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Abstract

The pathogenesis of pulmonary fibrosis remains unknown. However, 
bacterial infections in patients with idiopathic pulmonary fibrosis are a serious 
complication that exacerbate the disease. Serum levels of Surfactant Protein D 
(SPD) are known to be elevated in patients with pulmonary fibrosis, but the role 
of SPD in pulmonary fibrosis complicated with bacterial infection is unknown. 
Lipopolysaccharide upregulates Interleukin (IL)-12p40 expression and IL-12p40 
promotes Interferon Gamma (IFNγ) production to induce the T helper cell 1 
(Th1) immune response via Signal Transducers and Activators of Transcription 
4 (STAT4) signaling. A lack of IFNγ shifts the immune response from Th1 to Th2. 
IL-4 is a profibrotic Th2 cytokine that activates fibroblasts.

Granulocyte-macrophage colony-stimulating factor induced by IL-1 and 
TNFα during the Th1 immune response upregulates Signal Regulatory Protein 
α (SIRPα) expression. Interferon Regulatory Factor 1 (IRF1) functions as the 
promoter activator of IL-12p40 after stimulation with LPS. SPD is a ligand for 
SIRPα, and SPD/SIRPα ligation activates the Mitogen-Activated Protein Kinase 
(MAPK)/Extracellular Signal-Related Kinase (ERK) signal cascade; ERK 
downregulates Interferon Regulatory Factor 1 (IRF1) expression. 

Consequently, the SPD/SIRPα signaling pathway decreases IL-12p40 
production in human macrophages after exposure to LPS. IL-12p40 is a key 
immunoregulatory factor in bacterial infection that promotes production of IFNγ 
by T lymphocytes. Pulmonary fibroblasts are activated by IL-4/IL-4R ligation. IFNγ 
induces IRF1 via STAT1 signaling, and IRF1 acts as the promoter repressor of 
IL-4 to attenuate its production. IFNγ also inhibits IL-4R expression. A reduction 
in IFNγ induced by IL-12p40 deficiency via the SPD/SIRPα signaling pathway 
enhances IL-4 and IL-4R expression to augment the activity of fibroblasts. This 
finding indicates that pulmonary fibrosis is exacerbated by SPD/SIRPα signaling 
during bacterial infection.

Keywords: Signal regulatory protein α; Surfactant protein D; ERK; ROCK; 
IL-12p40

activation of fibroblasts by Toll-Like Receptor 4 (TLR4) [5,6]. Unclear 
is how fibroblasts and macrophages interact in the innate immune 
response and facilitate pulmonary fibrosis [7]. 

Serum levels of Surfactant Protein D (SPD) were reported to be 
a biomarker of Idiopathic Pulmonary Fibrosis (IPD) because SPD 
levels are significantly higher in patients with IPD than in controls [8]. 
Furthermore, patients with high levels of SPD have shorter survival 
times than those with lower levels [9]. This finding led us to the 
question whether SPD might play a role in exacerbating pulmonary 
fibrosis complicated with bacterial infection.

The alveolar cells are composed of alveolar type I and type II cells; 
the latter type secrete SPD, which is involved in maintaining surface 
tension of the pulmonary alveolus. 

Pulmonary fibrosis elevates levels of SPD by destroying the 
alveolar basement membrane [10] and causes hyperplasia of 
alveolar type II cells [11]. However, the question why the severity of 
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Introduction
The etiology of pulmonary fibrosis, a multifactorial disease, is 

unknown. However, viral and bacterial infections may influence 
disease initiation, exacerbation, and outcome, and bacteria are known 
to trigger the progression and acute exacerbation of pulmonary 
fibrosis [1-4]. Innate immunity triggers pulmonary fibrosis via 
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pulmonary fibrosis is associated with elevated SPD levels remains 
unanswered, and the relation between SPD and fibroblast activation 
is largely unknown.

