCs from 4.5% to 58.7%. However, treatment of cultured EPCs 
resulted in an increased percent late apoptosis from 2.3% to 8.9%. Since 
the maximum percent apoptosis of CD34+-derived EPCs was at TNF-α 
concentration of 100 ng/mL, this concentration was chosen to study the 
effects of vitamin E and EPO on apoptosis of CD34+-derived EPCs.
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Figure 1 Effect of increasing concentrations of TNF-α on mean cell 
apoptosis of CD34+ -derived human EPCs on early and late apoptosis 
Quantification of percent apoptosis of CD34+-derived EPCs after 
incubation with increasing concentrations of TNF-α. This shows the 
effect of in vitro treatment (24 hours) of cultured CD34+-derived 
EPCs with increasing dosages of TNF- α (zero, 10, 50 and 100 ng/
mL) alone on early and late apoptosis of EPCs. In a dose-dependent 
manner, TNF-α alone increased percent early apoptosis of treated 
EPCs from 4.5% to 58.7%, while the increase in late apoptosis was 
from 2.3% to 8.9%.

The effect of increasing concentrations of vitamin E (10, 50 and 
100 µg/mL) or EPO (10, 50 and 100 IU/mL) on TNF-α (100 ng/mL)-
induced mean percent cell apoptosis of CD34+-derived EPCs were 
statistically analyzed by using Two-way analysis of variance (Two-
way ANOVA) with replacement as shown in (Table 1).

Vitamin E decreased the TNF-α-induced early apoptosis of 
CD34+-derived EPCs from 58.7% to 25.2% and late apoptosis from 
8.9% to 2.7% at its maximum concentration of 100 µg/mL, while EPO 
(used as a control) decreased the mean percentage of early apoptosis 
from 58.7% to 5.3%, and of late apoptosis from 8.9% to 0.8%. There 
was a marginal difference in the mean percentage of TNF-α-induced 
apoptotic CD34+-derived EPCs by EPO treatment (p value= 0.050), 
which was slightly higher in early as compared to late apoptosis. 
There was a significant difference in the mean percentage of TNF-
α-induced apoptotic CD34+-derived EPCs by vitamin E treatment 
(p value= 0.008), which was higher in early apoptosis as compared 
to late apoptosis. Moreover, there was a significant difference in 

the mean percentage of TNF-α-induced apoptotic CD34+-derived 
EPCs by vitamin E treatment or EPO treatment, when analyzed for a 
statistical interactive effect on early and late apoptotic phases and drug 
concentration as analyzed by Two-way ANOVA with replacement (p 
value < 0.001).

Supplementary Figure 1; In order to further confirm our results, 
the experiment was repeated using CD34+ -derived EPCs from a 
different donor and employing dosages of vitamin E and EPO which 
were found to give maximum protective effects and studying the early 
and late apoptosis. Supplementary Figure 1 illustrates the effects of 
vitamin E (100 μg/mL) and EPO (100 IU/mL) onTNF-α (100 ng/
mL)-induced apoptosis on CD34+ -derived EPCs isolated from 
human PBMNCs. 

The main findings include:

The percentage of early apoptotic CD34+-derived EPCs after 
treatment with TNF-α alone was 23.8%, while the percentage of late 
apoptotic CD34+ cells was 9.9% (Supplementary Figure 1).

Treatment of human CD34+-derived EPCs with EPO (100 IU/
mL) resulted in a decrease in the percent cell early apoptosis to 
1.25% ± SD from three independent experiments) and a decrease in 
percent cell late apoptosis to 2.4% ± 0.22% (mean ± SD from three 
independent experiments) (Supplementary Figure 1).

Discussion
In the present study, we were able to show that vitamin E in an 

in vitro culture inhibited the TNF-α induced apoptosis of CD34+-
derived EPCs. A number of earlier studies had proposed the role of 
TNF-α as an inducer of apoptosis [35,36] and EPO as a potent anti-
apoptotic agent for human EPCs [37,38]. Therefore, in the present 
study, we used TNF-α for inducing apoptosis in EPCs and EPO 
as a drug to determine whether vitamin E has a role in decreasing 
apoptosis of CD34+-derived EPCs (positive control in context of 
antiapoptotic action of vitamin E). Vitamin E treatment was observed 
to reduce the percent apoptosis of EPCs obtained from apparently 
healthy adult humans even at its minimum concentration of 10 µg/
mL (Table 1). 

The normal plasma vitamin E levels in healthy adult humans 
had been reported to be between 5.0 µg/mL to15.0 µg/mL [39]. Thus, 

Figure 2: Effect of vitamin E on anti- and pro-apoptotic proteins.

