
Citation: Tajiri K. CD1d-restricted Natural Killer T Cells in Metabolic Disorders. J Immun Res. 2014;1(2): 4.J Immun Res - Volume 1 Issue 2 - 2014
ISSN : 2471-0261 | www.austinpublishinggroup.com 
Tajiri. © All rights are reserved

Journal of Immune Research
Open Access

Abstract

Natural killer T (NKT) cells are a unique subset of innate immune cells, 
which express both T cell receptors (TCRs) and natural killer receptors. Among 
NKT cells, invariant NKT (iNKT) cells express in variant TCRs, recognize 
glycolipid antigens presented by CD1d, and produce both pro inflammatory and 
anti inflammatory cytokines. Recent findings showed that NKT cells, especially 
iNKT cells, play a regulatory role in metabolic abnormalities mainly through the 
interaction with CD1d. This review focused on NKT cells in obesity and their 
contribution to metabolic disorders, such as glucose intolerance, atherosclerosis, 
and non alcoholic fatty liver disease.
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predispose individuals to various metabolic diseases, such as obesity, 
atherosclerosis, diabetes, and nonalcoholic fatty liver disease [10].

In addition, iNKT cells are lipid antigen-specific lymphocytes 
that recognize glycolipid antigens presented on CD1d molecules 
and produce large amounts of T helper (Th)1 cytokines, including 
interferon-gamma (IFN-γ) and tumor necrosis factor-alpha (TNF-α); 
and Th2 cytokines, including interleukins (IL)-4 and IL-10 [4]. CD1d 
is a major histocompatibility complex (MHC) class 1-like molecule 
widely found in systemic organs [11, 12]. The function of glycolipid 
antigen presentation by CD1d has been shown to be regulated by 
MTP [13]. MTP deficiency is associated with impaired activation and 
reduced number and phenotypic alterations of NKT cells, resulting 
in resistance to immune pathogenesis associated with NKT cell-
mediated diseases [13 – 15]. The regulation of CD1d function by 
MTP occurred not only in apoB-secreting cells, such as hepatocytes 
and intestinal epithelial cells (IECs) [13], but also antigen presenting 
cells (APCs) [14, 15] and adipocyte [16]. The precise function of 
MTP in adipocytes or APCs is unknown. MTP is presumed to load 
the first endogenous lipid into the CD1d in APCs, where it was 
suggested to play a role in lipid droplet formation [16]. Moreover, 
NKT cell-mediated inflammation was recently shown to be regulated 
by interactions among CD1d, MTP, and cytokines [17]. Thus, MTP 
is an essential protein not only in lipid metabolism but also the lipid 
antigen presentation function of CD1d.

Furthermore, proteins involved in lipoprotein metabolism other 
than MTP, such as low-density lipoprotein receptor (LDLr) [18, 19], 
scavenger receptors [20], and cholesterol membrane transporters 
[21], are able to modulate NKT cells homeostasis and activation. 
LDLr-related protein has been shown to be expressed in macrophages 
and to be necessary for the production of Th2 cytokines not but Th1 
cytokines [19]. These data suggest that not only the modification of 
antigen presentation on CD1d by MTP but also lipid transfer and 
metabolism by lipid receptors may affect the functions of NKT cells. 

NKT Cells and Intestinal Microbiota
Innate immune cells, including NKT cells, can also be activated 

Introduction
Obesity has become a major problem around the world due to 

its contribution to morbidity and mortality. Obesity is one of the 
essential contributors to the development of metabolic diseases, 
such as hypertension, hyperlipidemia, atherosclerosis, and diabetes 
mellitus [1]. In addition, obesity is thought to be closely associated 
with systemic inflammation, which is an underlying contributor 
to many of these metabolic diseases [2, 3]. Natural killer T cells are 
innate immune cells, can acts either pro- or anti-inflammatory, 
and work as immune regulatory. Invariant natural killer T (iNKT) 
cells are a unique NKT cell population expressing invariant T cell 
receptors (TCRs) (Vα24 in humans and Vα14 in mice), recognize 
glycolipid antigens through CD1d, and can be either pro- or anti-
inflammatory [4]. The subsets of NKT cells are found preferentially 
in the liver [5] and adipose tissue [6, 7], which are essential sites of 
lipid metabolic regulation, and are considered essential participants 
in metabolic abnormalities. This review summarizes and discusses the 
role of CD1d-restricted NKT cells in obesity and their contribution to 
metabolic disorders. 