SPD binds to Signal Regulatory Protein α (SIRPα), a 
transmembrane protein in macrophages [12]. SIRPα expression is 
enhanced in Granulocyte-Macrophage Colony-Stimulating Factor 
(GM-CSF)-dependent M1 macrophage [13]. A proinflammatory 
cytokine such as IL-1 or TNFα induces pathological inflammation 
during bacterial infection [14] and promotes GM-CSF production 
[15]. Cluster of differentiation 47 (CD47) is a ligand for SIRPα 
[16] and is an anti-phagocytic surface marker on blood cells [17]. 
Indeed, CD47/SIRPα ligation signals, “do not eat me” to phagocytic 
macrophages [18]. However, the SPD/SIRPα signaling pathway may 
play other roles in pulmonary fibrosis. In this review, we focus on the 
molecular function and role of SIRPα in macrophages in pulmonary 
fibrosis complicated with bacterial infection.

Pulmonary fibrosis is closely associated with fibroblast activation 
and excess accumulation of extracellular matrix. Studies reported that 
IL-12p40 levels were elevated in patients with idiopathic pulmonary 
fibrosis compared with controls [19]. However, the pivotal role of 
IL-12p40 in the exacerbation of pulmonary fibrosis remains unclear. 
IL-4 is known to be a fibrotic Th2 cytokine that induces fibroblast 
activation and proliferation [20], and IL-4 signaling is required for 
binding to the IL-4 receptor α (IL-4Rα) [21], which is expressed on 
human fibroblasts [22]. Fibroblasts are activated by IL-4/IL-4Rα via 
the signal transducers and activators of the transcription 6 (STAT6) 
signaling pathway [23,24]. IL-4-mediated profibrotic function is 
influenced by IFNγ, which inhibits IL-4 [25] and IL-4Rα expression 
[26] to attenuate collagen generation by fibroblasts [27], exerting an 
anti-fibrotic effect. In contrast, low levels of IFNγ facilitate pulmonary 
fibrosis [28]. IL-12p40 promotes IFNγ production by T lymphocytes 
[29], so a lack of IL-12p40 inhibits proliferation of CD4+ T cells and 
enhances Th2 cytokine responses [30,31]. Therefore, we also review 
the role of the IL-12p40/IFNγ axis in exacerbation of pulmonary 
fibrosis complicated with bacterial infection.

Materials and Methods
Ethics statement 

The Board of Ethics in Kumamoto Health Science University 
approved to obtain blood from volunteers in conformity with the 
declaration of Helsinki after obtaining their informed consent (No. 
17046).

Chemicals and reagents
Human recombinant GM-CSF was obtained from Tocris 

Bioscience, Bristol, UK. Recombinant human surfactant protein D 
(R&D Systems, Minneapolis, MN), SB203580 (Wako, Kanagawa, 
Japan), PD98059 (Wako), BIRB796 (Axon Medchem, Groningen, 
Netherlands), PDTC (BioVision, Mountain View, CA), TMB-8 
(Sigma-Aldrich, Ontario, Canada) and Y-27632 (Wako, Osaka, 
Japan) were obtained to investigate the intracellular signaling 
pathways involved in SIRPα or IL-12p40 production. Escherichia coli 
0111:B4 Lipopolysaccharide (LPS) was purchased from 

Sigma-Aldrich (St. Louis, MO).

Induction of GM-CSF-dependent human macrophages
Peripheral Blood Mononuclear Cells (PBMCs) was obtained from 

heparinized blood samples. PBMCs collected using Lymphoprep 
gradients (Axis-Shield PoC As, Norway) were suspended with 
Lymphocyte medium for thawing (BBLYMPH1, Zen-Bio, Inc. 
Research Triangle Park, NC). The monocytes were stained with 
CD14-phycoerythrin (PE) mouse anti-human monoclonal antibody 
(Life technologies, Staley Road Grand Island, NY). The purity of 
monocytes was determined by Fluorescence Activated Cell Sorting 
(FACS), showing 87.4 + 1.5 % (mean + SE, n=120, 86.3-89.9). 
GM-CSF dependent macrophages were obtained after monocytes 
stimulated with recombinant human GM-CSF on days 1, 3, and 6 of 
culture. Macrophages (on day 9 of culture) were utilized as GM-CSF 
dependent macrophages in this study.

Preparation of whole-cell lysates from cell culture
Human macrophages (on day 9 of culture) were stimulated 

with HNE (5µM) or SP (5μM) for 6 hours and culture medium was 
carefully removed. Mammalian protein extraction reagent (100μL; 
M-PER, Thermo Fisher Scientific Inc., Waltham, MA) was pipetted 
into each well, after which the culture plate was gently shaken for 5 
minutes. 

