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Abstract

Background: The treatment of melanoma patients with MAPK pathway 
inhibitors is plagued by the development of drug resistance. Beside mutational 
events, recent studies highlight the notion that drug- resistance may be 
determined by altered microRNA (miRNA) expression in melanoma cells.

Objectives: The goal of this review is to provide recent updates on the 
mechanisms by which miRNAs regulate melanoma cell resistance to inhibitors 
of the MAPK pathway, including BRAF and MEK inhibitors

Methods: We conducted a literature review by keywords in the Pubmed 
and selected more recent articles

Results: miRNA deregulation appears to be one of the major responsible 
for the development of resistance to targeted therapies in melanoma. Emerging 
evidence shows that specific miRNAs are down- or up- regulated in drug resistant 
melanoma cells. In some cases, when expression of down-regulated miRNAs is 
restored, or alternatively, up-regulated miRNAs are silenced, a reversion of the 
resistant melanoma phenotype occurs both in in vitro and in vivo, confirming the 
central role of miRNAs in development of the drug resistance.

Conclusion: While studies in the miRNA field have grown exponentially in 
the last decade, the role of miRNA on the resistance to MAPK pathway inhibitors 
in melanomas is limited and much remains to be discovered. Understanding 
the mechanisms underlying miRNA-induced regulation of drug resistance in 
melanoma will represent in the future an important goal for the treatment of 
melanoma.
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Introduction
Melanoma is the most aggressive skin cancer, and its incidence 

has dramatically risen during the last fifty years [1]. Although 
combining targeted therapy and immune checkpoint inhibitors 
have improved significantly patient survival, effective treatments for 
metastatic melanoma are lacking to date, and the prognosis for these 
patients remains poor [2]. By next-generation sequencing, the Cancer 
Genome Atlas provided the analysis on the somatic aberrations 
underlying melanoma genesis, identifying BRAF, RAS, and NF1 
mutant genetic subtypes of cutaneous melanoma all of them being 
able to deregulate MAPK/ERK pathway, leading to uncontrolled 
cell growth [3]. Over 50% of melanomas harbor activating V600E 
mutation in BRAF gene (BRAFV600E) which sustains proliferation 
and survival of melanoma cells by activating the Mitogen- Activated 
Protein Kinase (MAPK) pathway [4–8], whereas less common are 
substitutions of valine for lysine, arginine, leucine, or aspartic acid 
[9]. Inhibitors of BRAF-mutant specific kinase (BRAFi), such as 
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vemurafenib and dabrafenib that inhibit the MAPK pathway, have 
been become worldwide standards of care for patients with BRAF-
mutant metastatic melanoma, improving their progression-free and 
overall survival [10,11]. However, their prolonged use is limited by 
early development of drug resistance and most of patients who initially 
respond to treatment with BRAFi, relapse within 6 to 8 months as a 
consequence of the activation of alternative proliferation-inducing 
pathways often associated to the reactivation of the MAPK pathway 
[12–16]. For these reasons the therapy for BRAF mutated melanoma 
has included the combination of different BRAFi with MEK inhibitors 
(MEKi) such as trametinib, cobimetinib or binimetinib) [17,18]. 
Although these combinations prolong overall and progression-free 
survival compared to single-agent therapies, resistance also occur 
in the majority of cases [18]. The scenario is complicated by the 
occurrence of PI3K/Akt upregulation, leading to BRAFi resistance in 
22% of the melanoma patients [12]. Moreover, despite combination 
therapies targeting a variety of molecules, including Poli ADP-
ribosio polimerasi inhibitors, have been employed to target different 
cellular pathways, most of them, do not escape development of drug 
resistance, due to the extraordinary plasticity of melanoma cells 
[19,20].

Non-durable therapeutic responses are mainly due to the high 
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heterogeneity and plasticity of melanoma cells for the occurrence of 
genetic mutations as well as epigenetic modifications [21]. Indeed, 
drug resistance may be a consequence of transient adaptive resistance 
mechanisms. For instance, after exposure to MAPK pathway 
inhibitors, melanoma cells may undergo to different behaviors: a 
subset of cells undergoes apoptosis, a second subset remains arrested 
in the G0/G1 phase of the cell cycle (dormancy), and a third subset 
enter in a transient drug-resistant state by slowly cycling in an effort 
to minimize the effects of the drugs [22,23].