NKT Cells in Lipid Metabolism
Obesity develops as the result of increases in adipose tissues 

due to excessive energy intake. White adipose tissues is the primary 
site of energy storage, and white fat storage is associated with 
the metabolic complications of obesity [8]. On the other hand, 
microsomal triglyceride transfer protein (MTP) mainly located 
in the endoplasmic reticulum (ER) of hepatocytes and intestinal 
epithelial cells plays an essential role in the transfer of lipids, 
including phospholipids, triglycerides, and cholesterol. Dietary 
lipids are taken up by the enterocytes through various transporters 
as free fatty acids, monoacylglycerols and free cholesterol, transferred 
to the ER by MTP, and used for the synthesis of phospholipids, 
triacylglycerols and cholesterol esters [9]. These lipids are stored in 
the cytosol as lipid droplets. MTP is a key protein in the assembly and 
secretion of triglyceride-rich lipoproteins (apolipoprotein B, apoB) 
in the intestine and liver, and the abnormality of such lipoproteins 
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by intestinal microbiota-derived antigens through Toll-like receptor 
(TLR) signaling [22 – 24]. Recently, commensally microbiota was 
also shown to regulate the development and function of CD1d-
restricted NKT cells through interactions with lipid antigens [25-
27]. Intestinal microbiota-derived lipids and metabolites, as well 
as cytokines and chemokines produced in response to microbial 
recognition, may contribute to systemic NKT cell development [28]. 
The intestinal microbiota is different between healthy and obese 
subjects [29]. The relative proportion of the fecal microbiota are also 
altered in obese human subjects but change with weight loss [30]. 
Furthermore, transplantation of intestinal microbiota from obese 
mice resulted in greater adiposity in recipients than transplantation of 
microbiota from lean donors [31]. These differences in the intestinal 
microbiota associated with obesity may affect the function of NKT 
cells. Probiotic antigens may stimulate hepatic NKT cells and restore 
the number of hepatic NKT cells in mice fed a high-fat diet through 
interactions between lipid antigens and CD1d, but not through TLR4 
signaling [32]. Thus, NKT cells are regulated by not only glycolipid 
antigen presentation through CD1d but also intestinal microbiota-
derived factors. NKT cells may be associated with the development 
of systemic inflammation through metabolic modifications from lean 
to obese.

The Contribution of NKT Cells to Metabolic 
Abnormalities
a. Obesity

Recent studies have suggested that NKT cells are involved in 
systemic metabolic disorders. For example, iNKT cells were found 
to be depleted in the adipose tissue of obese individuals [6, 7, 33], 
while restoring iNKT cells by adoptive transfer induced weight loss 
[7]. This iNKT cell depletion was correlated with proinflammatory 
macro phage infiltration [7]. The numbers of iNKT cells could be 
restored after weight loss [7]. CD1d-deficient mice fed a high-fat diet 
have been shown to aggravate metabolic parameters, such as glucose 
homeostasis and hepatic lipid metabolism [34]. Furthermore, CD1d-
deficient mice fed a high-fat diet were more susceptible to weight gain, 
along with increased adiposity and greater induction of inflammatory 
gene expression in the liver and white adipose tissues [35]. These 
findings suggest that CD1d-restricted NKT cells protect against diet-
induced obesity through the regulation of cytokine production [36].

On the other hand, obesity-induced inflammation is known to 
induce various metabolic disorders [37]. CD1d is expressed at high 
levels in adipocytes and CD1d-expressing adipocytes regulate iNKT 
cells. The iNKT cell population and CD1d expression level were 
shown to be reduced in the adipose tissues of obese mice and humans, 
and iNKT cell-deficient mice became more obese and exhibited 
increased adipose tissue inflammation at an early stage of obesity [38]. 
Furthermore, lack of iNKT cells was shown to affect lipid metabolism 
in the adipose tissue of diet-induced obese mice [39]. Jα18-deficent 
mice, which lack iNKT cells, were resistant to diet-induced obesity 
and showed increased lipogenesis counter balanced by elevated lipase 
expansion and basal lipolysis [39].  

Adoptive transfer of iNKT cells and α-galactosylceramide 
treatment were shown to protect against weight gain and adipocyte 
hypertrophy and to reverse obesity-associated metabolic disorders 
[7]. Thus, iNKT cells are associated with obesity and obesity-induced 

metabolic disorders, and may be a potential therapeutic target for 
obesity-induced metabolic disorders. 