The lysate was collected and transferred to a microcentrifuge tube 
for centrifugation at 12,000g for 10 minutes. The supernatants were 
used as a whole-cell lysates in this study. 

ELISA for IL-12p40
Macrophages were pretreated with SPD (5µM) and stimulated 

by LPS (10ng) for 6 hours. IL-12p40 levels in whole-cell lysates were 
measured by ELISA (Abcam, Cambridge, MA). The sensitivity of 
ELISA for IL-12p40 was 20pg/mL.

RNA interferences with ERK-1, ERK-2, SIRPα, p22phox, 
β-arrestin 2, EGFR, SHP siRNA

Transfection of macrophages with siRNAs for ERK-1 (50nM), 
ERK-2 (50nM), SIRPα/γ/δ (50nM), p22phox (50nM), β-arrestin 
2 (50nM), EGFR (50nM), SHP (50nM) or control siRNA-A (Santa 
Cruz Biotechnology, Santa Cruz, CA) was performed day 7-8 of cell 
culture using Lipofectamine (Life Technologies, Carlsbad, CA). IL-
12p40 protein levels in whole-cell lysates or cell-culture supernatants 
were measured by ELISA.

Western blotting for SIRPα
Adherent macrophages (on 3 day of culture) pretreated with 

PD98059 (An inhibitor of MAPK/MEK: 1µM), TMB-8 (A calcium 
antagonist: 10µM), SB203580 (a p38 MAPK inhibitor: 10µM) or 
PDTC (A NF-κB inhibitor: 10µM) were stimulated with GM-CSF 
(10ng) for 6 hours. The levels of SIRPα in whole-cell lysates were 
detected by western blotting. The proteins in the whole-cell lysates 
were separated by sodium dodecyl sulfate-polyacrylamide gel 
electrophoresis (ATTO Corporation, Tokyo, Japan) and transferred 
onto polyvinylidene fluoride membranes (Thermo Fisher Scientific) 
for immunoblotting. The membranes were incubated with 0.2 × 103 
mg/L mouse anti-human SIRPα (Santa Cruz Biotechnology, Santa 
Cruz, CA) for 1 hour at room temperature, washed, and incubated 
with alkaline phosphatase-conjugated anti-mouse IgG (Santa 
Cruz Biotechnology) diluted to 1:5000. Then the membranes were 
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incubated with chemiluminescence enhancer (Immun-Star, Bio-
Rad Laboratories, Hercules, CA) and exposed to XAR film (Kodak, 
Rochester, NY). After the film was developed, bands were quantified 
with a densitometer and ImageQuant software (Molecular Dynamics, 
Sunnydale, CA). Glyceraldehyde 3-Phosphate Dehydrogenase 
(GAPDH) was also detected by western blotting with an anti-GAPDH 
antibody (Santa Cruz Biotechnology) and SIRPα protein levels were 
normalized to GAPDH. 

Statistical analysis
Results are expressed as the mean (SE). Differences between 

two groups were analyzed using a t-test for independent means, 
and differences between more than two groups were compared by 
analysis of variance. When the F ratio was found to be significant, 
mean values were compared using a post hoc Bonferroni test. P<0.05 
was considered to indicate significance in all analyses.

Results and Discussion
Signal regulatory protein α expression is induced by GM-
CSF

The Signal Regulatory Protein (SIRP) family, which consists of 
type I transmembrane glycoproteins, is composed of SIRPα, SIRPβ, 
and SIRPγ. The expression of SIRPα is restricted to myeloid cells, 
including monocytes, macrophages, and dendritic cells, and SIRPα 
promotes anti-inflammatory responses [32]. Indeed, studies reported 
that knockdown of SIRPα enhanced the susceptibility for endotoxin 
shock [33]. We were interested in this inhibitory mechanism of SIRPα 
signaling and investigated SIRPα expression in macrophages induced 
by GM-CSF. The GM-CSF receptor (GM-CSFR) is composed of α 
and β subunits and stimulates the Ras signaling pathway [34]. Ras 
is activated by proto-oncogene tyrosine-protein kinase Src (Src)
[35], which also starts to phosphorylate adaptor proteins such as 
Src Homology region 2 domain-containing Phosphatase 2 (SHP-

