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Abstract

NKT cells are a unique subset of cells, which have both T cell receptors and 
surface molecules specific to natural killer cells, recognize glycolipid antigens, 
and have either pro- or anti-inflammatory activity. Recent findings showed that 
NKT cells play a regulatory role in various diseases involving lipid dysfunction, 
including Nonalcoholic Fatty Liver Disease (NAFLD), and contribute to the 
pathogenesis of these diseases. NKT cells are involved in the process of 
inflammation, due to interactions of CD1d with lipid metabolic and microbiota-
derived factors, especially in NAFLD.
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[16,17]. Type 1 NKT cells are lipid antigen-specific lymphocytes 
that recognize glycolipid antigens presented on CD1d molecules 
and produce large amounts of T-helper (Th)1 cytokines, including 
interferon-gamma (IFN-γ) and tumor necrosis factor-alpha (TNF-α); 
Th2 cytokines, including Interleukins (IL)-4 and -10; and Th17 
cytokines, including IL-17 and IL-22 [7]. Furthermore, type 1 NKT 
cells can promote fibro genesis involving the Hedgehog (Hh) pathway 
and cytokines such as Osteopontin (OPN), leading to Hepatic Stellate 
Cell (HSC) activation [6]. In contrast, type 2 NKT cells, which are 
more abundant in humans than in mice, are thought to inhibit type 1 
NKT cell mediated liver injury [18]. 

Collectively, hepatic NKT cells have both proinflammatory and 
anti-inflammatory functions, and play an important regulatory role 
in the liver.

NKT cell-CD1d interactions in lipid metabolism 
dysfunction and systemic disorders

The liver has a central role in lipid metabolism, being involved 
in lipolysis, lipogenesis and fat storage. CD1d deficient mice fed 
a high-fat or chorine-deficient diet have been shown to develop 
hepatic steatosis and glucose intolerance, with glucose intolerance 
mainly induced by decreased hepatic sensitivity to insulin [19]. CD1d 
deficiency was also shown to aggravate metabolic parameters, such as 
glucose homeostasis and hepatic lipid metabolism [19]. Furthermore, 
CD1d deficient mice fed a high-fat diet were more susceptible to 
weight gain and fatty liver, along with increased adiposity and greater 
induction of inflammatory genes in the liver [20]. These findings 
suggest that NKT cells play a protective role in fat storage and onset 
of inflammation as the first stage of NAFLD. Hepatic NKT cells are 
rapidly activated by lipids in a CD1d-dependent fashion [21], and 
dietary fatty acids have been shown to modulate antigen presentation 
to hepatic NKT cells in a CD1d-dependent manner [22]. CD1d thus 
can also modulate insulin resistance and play an important role in 
lipid metabolism, leading to the induction of hepatic inflammation 
through antigen presentation to NKT cells. In contrast, CD1d 
function is regulated by Microsomal Triglyceride Transfer Protein 
(MTP) [23]. MTP deficiency is associated with loss of CD1d function, 
leading to impaired activation and reduced number and phenotypic 

Introduction
Nonalcoholic Fatty Liver Disease (NAFLD) is a leading cause of 

hepatic dysfunction, leading to cirrhosis and hepatocellular carcinoma 
[1,2]. Although NAFLD is caused in part by metabolic dysfunction, 
inflammatory cell infiltration in the livers of patients with NAFLD 
suggests that immunological mechanisms are also associated with its 
pathogenesis and progression. However, the contribution of immune 
responses to the pathogenesis of NAFLD remains unclear. Recently, 
cells of the innate immune system, especially Natural Killer T (NKT) 
cells, have been shown to contribute to NAFLD pathogenesis [3-6]. 
NKT cells recognize glycolipid antigens through CD1d, triggering 
either pro- or anti-inflammatory activities [7]. The liver contains 
a large number of NKT cells [8], which are considered a potential 
participant in metabolic abnormalities [9,10]. This review summarizes 
and discusses the role of hepatic NKT cells in the pathogenesis of 
NAFLD, a hepatic manifestation of a systemic metabolic disorder.

Role of Hepatic NKT Cells
The liver contains a large number of cells of the innate immune 

system, including Kupffer Cells (KCs) and NKT cells [8]. These cells 
may act to defend against constant exposure to a variety of toxins 
and antigens secreted by intestinal bacteria [8,11]. NKT cells are a 
unique subset of cells, which have both T Cell Receptor (TCR) and 
surface molecules specific to Natural Killer (NK) cells [12]. NKT cells 
constitute up to 30% of the intrahepatic lymphocytes in mice, and 
up to 10% in humans [13]. NKT cells can be divided into types 1 and 
2, depending on their interactions with CD1d, a non polymorphic 
glycolipid antigen-presenting molecule structurally related to the 
class I Major and Histocompatibility Complex (MHC). Type 1 NKT 
cells, which express an invariant TCR containing Vα14 in mice and 
Vα24 in humans, recognize glycolipid in conjunction with CD1d, 
whereas type 2 NKT cells express a diverse repertoire of TCRs [12]. 