b. Glucose intolerance
CD1d-deficient mice, which lack iNKT cells, were shown to 

worsen glucose homeostasis when they had been fed a high-fat diet 
[34, 35], while adoptive transfer of iNKT cells improved glucose 
intolerance [7]. Adoptive transfer of iNKT cells or treatment with 
glycolipid antigens has been shown to improve glucose intolerance in 
ob/ob mice, which are deficient in leptin and are regarded as a model 
for obesity [40, 41]. CD1d-restricted iNKT cells in adipose tissue 
were shown to play an essential role in preventing insulin resistance 
[42]. NKT cell function was directly modulated by adipocytes, which 
acted as lipid antigen presenting cells in a CD1d-dependent manner 
[42]. These findings suggest that CD1d-restricted iNKT cells protect 
against glucose intolerance [36].

c. Atherosclerosis
Atherosclerosis is one of the major disorders due to metabolic 

abnormalities, which leads to induce various serious complications. 
CD1d-restricted iNKT cells were shown to exacerbate atherosclerosis 
through the production of proinflammatory cytokines [43, 44]. 
Atherosclerogenic ApoE-deficient mice crossed with CD1d-deficient 
mice lacking iNKT cells were shown to have a 25% reduction in 
atherosclerosis lesion size [43]. Furthermore, ApoE-deficient mice 
treated with α-galactosylceramide, a glycolipid that activates iNKT 
cells, showed a 50% increase in atherosclerosis with inflammatory 
Th1 and Th2 cytokines [43]. Increasing the complement of iNKT cells 
exacerbated aortic atherosclerosis and inflammation in obesogenic 
diet-fed LDLr-deficient mice, which are susceptible to dyslipidemia, 
hyperinsulinemia, insulin resistance, and hepatic triglyceride 
accumulation [45]. Furthermore, α-galactosylceramide treatment of 
ApoE-deficient mice with established atherosclerosis lesions had no 
significant effect on lesion size, but decreased their collagen content 
in atherosclerosis [46]. Thus, CD1d-restricted iNKT cells play a role 
in the formation of atherosclerosis through proinflammatory factors.

d. Nonalcoholic fatty liver disease (NAFLD)
CD1d-deficient mice, which lack iNKT cells, fed a high-fat diet 

showed increased susceptibility to fatty liver, along with increased 
adiposity and greater induction of inflammatory genes in the liver 
compared to normal controls [35]. Depletion of NKT cells has 
also been reported in ob/ob mice, which are regarded as a model 
of obesity-related fatty liver, through hepatic sensitization toward 
proinflammatory conditions induced by endotoxins from the gut, 
by increased production of adipokines, or by ER stress [47 – 50]. In 
wild-type mice fed a choline-deficient or high-fat diet, which are also 
regarded as a model of NAFLD, reductions in the numbers of hepatic 
NKT cells were accompanied by increased Th1 cytokine production 
[51, 52]. Hepatic NKT cells were also reported to be decreased 
in hepatosteatosis through KC- [53] and IL-12 [54]-dependent 
mechanisms. In addition, administration of probiotics has been 
reported to improve high-fat diet-induced hepatic steatosis by 
increasing hepatic NKT cells through reductions in TNF-α production 
and nuclear factor-κB binding activity [55].

Adoptive transfer of NKT cells or treatment with glycolipid 
antigens has been shown to reduce hepatic steatosis in ob/ob mice 
[40, 41]. Moreover, adrenergic activation by norepinephrine has 
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been reported to induce the expansion of NKT cell populations 
and improve hepatic steatosis [48]. In humans, NKT cell numbers 
were decreased in the livers of patients with relatively mild NAFLD 
[54]. Taken together, these findings indicate that hepatic NKT cells 
are preferentially protective during the process of hepatic steatosis 
through various metabolic factors and cytokines, especially those 
produced by KCs and associated with gut-derived factors, such as 
endotoxin.

During advanced stages of NAFLD, the number of hepatic NKT 
cells was increased in the liver. These increases were accompanied by 
increased activation of the hedgehog (Hh) pathway and increased 
osteopontin production, leading to promotion of liver fibrosis 
through activation of hepatic stellate cells [56, 57]. In human NAFLD, 
the number of hepatic NKT cells increases with disease progression 
[58, 59]. Furthermore, disease progression is accompanied by 
increased activation of antigen presenting cells, such as KCs, and 
increased expression of CD1d [58]. Thus, CD1d-restricted NKT cells 
are activated in the livers of patients with NAFLD, at least in those 
with advanced disease. 

Summary and Conclusion
CD1d-restricted NKT cells may play an essential role in the 

interaction between metabolism and the immune system to regulate 
energy balance through factors derived from the gut (Figure 1). 
Antigen presentation of CD1d through the interaction of lipid-
derived factors and sensitization of NKT cells from gut-derived 
factors through macrophages may have important roles in metabolic 
disorders. The modulation of NKT cells may be a therapeutic target 
in various metabolic diseases.
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