2), Growth Factor Receptor-Bound Protein-2 (Grb-2), and Src 
Homology and Collagen Homology (SHC). Ras interacts with an 
effector, the Raf serine/threonine kinase family, leading to activation 
of the Ras/Raf/MEK/ERK signaling pathway [36]. We found that 
PD98059, an inhibitor of mitogen-activated protein kinase kinase 
(MAPKK/MEK), inhibited SIRPα expression by GM-CSF and that 
PDTC, an NF-κB inhibitor and antioxidant, partially blunted it 
(Figure 1). GM-CSF stimulates SIRPα production via the Ras/Raf/
MEK/ERK signaling pathway. Figure 2 depicts the cellular signal 
transduction of SIRPα expression via GM-CSF/GM-CSFR ligation.

Fibroblast migration and activation
Fibroblasts and myofibroblasts are found in patients with 

pulmonary fibrosis [37]. Repeated lung epithelial injury leads to 
tissue repair or abnormal fibrotic tissue formation, and fibroblasts 
migrate to inflamed areas and differentiate into myofibroblasts. 

Fibroblasts from patients with idiopathic pulmonary fibrosis 
express CC Chemokine Receptor 7 (CCR7), one ligand of which is 
CC chemokine ligand 21 (CCL21). CCL21/CCR7 signaling promotes 
the migration and proliferation of fibroblasts [38]. IL-4 upregulates 
the expression of CCR7 [39]. After lung injury, levels of Hyaluronan 
(HA) also are elevated in the airway [40]. HA is a ligand for CD44 
[41, 42], which is expressed in fibroblasts [43]. This HA/CD44 signal 
induces activation of the potent profibrotic growth factor, TGFβ, in 
pulmonary fibrosis [44]. Additionally, studies reported that IL-4R-
positive cells have high levels of CD44 expression [45]. IFNγ is known 
to reduce IL-4 [25] and IL-4R expression [26]. It also suppresses 
Th2 cell development to attenuate IL-4 production and promotes 
Interferon Regulatory Factor 1 (IRF1) expression via STAT1 
signaling. Studies found that IRF1 acts as the promotor repressor 
of IL-4, inhibiting its expression [46,47]. IRF1 also is known to be 
induced by IL-12 via the STAT4 signaling pathway [48]. IFN-γ is an 
inducer of the Th1 immune response and is reported to be upregulated 

Figure 1: Effect of PD98059, TMB-8, SB203580, and PDTC on signal regulatory protein α expression by human macrophages Adherent macrophages (on day 3 of 
culture) were pretreated with PD98059 (1μM), TMB-8 (10μM), SB203580 (10μM), or PDTC (10μM) and stimulated with granulocyte-macrophage colony-stimulating 
factor (GM-CSF; 10ng) for 6 hours. Then, whole-cell lysates of macrophages and the positive control were analyzed by Western blotting (a). The density of each 
signal regulatory protein α band was normalized to that of glyceraldehyde 3-phosphate dehydrogenase (b). Samples were tested in triplicate, and three separate 
experiments were performed. a) Representative Western blot. b) Densitometry data were obtained from the cells of three volunteers in each experiment (mean ± 
SE).
*P <0.05; **P <0.01; NS: Not Significant.
Abbreviation: GM-CSF: Granulocyte Macrophage-Colony-Stimulating Factor.
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by IL-12 [49]. Figure 3 depicts the inhibitory mechanism of IL-4 
expression by IFNγ. The IL-12p40/IFNγ axis may be important for 
IL-14 expression. Indeed, IL-12 deficiency decreases production of 
IFNγ [50]. This finding indicates that IL-12 regulates IL-4 and IL-4R 
expression via the IL-12p40/IFNγ signaling pathway.

Inhibitory effect of the SIRPα signal on IL-12p40 expression
As mentioned above, the etiology of pulmonary fibrosis remains 

unclear [51]. Although viral infection is reported to be an important 
factor for the development of the disease [52], the role of bacterial 
infection in lung fibrosis has not been extensively researched. 