Drug Concentration Apoptosis (%± SD) F statistic (p value)*

Early Late Concentration Apoptosis status Concentration* Apoptosis status

EPO 0 (IU/mL) 58.7±4.87 8.9±3.43 1.55 (0.363) 10.1 (0.050) 73.2 (< 0.001)

10 (IU/mL) 55.3±5.80 3.5±0.88

50 (IU/mL) 35.9±1.94 3.5±0.79

100 (IU/mL) 5.3±1.81 0.8±0.70

Vit. E 0 (µg/mL) 58.7±4.87 8.9±3.43 1.91 (0.303) 38.3 (0.008) 17.6 (< 0.001)

10 (µg/mL) 47.1±1.25 5.3±1.10

50 (µg/mL) 38.3±3.33 6.8±1.49

100 (µg/mL) 25.2±4.70 2.7±1.93

Table 1: Effect of increasing concentrations of vitamin E or EPO on TNF-α-induced mean early and late cell apoptosis of EPCs using Two-way analysis of variance 
(Two-way ANOVA) with replacement.

*F statistic and p value were obtained by using Two-way analysis of variance (Two-way ANOVA) with replacement to study the effect of increasing concentrations of 
drugs/ physiological compounds (EPO or vitamin E) on early and late apoptosis and statistical interaction between increasing concentrations of drugs/ physiological 
compounds and early or late apoptosis.
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it seems that inhibition of apoptosis of human EPCs by vitamin E 
treatment might be possible at the normal plasma vitamin E levels. 
However, maximum inhibition of early apoptosis (from 58.7% to 
25.2%) and late apoptosis (from 8.9% to 2.7%) of CD34+-derived 
EPCs was observed at a dose of 100 µg/mL of vitamin E in the present 
study. These findings are corroborated by the results of a previous 
study by Yano et al, who have shown that incubation of human 
monocytic U937 cells with vitamin E for 24 hours decreased TNF-α 
(0.5 µg/L, 02 µg/L and 100 µg/L)-mediated percent cell apoptosis 
from 20.9% to 13.5% at 0.5 µg/L, 28.8% to 22.2% at 02 µg/L and 15.3% 
to 8.5% at 100 µg/L by vitamin E treatment [40]. 

However, the results of another study by Bergman et al. carried 
out to find out the in vitro effect vitamin E (0.125 mg/mL) on 
apoptosis of PBMNCs from healthy human volunteers failed to show 
any significant change in percent apoptosis of the treated PBMNCs 
[41]. The possible reason for difference in the results of the present 
study and the referred study [41] could be that we investigated 
the anti-apoptotic effect of vitamin E on relatively well defined 
population of CD34+-derived EPCs, while Bergman et al, examined 
the anti-apoptotic effects of vitamin E on PBMNCs. Vitamin E 
had been suggested to inhibit experimentally-induced apoptosis in 
animal tissues by decreasing the activity of some of the pro-apoptotic 
caspases [42-45]. The possible mechanism of vitamin E in rescuing 
EPCs undergoing TNF-α-mediated apoptosis in the present study 
might be inhibition of some of the pro-apoptotic proteins and/ or 

stimulation of some of the anti-apoptotic proteins as depicted in 
(Figure 2). 

The findings of the present study suggest a new role of vitamin 
E in promoting erythropoiesis by altering the balance between pro- 
and anti-apoptotic proteins affecting EPCs which needs further 
investigations. The results of the present study should be viewed 
within the context of a limitation of the study. Our study is limited 
to the TNF- α induced apoptosis of isolated human CD34+-derived 
EPCs, while there are a number of other pro-apoptotic and anti-
apoptotic biomolecules which could be influencing the overall 
balance of apoptosis of EPCs. For example, many molecules in 
addition to TNF-α can alter the effect of pro-apoptotic proteins (like 
Bax, Cytochrome C, Caspases, Interferon-gamma) and anti-apoptotic 
proteins (like stem cell factor SCF and IL-3 etc) on EPCs. 

Conclusion
We report that vitamin E enhances erythropoiesis through 

inhibition of apoptosis of CD34+ -derived EPCs isolated from 
PBMNCs in healthy adult human subjects. It appears that certain pro-
apoptotic factors such as TNF- α could be increasing the apoptosis of 
EPCs, and vitamin E and EPO have a role in decreasing the early and 
late apoptosis of these cells, thereby resulting into increased levels of 
mature erythrocytes. 
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