CD1d is a molecule originally identified on thymocytes and 
antigen presenting cells [14,15]. In normal livers, CD1d is mainly 
expressed on KCs, but is also expressed on hepatocytes at a very 
low level. The expression of CD1d molecule on hepatocytes and bile 
duct epithelium is up regulated in liver diseases, including NAFLD 
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alterations of NKT cells [24,25]. MTP is mainly located in the 
Endoplasmic Reticulum (ER) and plays a central role in transfer 
of lipids, including phospholipids, triglycerides and cholesterol. 
In addition, the transmembrane protein ATP-binding cassette 
transporter G1 has been shown to play a role in the intracellular 
transport of cholesterol and to regulate NKT cell development and 
function [26]. Recently, the metabolic regulator Fnip1 was reported 
crucial for the development of type 1 NKT cells [27]. Fnip1 is an 
adaptor protein that interacts with AMPK, an energy-sensing kinase 
that stimulates mitochondrial biogenesis and autophagy in response 
to low energy conditions [28]. Thus NKT cells are involved in lipid 
metabolism and energy regulation and may be associated with 
systemic metabolic abnormalities. 

Recent findings have suggested that NKT cells are involved in 
systemic metabolic disorders. For example, NKT cells were found 
to be depleted in adipose tissue of obese individuals [29-31], while 
restoring NKT cells by adoptive transfer improved glucose handling 
and induced weight loss [31]. These findings suggest that NKT 
cells protect against diet-induced obesity and glucose intolerance 
through the regulation of cytokine production [10]. In addition, 
CD1d restricted NKT cells were shown to exacerbate atherosclerosis 
through the production of pro-inflammatory cytokines [32,33]. The 
development and function of NKT cells are thus regulated by various 
metabolic mechanisms, affecting metabolism itself and inducing 
various metabolic disorders Figure 1.

Innate immune cells, including NKT cells, can also be activated 
by microbiota derived antigens through Toll-Like Receptor (TLR) 
signaling without lipid antigen presentation [34-36]. Recently, 
however, commensally microbiota was shown to regulate the 
development and function of CD1d-restricted NKT cells through 
interactions with lipid antigens [37-39]. Gut microbiota derived 
lipids and metabolites, as well as cytokines and chemokines secreted 
in response to microbial recognition, may contribute to systemic 
NKT cell development [40]. Probiotic antigens may stimulate hepatic 
NKT cells and restore the number of hepatic NKT cells in mice fed a 
high-fat diet through interactions between lipid antigens and CD1d, 
but not through TLR4 signaling [41]. Moreover, NKT cell-mediated 
inflammation was recently shown to be elaborately regulated by 

interactions among CD1d, MTP and cytokines [42]. 

 Collectively, NKT cells are regulated, in a complicated manner, 
by lipid metabolic and gut-microbiota derived factors, resulting in the 
promotion of or protection against systemic metabolic inflammation. 

The contribution of hepatic NKT cells to the progression 
of NAFLD

The association between NKT cells and NAFLD has been widely 
analyzed in marine models. Depletion of NKT cells has been reported 
in ob/ob mice, which are leptin deficient and regarded as a model of 
obesity-related fatty liver [43,44]. In ob/ob mice, hepatic sensitization 
toward proinflammatory conditions is induced by endotoxins from 
the gut, by increased production of adipokines or by ER stress, 
as seen in human NAFLD [43,45,46]. Increases in adipokines 
production and ER stress have been found to activate the production 
of cytokines, especially IL-12, by hepatic KCs, leading to selective 
depletion of hepatic NKT cells. Hepatic NKT cells were also reported 
to be decreased in hepatosteatosis through KC- [47] and IL-12- [48] 
dependent mechanisms. In addition, administration of probiotics has 
been reported to improve high fat diet-induced hepatic steatosis and 
insulin resistance by increasing hepatic NKT cells through reductions 
in TNF-α production and Nuclear Factor (NF)-κB binding activity 
[49].