However, the presence of bacteria in bronchoalveolar lavage 
from patients with idiopathic pulmonary fibrosis [53] and the 

exacerbation of pulmonary fibrosis after pneumonia suggest that 
bacterial infection may be involved in exacerbating the disease [54]. 
Interestingly, septrin (co-trimoxazole), an antibiotic, was reported to 
reduce disease progression of pulmonary fibrosis [55]. 

TLR4 is expressed on fibroblasts [56], and fibroblast activation by 
TLR4 signaling enhances TGFβ response and facilitates fibrosis [57]. 
Bacterial infection induces IL-1 and TNFα production to promote 
GM-CSF expression, and GM-CSF facilitates SIRPα expression on 
macrophages. Therefore, in this review we discuss the effects of LPS 
exposure on SIRPα in human macrophages and how SIRPα may 
exacerbate pulmonary fibrosis. Studies showed that SPD binds to 
SIRPα to inhibit inflammatory responses [58]. 

Figure 2: Mechanism of signal regulatory protein α expression in human macrophages by granulocyte-macrophage colony-stimulating factor After stimulation 
of human macrophages with Granulocyte Macrophage-Colony-Stimulating Factor (GM-CSF), Src homology region 2 domain-containing phosphatase 2 (SHP-
2) activates Src and interacts with Growth Factor Receptor-Bound protein-2 (Grb-2). Formation of the SHC/Grb-2 complex promotes the activation of Ras. 
Furthermore, signal regulatory protein α (SIRPα) production is mediated by the Ras/Raf/MEK-extracellular signal-regulated kinase (ERK) signaling pathway. 
PD98059 (an ERK inhibitor) blunts SIRPα expression after stimulation with GM-CSF.
Abbreviations: ERK: Extracellular Signal-Regulated Kinase; GM-CSF: Granulocyte-Macrophage Colony-Stimulating Factor; ß GM-CSFR: ß subunit of the GM-CSF 
Receptor; Grb-2: Growth factor Receptor-Bound protein-2; MAPK: Mitogen-Activated Protein Kinase; MAPKK: Mitogen-Activated Protein Kinase Kinase; MAPKKK: 
Mitogen-Activated Protein Kinase Kinase Kinase; SHP-2: Src Homology Region 2 domain-containing Phosphatase 2; SIRPα: Signal Regulatory Protein α.

Figure 3: Inhibitory effect of Interleukin (IL)-4 expression by the IL-12p40/interferon gamma axis IL-12/IL-12R ligation activates the signal transducers and activators 
of transcription 4 (STAT4) signal to induce interferon gamma (IFNγ) production. IFNγ promotes Interferon Regulatory Factor 1 (IRF1) expression. IRF1 acts as the 
promotor repressor of IL-4 to inhibit its production.
Abbreviations: IFN: Interferon γ; IL: Interleukin; IRF1: Interferon Regulatory Factor; STAT 4: Signal Transducers and Activators of Transcription 4.
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Previously, we reported that SPD/SIRPα signaling reduced IL-
12p40 production after exposure of human macrophages to LPS 
[59]. Figure 4 shows that treatment with SPD decreases IL-12p40 
production in response to LPS in a dose-dependent manner, and 
RNA silencing for SIRPα/β/γ significantly blunts this response. 

SPD/SIRPα-mediated cellular signaling is known to be involved 
in the inhibition of IL-12p40 expression because attenuation of 
IL-12p40 levels after LPS stimulation by SPD was significantly 
reduced by Y-27632 (a Rho-associated coiled-coil forming kinase 
(ROCK) inhibitor) but not by RNA silencing of SHP. Moreover, the 

Figure 4: Inhibitory effect of surfactant protein D on IL-12p40 production in macrophages exposed to LPS Granulocyte-Macrophage Colony-Stimulating Factor 
(GM-CSF)-stimulated macrophages (day 9 of culture) were pretreated with surfactant protein D (SPD; 0, 1, 2, 5, or 10μM) for 30 minutes and then stimulated with 
lipopolysaccharide (10ng) for 6 hours. IL-12p40 protein was measured in whole-cell lysates by enzyme-linked immunosorbent assay. Data were obtained from the 
cells of three donors and represent the mean ± SE.
*P <0.05; **P <0.01; NS: Not Significant.
Abbreviations: LPS: Lipopolysaccharide; SPD: Surfactant Protein D.