Emerging evidence assign to microRNAs (miRNA) an important 
role in regulating tumor pathogenesis, development and drug 
responsiveness [24–26] miRNAs are small non-coding RNAs of 
~19–25 nucleotides that modulate gene expression by mRNA 
silencing or degradation, contributing to change cellular metabolism 
and genome stability. By targeting simultaneously multiple mRNAs, 
these epigenetic factors control a plethora of processes including 
cell proliferation and differentiation, cell senescence, survival, 
autophagy, migration and invasion [27]. Aberrant expression of 
miRNAs in melanoma cells compared to melanocytes is the result of 
chromosomal abnormalities, epigenetic regulation, and disorders in 
miRNA biogenesis [28–30] miRNA dysregulation has been observed 
during different stages of melanoma, and miRNAs are considered as 
biomarkers of melanoma progression with diagnostic and prognostic 
value [31–34]. It has been demonstrated that the MAPK signaling 
pathway, which is upregulated in melanoma, controls a network of 
420 miRNAs [35] and recent studies highlight the notion that drug-
resistance may be determined by deregulation of a group of miRNAs. 
This review is focused to provide an updated overview of how some 
miRNAs influence melanoma cell resistance.

miRNAs as regulators of melanoma MAPKi-resistance
Several mechanisms involved in resistance to BRAF and MEK 

inhibitors have been identified to be modulated by miRNAs. Firstly, 
Liu et al, colleagues identified miR-200c as a pivotal signaling 
node in BRAFi- resistant melanoma cells for its ability to affect the 
MAPK and PI3K/AKT pathways, suggesting miR-200c as a potential 
therapeutic target for overcoming acquired BRAFi resistance. These 
Authors demonstrated that miR-200c inhibits drug resistance 
to PLX4720 BRAF and U0126 MEK inhibitors through down-
regulation of the p16 transcriptional repressor BMI-1, resulting 
in the inhibition of melanoma growth and metastasis formation in 
nude mouse xenografts. They also found that miR-200c acts on ABC 
transporters, a superfamily of transmembrane proteins that mediate 
drug resistance in melanoma cells [36]. The same authors confirmed 
the clinical significance of the miR-200c/Bmi1 axis in conferring 
acquired resistance to BRAFi therapy on human melanoma tissues. 
They showed that loss of miR-200c expression not only correlates 
with the development of resistance to BRAFi therapy in melanoma 
tissues, but also promotes development of a BRAFi-resistant 
phenotype in melanoma cells [37] (Figure 1). miR-514a-3p (miR-
514a), a member of a cluster of miRNAs on chrXq27.3, has been 
shown to have a role in the malignant transformation of melanocytes 
[38]. Stark and co-workers found that 69% of melanoma cell lines 
express a considerable amount of miR-514a that appear to be express 
in only 3% of other kind of solid tumors [39]. Using pull- down assay, 
the Authors showed that miR-514a binds to the NF1 transcription 
factor, inhibiting its expression. This results in the increased survival 

of PLX4032 (vemurafenib)-treated BRAFV600E melanoma cells. 
Moreover, the Authors demonstrated that a loss of NF1 correlates 
with a reduced BRAFi sensitivity of the melanoma cells [39] (Figure 
1). The resistance to BRAFi may be partially reversed by the miR-
7. Using microarray profiling analysis of vemurafenib-resistant 
and parental A375 melanoma cells, Sun X. et al,  colleagues found 
17 dysregulated miRNAs in A375 cells resistant to BRAFi. Among 
these, miR-7 was identified as the most down-regulated miRNA in 
vemurafenib-resistant A375 melanoma cells.  miR-7 inhibits the 
MAPK and PI3K/AKT signaling pathways and vemurafenib-resistant 
melanoma tumor growth in vivo by targeting EGFR, IGF-1R and 
CRAF [40] (Figure 1).

By studying a panel of BRAFV600E melanoma cell lines with 
acquired resistance to BRAFi as well as plasma and tumor samples 
from vemurafenib-treated melanoma patients, Vergani and 
colleagues demonstrated that vemurafenib-resistant melanoma 
cells secrete higher levels of the CC-Chemokine Ligand 2 (CCL2) as 
compared to parental counterparts. CCL2 overproduction induces 
upregulation of miR-34a, miR- 100 and miR-125b which in turn 
negatively regulate apoptotic genes. Accordingly, inhibition of CCL2 
and/or miRNAs silencing restores apoptosis, overcoming melanoma 
resistance to vemurafenib [41] (Figure 1).

More recently, Díaz-Martínez and co-workers, by the analysis 
of small RNAseq data and subsequent qPCR, documented increased 
miR-204-5p and miR-211-5p levels in vemurafenib-resistant 
A375 cells relative to parental counterparts. They found that co-
overexpression of miR-204-5p and miR-211-5p stably induces Ras 
and MAPK upregulation after vemurafenib exposure. This effect has 
been detected not only in response to BRAFi but also in response to 
inhibitors of other elements of the MAPK pathway. In vivo, when 
transfected with both miR-204-5p and miR-211-5p, the parental A375 
cells acquire vemurafenib resistance and high cell growth ability. 

