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Abstract

Neoadjuvant chemotherapy has been used for breast cancer aiming at 
downgrading before surgery. In this article we propose a new quantitative analysis 
of the effects of the neoadjuvant therapy to obtain numerical, personalized, 
predictions on the shrinkage of the tumor size after the drug doses, by data 
assimilation of the individual patient. The algorithm has been validated by a 
sample of 37 patients with histological diagnosis of locally advanced primary 
breast carcinoma. The biopsy specimen, the initial tumor size and its reduction 
after each treatment were known for all patients. We find that: a) the measure 
of tumor size at the diagnosis and after the first dose permits to predict the size 
reduction for the follow up; b) the results are in agreement with our data sample, 
within 10% to 20%, for about 90% of the patients. The quantitative indications 
suggest the best time for surgery. The analysis is patient oriented, weakly model 
dependent and can be applied to other cancer phenotypes.
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Introduction
In the era of personalized oncology, mathematical models are a 

useful tool for a better understanding of the clinical effects of therapy.

The expected individual response to tumor therapies is generally 
based on a set of indices, defined with large quantitative variability. 
For example, for neoadjuvant chemotherapy for locally advanced 
breast cancer, aiming at downgrading before surgery, one usually 
considers the subtypes classification according to the expression 
of hormone receptors, Estrogen (ER) and Progesterone (PR), of 
the Human Epidermal Growth Factor Receptor 2 (HER2), the 
proliferation index ki67, the inizial tumor size and cellularity. Indeed, 
these clinical informations may have a prognosis value similar to that 
of multigene prognostic score [1].

The tumor progression during neoadjuvant chemotherapy [2,3], 
described by previous (and others) predictive factors, gives direct 
informations on the response to the therapy. By those analyses one 
gets semi-quantitative results following the standard classification: 
tumor size (median and range), T stage, Node stage, JACC stage, 
Lymphovascular invasion and other parameters.

A complementary strategy could be obtained by more quantitative 
informations, based on numerical approaches which, by single 
patient data assimilation, enhance the level of reliability of forecasts 
on the individual response.

Here we discuss an algorithm which, starting from the measure 
of the tumor size (radius) at the diagnosis and after the first dose, is 
able to predict, essentially without free parameters, the shrinkage of 
the tumor in the sequence of treatments. The proposed method is, 
by itself, patient oriented since the first size reduction and the initial 

cellularity take into account the specific initial condition.

The numerical predictions agree, within 10% to 20%, for more 
than 90% of the observed data of our sample of 37 patients.

Mathematical Formulation of the Diagnostic 
Algorithm

The breast tumor growth is described by the Gompertz law [8,9], 
solution of the differential equation

(1/ ) / ln( / ),N dN dt k N N∞= −  			   (1) 

where N is the cell number at time t, k is a constant and N∞ is the 
maximum number of cells (N∞=3.1×1012, according to ref. [9]).

The modification of the specific growth rate due to chemotherapy, 
during the time interval of a single treatment, is obtained by 
introducing a function c(t) in the previous equation [10-13], i.e.

(1/ ) / ln( / ) ( ),N dN dt k N N c t∞= − − 		  (2)

where c(t) has a negligible value after the interval, τ, between two 
timeline doses (τ=3 weeks). In other terms, chemoterapy effects 
start, periodically, at the beginning of each drug dose but almost 
completely decline after τ=3 weeks and, therefore, the function c(t) 
has a discontinuity on the days of treatment. By solving the previous 
eq. (2) (see appendix A) for homogeneous, spherical symmetric 
configurations, the size reduction after n doses is given by

1 0 1 0 0
ln( / ) ln( / ) exp( ),n

n m
R R R R mkτ+ =

= −∑ 		  (3)

where Rn+1 is the tumor radius after n+1 doses and, for each patient, 
the constant k is determined by the initial cellularity (the second term 
in the growth law in eq. (1) is the fraction of duplicating tumor cells).

In the final result, (eq. 3), the function c(t) does not explicitely 
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appear: its contribution is hidden in the (measured) size after the first 
dose R1(τ). In this respect, the approach is independent on the model 
describing the chemotherapy effects.

Validation
Validation: Patients and Therapy

Patients: This is a retrospective single centre study. Thirty-
seven women, aged 36 years to 78 years, with histolog- ically proven 
operable breast cancer were evaluated. All tumours were tested for 
Estrogen Receptor (ER), Progesterone Receptor (PgR), HER 2 and ki 
67. Thirty-six patients showed positivity for ER (range 2% to 90%) and 
PgR (range range 2% to 90%), HER2 3+ was present in 5/37 patients. 
Ki 67 was variable from 5 to 30%. Median diameter of tumour, 
defined by imaging, was 43, 5 mm (range 21 mm to 72 mm). Four 
patients had clinical positivity for axillary nodes. Pregnant women 
were ex-cluded. ECOG-PS of all patients was 0 or 1. All patients had 
adequate haematological, renal and haepatic function. All patients 
had a normal left ventricular ejection fraction (LVEF >50%).