Figure 5: Inhibitory effect of ERK1/2 small interfering RNA on the restoration of IL-12p40 production in human macrophages by Y-27632 Granulocyte-Macrophage 
Colony-Stimulating Factor (GM-CSF)-stimulated macrophages (day 9 of culture) transfected with extracellular signal-regulated kinase (ERK)1/2 small interfering 
RNA (siRNA) were pretreated with Y-27632 (300nM) and subsequently treated with surfactant protein D (SPD; 5μM). Then, the cells were stimulated with 
lipopolysaccharide (10ng) for 6 hours, and the IL-12p40 protein levels in whole-cell lysates were determined by Enzyme-Linked Immunosorbent Assay (ELISA). 
The IL-12p40 protein level in whole-cell lysates was determined by ELISA after stimulation of macrophages with SPD (5μM), ERK-1 siRNA, ERK-2 siRNA, or 
Y-27632 (300nM). Data were obtained from the cells of three individuals and represent the mean ± SE.
*P <0.05; **P <0.01; NS: Not Significant.
Abbreviations: ERK: Extracellular Signal-Regulated Kinase; LPS: Lipopolysaccharide; SPD: Surfactant Protein D.

Figure 6: Effect of SB203580 or BIRB796 on interleukin (IL)-12p40 production by surfactant protein D-pretreated macrophages after exposure to lipopolysaccharide 
Granulocyte-Macrophage Colony-Stimulating Factor (GM-CSF)-stimulated macrophages (day 9 of culture) were pretreated with SB203580 (10μM or 20μM) or 
BIRB796 (10μM or 20μM) and were subsequently treated with Surfactant Protein D (SPD; 5μM). Then, cells were stimulated with lipopolysaccharide (10ng) for 
6 hours, and IL-12p40 protein levels were determined in whole-cell lysates by enzyme-linked immunosorbent assay. Data were obtained from the cells of three 
individuals and represent the mean ± SE.
**P <0.01; NS: Not Significant.
Abbreviations: LPS: Lipopolysaccharide; SPD: Surfactant Protein D.
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restoration of IL-12p40 production in macrophages transfected with 
ERK1/2 siRNA was blunted by Y-27632 (Figure 5). Therefore, SPD 
inhibits the production of IL-12p40 after stimulation with LPS via 
the SIRPα/ROCK/ERK signaling pathway. Indeed, ERK is known to 
suppress IL-12p40 production mediated by LPS [60], and IL-12p40 
expression after exposure to LPS is known to be regulated by ERK 
or p38MAPK. Neither SB203580 (A p38α/β MAPK inhibitor) nor 
BIRB796 (A p38δ/γ MAPK inhibitor) has an inhibitory effect on IL-
12p40 expression by SPD/SIRPα signaling (Figure 6). ERK1/2 and 
p38MAPK are activated by MEK and MKK, respectively. In addition, 
SPD/SIRPα signaling is reported to inhibit p38MAPK activation 
[61]. SIRPα activation recruits downstream signals of Src Homology 
region 2 domain-containing Phosphatase-1 (SHP-1) and SHP-2 [62]. 
However, RNA silencing for SHP-2 does not blunt the reduction of 
IL-12p40 expression in macrophages stimulated with LPS after the 
treatment of SPD (Figure 7). 

SHP-2 interacts with EGFR [63,64] and positively regulates the 
oxidative burst of macrophages [65]. β-arrestin 2 is known to recruit 

SHP-1 and SHP-2 [66]. Therefore, we investigated the role of EGFR, 
p22phox, and β-arrestin 2 in reducing IL-12p40 expression by SPD/
SIRPα signaling after exposure to LPS. However, RNA silencing for 
β-arrestin 2, p22phox, or EGFR did not blunt the inhibitory effect of 
SP-D on IL-12p40 production by macrophages in response to LPS 
(Figure 8).

How does the SPD/SIRPα signal affect IL-12p40 expression 
after LPS stimulation?