Figure 1: Schematic representation of most relevant miRNAs involved in 
melanoma MAPK pathway inhibitors resistance.



Ann Hematol Oncol 6(11): id1277 (2019)  - Page - 03

Letizia Motti M Austin Publishing Group

Submit your Manuscript | www.austinpublishinggroup.com

Conversely, tumor growth was prevented by silencing resistant cells 
for miR-204-5p and miR-211-5p expression [42] (Figure 1).

In 2016 Fattore L. et al., colleagues given an important input to 
research studies on the relationships between miRNAs expression 
and drug resistance. They, demonstrated that miR-579-3p expression 
not only impairs the establishment but also reverts drug resistance 
to BRAF inhibitors. They found that miR-579-3p is down- regulated 
in vemurafenib-resistant melanoma cells and tissues from melanoma 
patients with acquired resistance to BRAFi. Consistently, low miR-
579-3p levels in tissues from melanoma patients correlates with a poor 
prognosis. The Authors found that miR-579-3p targets the 3’UTR of 
BRAF and MDM2, acting as oncosuppressor. Mechanistically, miR-
579-3p inhibits cell proliferation by targeting BRAF and increases 
apoptosis, by down-regulating MDM2 which results in p53 increase 
[43] (Figure 1). In 2019, the same group identified a large population 
of dysregulated miRNAs playing a role in development of drug 
resistance to BRAFi. They provided evidence that it is possible to 
block or revert development of drug resistance by regulating the 
expression of a subset of miRNAs. They presented evidence that 
transient overexpression of the two-downregulated miR-204-5p and 
miR-199b-5p in drug sensitive melanoma cells, causes inhibition 
of cell proliferation and induction of apoptosis. On the contrary, 
inhibition of the two upregulated miR-4443 and miR-4488 with 
specific antagomiRs, decreases the inhibitory effect of BRAFi on cell 
viability and induction of apoptosis. Interestingly, the Authors found 
that co-delivery of the down-regulated miR-204-5p, miR-199b-5p 
and miR-579-3p resulted in a moderate growth inhibition of A375 
melanoma cells double resistant to BRAFi and MEKi, suggesting 
that the co-targeting simultaneously multiple microRNAs could be 
considered a valid approach to inhibit proliferation of double-drug-
resistant melanoma cells [44]. Finally, using matched tumor biopsies 
and serum samples from melanoma patients subjected to qRT-PCR 
to determine the expression levels of mir-4443, miR-4488, miR-
204b-5p and miR-199b-5p, the Authors identified specific miRNA 
signatures able to distinguish drug responding from non-responding 
patients [44] (Figure 1).

It has been reported that miR-199 impairs proliferative and pro-
angiogenic HIF-1α/VEGF pathways [45]. Fattore L. et al., colleagues 
showed that down-regulation of miR-199 in BRAFi resistant 
melanoma cells, promotes VEGF release inducing angiogenesis, this 
phenotype being reverted by restoring miR-199 levels [44]. In line 
with these findings, Caporali and colleagues described the occurrence 
of a miRNA-dependent regulation of VEGF production in melanoma 
cells with acquired resistance to BRAF inhibitors. They found that 
miR-126-3p is down-regulated in dabrafenib-resistant melanoma 
cells as compared with their parental counterparts and that restoring 
miR-126-3p expression impaired proliferation and invasiveness of 
dabrafenib-resistant cells [46].

Conclusions
Malignant melanoma cells often develop resistance to most 

targeted therapies, including BRAFi and MEKi that inhibit the MAPK 
pathway. Mutations in the major driver genes, (BRAF, RAS, and NF1) 
are recognized to induce deregulation of the MAPK/ERK pathway, 
leading to uncontrolled cell growth. However, tumor resistance 
remains a therapeutic challenge since often, resistant tumors are 

lacking of genetic mutations. In recent years, melanoma cells have 
been shown to develop a transient drug adaptation by epigenetic 
control mechanisms. This is the case of miRNAs. As recapitulated 
in this review, miRNAs deregulation appears to be one of the the 
major causes for the development of resistance to targeted therapies 
in melanoma. When expression of specific miRNAs is restored in 
melanomas, reversion of the resistant phenotype is observed both 
in in vitro and in in vitro, confirming the central role of miRNAs in 
sustaining melanoma resistance.  We believe that identification of 
pathways commonly deregulated by miRNAs in melanoma may lead 
to discover additional targets for therapeutic intervention.
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