Adoptive transfer of NKT cells or treatment with glycolipid 
antigens has been shown to reduce hepatic steatosis and improve 
glucose intolerance in ob/ob mice [50,51]. Moreover, adrenergic 
activation by nor epinephrine has been reported to induce the 
expansion of NKT cell populations and improve hepatic steatosis 
[44]. In wild type mice fed a chorine-deficient or high fat diet, 
reductions in the numbers of hepatic NKT cells were accompanied 
by increased Th1 cytokine production [52,53]. In addition, NKT cells 
were decreased in the livers of patients with relatively mild NAFLD 
[48]. Collectively, these findings indicate that hepatic NKT cells 
are preferentially protective during the process of hepatic steatosis 
through various metabolic factors and cytokines, especially those 
produced by KCs and associated with gut-derived factors such as 
endotoxins. However, the role of hepatic NKT cells in the progression 
of NAFLD has not been clarified, because neither ob/ob mice nor 
mice fed a high-fat diet develop significant liver fibrosis.

During advanced stages of NAFLD, the number of hepatic NKT 
cells was increased in the liver. These increases were accompanied by 
increased activation of the Hh pathway and increased OPN production, 
leading to the promotion of liver fibrosis through activation of HSCs 
[4,6]. NKT cells have also been shown to contribute to the pathogenesis 
of NAFLD in humans. For example, fewer peripheral NKT cells were 
observed in NAFLD patients than in healthy controls, indicating that 
peripheral NKT cells were preferentially recruited to the liver [54]. 
In these patients, the number of NKT cells increased along with 
the progression of fibrosis. Furthermore, disease progression was 
accompanied by increased activation of antigen-presenting cells, 
such as KCs, and increased expression of CD1d [5]. The numbers of 
intrahepatic NKT cells were increased in the livers of patients with 
moderate to severe steatosis [55], as well as in the livers of patients 
with progressive NASH accompanied by Hh pathway activation and 
OPN production [4,6]. Thus, NKT cells are activated in the livers of 
patients with NAFLD, at least in those with advanced disease. These 

Figure 1: Schematic diagram showing the contribution of intrahepatic NKT 
cells to the progression of NAFLD. Interactions between NKT cells and CD1d 
may play important roles throughout NAFLD pathogenesis. ABCG1: ATP-
Binding Cassette Transporter G1; MTP: Microsomal Triglyceride Transporter 
Protein; Fnip1: Folliculin-interacting protein 1; OPN: Osteopontin.
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cells may contribute to disease progression by interactions with HSCs 
through the Hh pathway and OPN production. 

Results in humans differed somewhat from those in marine 
models, perhaps due to inter-species differences in adipokines 
profiles. Serum leptin concentrations have been reported increased in 
patients with NAFLD [56] but not in mouse models [43]. Moreover, 
administration of leptin to leptin deficient ob/ob mice has been found 
to increase the number of NKT cells [43]. Adipokines such as leptin 
may therefore play a role in regulating the numbers of intrahepatic 
NKT cells. Alternatively, investigations of simple steatosis are less 
complete in humans than in mice, because patients with simple 
steatosis are usually healthy, resulting in a lack of opportunity to 
analyze the disease. These differences may contribute to discrepancies 
between mice and humans on the contribution of NKT cells to 
NAFLD. Furthermore, a recent study in a marine model of NAFLD 
suggests that T cell I g and mucin domain (Tim)-3/Galectin (Gal)-9 
regulates the homeostasis of hepatic NKT cells [57]. Tim-3 positive 
NKT cells were found to proliferate in the livers of mice fed a high-fat 
diet, and Gal-9, which is secreted by KCs, was found to induce NKT 
cell apoptosis [57]. Hepatic NKT cells are thus regulated in various 
inflammatory conditions. Further investigations are needed to assess 
the mechanisms underlying the differences in the role of NKT cells in 
humans and mice.

Collectively, NKT cells are important in lipid metabolic disorders, 
including in the process of hepatic steatosis and in disease progression 
in NAFLD, through their interactions with gut-derived factors and 
HSCs.

Summary 
In summary, the numbers of NKT cells in the liver are decreased 

during early stages of NAFLD by activation of KCs through enhanced 
production of IL-12. At advanced stages of NAFLD in humans, 
however, the numbers of NKT cells are increased by up regulation 
of CD1d expression through increased production of adipokines or 
gut-derived microbiota. NKT cells may play a protective role during 
early stage NAFLD (i.e. simple steatosis) by modification of insulin 
resistance, but act as a progressive factor at an advanced stage (i.e. 
fibrosis) through increased production of proinflammatory cytokines 
and OPN and activation of NF-κB activation and Hh, leading to HSC 
activation. These processes are mainly dependent on interactions of 
NKT cells with the CD1d molecule in the liver. Changes in the degree 
or pattern of intrahepatic CD1d expression may therefore influence 
the numbers or functions of NKT cells. 

Conclusion 
NKT cells play a regulatory role in the pathogenesis of NAFLD, 

through interactions with CD1d on antigen-presenting cells. 
Manipulation of NKT cells may therefore have therapeutic potential.
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