IRF1 is reported to bind to the promoter region of IL-12p40 
and to induce transcription of IL-12p40 [67]. IRF1 may have other 
roles in IL-12p40 expression. For example, studies reported that IL-
12p40 production was inhibited in IRF1-deficient macrophages after 
stimulation with LPS [68]. Tumor Necrosis Factor (TNF) Receptor-
Associated Factor-6 (TRAF6), an adaptor molecule of TLR4, interacts 
and phosphorylates STAT1 [69,70], and STAT1 was reported to 
promote activation of IRF1 [71]. IRF1 acts as the promoter activator 
of IL-12p40. Most importantly, IRF1 is known to bind to RelA (p65) 
and be required for NF-κB activation [72,73]. We found that SPD 

Figure 7: Effect of Y-27632 on interleukin (IL)-12p40 production by surfactant protein D-pretreated macrophages after exposure to lipopolysaccharide Granulocyte-
Macrophage Colony-Stimulating Factor (GM-CSF)-stimulated macrophages (day 9 of culture) were pretreated with Y-27632 (0, 50, 100, 200, or 300nM) and 
subsequently treated with surfactant protein D (SPD; 5μM). Then, cells were stimulated with lipopolysaccharide (LPS; 10ng) for 6 hours, and IL-12p40 protein 
levels were determined in whole-cell lysates by Enzyme-Linked Immunosorbent Assay (ELISA). In addition, macrophages transfected with SHP small interfering 
RNA were stimulated with LPS (10ng) for 6 hours, and IL-12p40 was determined by ELISA. Data were obtained from the cells of three individuals and represent 
the mean ± SE.
*P <0.05; **P <0.01; NS: Not Significant.
Abbreviations: LPS: Lipopolysaccharide; siRNA: small interfering RNA; SHP siRNA: Src Homology 2-containing Phosphotyrosine Phosphatase; SPD: Surfactant 
Protein D.

Figure 8: Effect of small interfering RNA for signal regulatory protein α, β-arrestin2, p22phox, or EGFR on interleukin (IL)-12p40 production by surfactant protein 
D-pretreated macrophages after exposure to lipopolysaccharide Granulocyte-macrophage colony-stimulating factor (GM-CSF)-stimulated macrophages (day 9 of 
culture) were treated with surfactant protein D (5μM) and stimulated with lipopolysaccharide (10ng) for 6 hours. Then, the IL-12p40 level in whole-cell lysates was 
determined by enzyme-linked immunosorbent assay. Data were obtained from the cells of three individuals and represent the mean ± SE.
*P <0.05; **P <0.01; NS: Not Significant.
Abbreviations: EGFR: Epidermal Growth Factor Receptor; LPS: Lipopolysaccharide; siRNA: small interfering RNA; SIRPα: Signal Regulatory Protein α; SPD: 
Surfactant Protein D.
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inhibited IL-12p40 production in macrophages stimulated with 
LPS. GM-CSF also upregulated SIRPα expression via the Ras/Raf/
MEK/ERK signaling pathway. Indeed, PD98059 (an ERK inhibitor) 
inhibited SIRPα expression. ERK signals affect IRF1 expression: 
Interestingly, MEK signals are known to reduce IRF1 expression 
[74]. MAPK ERK is phosphorylated by MAPKK/MEK. This finding 
indicates that ERK signaling activated by SIRPα influences the reduced 
expression of IRF1. Figure 9 depicts the proposed mechanism of the 
inhibitory effect of SPD/SIRPα signaling on IL-12p40 production in 
human macrophages after exposure to LPS.

The pivotal role of ROCK for SPD/SIRPα signaling pathway 
through ERK

Several factors influence ERK signaling, including ROCK [75]. 
RhoA is activated by SIRPα signaling [76,77]), and ROCK is an 
effector of RhoA. Rho/ROCK induces activation of MAPKK kinase 
(MEKK)-1 to activate ERK signaling [78,79], and ERK is known to 
repress IRF1 transcription factor. Most importantly, ROCK also is 
reported to be required for nuclear translocation of ERK [80,81]. 
ERK is known to repress inflammatory gene expression by regulating 
IκB kinase activity [82]. Inhibition of IL-12p40 production after LPS 
stimulation by SPD was restored by the ROCK inhibitor Y-27632, but 
this effect of Y-27632 was blunted by RNA interference for ERK1/2 
(Figure 5). This finding indicates that SPD/SIRPα attenuates IL-
12p40 expression by IRF1 and that this attenuation is regulated by 