Treatment
Neoadjuvant chemotherapy corresponds to the use of a systemic 

treatment applied before locore- gional treatment (surgery and /
or radiotherapy) in order to obtain a more frequent conservating 
surgery, downgrading the tumour size. Major drugs used for breast 
cancer patients included anthra- cyclines and taxanes [4]. Patients 
evaluated in our study received a median of five cycles (range 4 to 
6) of every -3-week (q3w) ET (epirubicin 80 mg/m2, paclitaxel 175 
mg/m2) [5,6]. Seven patients having HER2 3+ received integrate 
treatment with trastuzumab 6 mg/kg (8 mg/kg as loading dose). 
At the first follow up, after one chemotherapy administration, all 
patients had a tumour diameter reduction variable from 10% to 70%. 
At the second follow up, after second chemotherapy administration, 
all patients showed a further diameter reduction included between 
10% and 30%. At the third follow up, 14/37 patients continued to 
respond to treatment while the others showed a stable disease. At the 
fourth follow up, only one patient showed a futher tumour diameter 
reduction, the others continued to have a stabilization of disease and 
this was persisting at the remaining follow up [7].

Results and Discussion
The estimate of the tumor shrinkage in the dose sequence follows 

immediately from eq.(3) and from the determination of R1(τ). In 
Figure 1,2 the numerical results are compared with data for the second 
and the third treatment for all patients. The radius measurements had 
a 2% to 3% statistical error and the error propagation has been taken 
into account. For the second dose, the ratio between predictions and 
data is within the prudential interval 1 ± 0.1 (1 indicates a perfect 
agreement) for 31 patients of the entire sample (84%) and the 
agreement is within 1 ± 0.2 (Figure 1) for 34/37 (92%). For the third 
dose, in 29/37 and 32/37 cases the agreement is within the fiducial 1 ± 
0.1, 1 ± 0.2 intervals (Figure 2) respectively.

The results in Figure 2 have been obtained by assuming an almost 
constant tumor size for stable disease. On the other hand, one can 
ask if the diagnostic algorithm can give quantitative indications on 
the stability of the disease, i.e. if there is only a small reduction of the 
size after the treatment. If a further reduction less than 10% defines 
the stable disease condition, by applying the proposed algorithm, 

one gets that after the third treatment, 17/34 patients continued to 
respond to the therapy (i.e. the tumor size decreases more than 10%) 
to be compared with the clinical result of our sample, 14/37 cases 
(Figure 3).

In Figure 4 analogous results are reported for the fourth dose, 
giving 4/37 patients still responding to the treatment (1/37 is the 
clinical result). A homogeneous and spherical tumor is assumed 
in the previous sections, however these constraints can be easily 

Figure 1: Predictions to data ratio on the tumor radius after the second dose. 
The green (red) line indicates the 1 ± 0.1 (1 ± 0.2) interval.

Figure 2: Predictions to data ratio on the tumor radius after the third dose. 
The green (red) line indicates the 1 ± 0.1 (1 ± 0.2) interval.

Figure 3: Predictions of stable disease after the third dose. The red lines 
indicate the 1 ± 0.1 interval.
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removed and the diagnostic algorithm can be improved in many 
directions, taking into account, for example, different geometrical 
tumor shapes or inhomogeneities. The proposed approach can be 
applied in the clinical practice as follows. Initially the tumor size, 
R0 and the cellularity are evaluated by usual methods and, after the 
first dose, one measures the Radius (R1). By those input data, one 
then estimates the shrinkage of the tumor size due to the following 
treatments, i.e the values R2, R3,.., according to eq. (3). If the tumor 
shrinkage observed after the second dose (and before the third one) 
turns out to be in agreement with or larger than the estimated results, 
R2, then the predictions should be considered clinically reliable. In 
particular, a forecast of stable disease (defined by a reduction of 
the tumor radius less than 10%) suggests to stop the neo-adjuvant 
therapy and to proceed with surgery: there is a clear signal that other 
drug doses are not effective to further reduce the size [4,14-19].

A computational code can be easily implemented.

Conclusion
The good agreement between predictions and data for the 

treatment sequence suggests that the proposed method is a reliable 
starting point for a more quantitave description of neo-adjuvant 
chemotherapy effects and for an optimal management of patients, 
permitting to avoid unnecessary treatments and reducing economic 
costs. It should be further clarified that it has to be considered as 
a complementary tool to the standard chemotherapy response 
evaluation criteria in solid tumors and that it does not give any 
information on the overall survival probability, but a quantitative 
evaluation of the tumor size depletion.
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