Figure 9: Proposed mechanism of the inhibitory effect of the surfactant protein D/signal regulatory protein α signaling pathway on interleukin (IL)-12p40 production 
by macrophages stimulated with lipopolysaccharide After stimulation of human macrophages with lipopolysaccharide, Interferon Regulatory Factor 1 (IRF1) 
is upregulated via the tumor necrosis factor receptor-associated factor-6/signal transducers and activators of transcription 1 signaling pathway and binds to 
the promoter region of IL-12p40. Surfactant protein D/signal regulatory protein α ligation induces signal transduction of Ras/Raf/MEK/ERK. ERK reduces IRF1 
expression, leading to inhibition of IL-12p40 production.
Abbreviations: ERK: Extracellular Signal-Regulated Kinase; IRF1: Interferon Regulatory Factor; GM-CSF: Granulocyte-Macrophage Colony-Stimulating Factor; 
ß GM-CSFR: ß subunit of the GM-CSF Receptor; Grb-2: Growth Factor Receptor-Bound Protein-2; IKK: IκB Kinase; IRAK: Interleukin-1 Receptor-Associated 
Kinase; LPS: Lipopolysaccharide; MAPK: Mitogen-Activated Protein Kinase; MAPKK: Mitogen-Activated Protein Kinase Kinase; MAPKKK: Mitogen-Activated 
Protein Kinase Kinase Kinase; MEK: Mitogen-Activated Protein Kinase Kinase; Raf: Rapidly Accelerated Fibrosarcoma; Ras-GTPase; SHP-1 or -2: Src Homology 
Region 2 Domain-Containing Phosphatase 1 or 2; SIRPα: Signal Regulatory Protein α; SPD: Surfactant Protein D; STAT1: Signal Transducers And Activators Of 
Transcription 1; TLR4: Toll-Like Receptor 4; TRAF6: Tumor Necrosis Factor (TNF) Receptor-Associated Factor-6; TRIF: TIR-Domain-Containing Adapter-Inducing 
IFNβ.

the ROCK/ERK signaling pathway.

Conclusion
Serum levels of SPD are elevated in patients with pulmonary 

fibrosis. Here, we reviewed the role of SPD in pulmonary fibrosis 
complicated with bacterial infection. Proinflammatory cytokines 
such as IL-1 and TNFα are secreted during bacterial infection to 
promote GM-CSF production, and GM-CSF upregulates SIRPα. SPD, 
a ligand for SIRPα, reduces IL-12p40 expression. Although IL-12p40 
is a potent inducer of IFNγ, the lack of IL-12p40 induced by SPD/
SIRPα signaling reduces IFNγ production, leading to a reduction of 
IRF1, the promoter activator of IL-12p40. Reduced IFNγ levels also 
shift the immune response from Th1 to Th2, which increases IL-4 
production and activates fibroblasts. Although IFNγ reduces IL-4R 
expression, decreased IFNγ levels increase IL-4R expression, resulting 
in enhanced activity of fibroblasts through the IL-4/IL-4R signaling 
pathway. Consequently, SPD/SIRPα signaling leads to the activation 
of fibroblasts in pulmonary fibrosis complicated with bacterial 
infection. We propose that SIRPα has a possible exacerbating effect 
on pulmonary fibrosis after bacterial infection.

Highlights
•	 SIRPα is upregulated by GM-CSF via the Ras/Raf/MEK/

ERK signaling pathway.
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•	 ERK induced by the SPD/SIRPα signal represses IRF1.

•	 IRF1 acts as the promoter activator of IL-12p40. 

•	 IL-12p40 enhances IFNγ production, but lack of IL-12p40 
decreases it.

•	 IFNγ induces IRF1 via the STAT1 signal, and IRF1 
functions as the promoter repressor of IL-4.

•	 Elevated levels of IL-4 induced by paucity of IFNγ enhance 
the activity of fibroblasts.
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