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Abstract

Many computational and mathematic models have been developed to 
understand human preventive behaviors against infectious diseases and 
suggest intervention policies. A majority of these models have paid attention 
to behavioral changes between epidemics, but those occurring within a single 
epidemic should not be ignored. This article proposes a disease-behavior model 
with a focus on short-term human decision making process during an epidemic 
and the resultant adoption of preventive behaviors. Based on relative-agreement 
rules, this model explicitly represents discrete individuals, the social interactions 
between individuals, their responses to disease risks, and most importantly, the 
individualized decision making process. The simulation results suggest that a 
seasonal influenza epidemic can be controlled by voluntary preventive behavior 
if above 60% of the population initially held positive attitude toward the adoption. 
This threshold percentage would elevate as the transmissibility of influenza 
increases, but can also be reduced by improving the efficacy of preventive 
behaviors or by encouraging communications between individuals. A number of 
preventive strategies are recommended to deal with the current circumstances 
that new vaccines are often insufficient to combat emerging infectious diseases.

Keywords: Preventive behavior; Infectious diseases; Agent-based 
modeling; Relative agreement rules; Social network

This is not always the truth, because many individuals may be aware 
of disease risks during a single epidemic and then react before the 
epidemic ends. Little attention so far has been paid to modeling 
human voluntary preventive behaviors within an epidemic.  

This article aims to address this knowledge gap by developing a 
disease-behavior model with relative agreement decision rules. The 
model focuses on short-term human decision making processes 
within an epidemic and the resultant adoption of preventive behavior. 
Using this model, a sensitivity analysis is conducted to explore 
potential strategies that could promote preventive behaviors among 
the population and help control epidemics. The remainder of this 
article describes the construction of disease-behavior model and its 
parameterization, discusses simulation outcomes, and the resulting 
implications. 

Methodology Design
Conceptual model and assumptions

From a modeling perspective, both the transmission of diseases 
and the adoption of preventive behaviors can be conceptualized as 
diffusion processes. The disease spreads from individual to individual 
through their physical contacts, while the preventive behaviors 
disperse through the “word-of-mouth” discussion [11-13]. These 
two diffusion processes run simultaneously and interact with one 
another. Individuals being infected may adopt preventive behaviors 
themselves, and further motivate others to adopt. Conversely, the 
adoption of preventive behaviors limits the transmission of influenza 

Introduction
Recent outbreaks of emerging communicable diseases, such 

as the new H1N1 flu in 2009 and Ebola in 2014, have attracted 
substantial interests in understanding human responsive behavior 
against diseases, from which practical intervention policies could 
be suggested [1,2]. Since effective vaccines require sufficient time to 
develop and manufacture, the best human response at early stage of 
epidemics is to adopt preventive behaviors, for example, wearing 
facemasks, performing hand hygiene, taking antiviral drugs, and 
avoiding close contact with people with symptoms of active infections 
[3]. Knowledge on the drivers and decision processes toward adopting 
these preventive behaviors is critical to early control and prevention 
of outbreaks. 

Many computational and mathematical models have been 
developed to deepen our knowledge on this topic [4-6]. Due to 
complexity of human-disease systems, challenges in modeling 
concern not only how to model human responses to the presence 
of epidemics, but also how these responses affect the spread of the 
disease itself [7-9]. To date, only a small number of models have been 
developed to account for interactive mechanisms between diseases 
and human responsive behavior, with a majority of them being 
focused on vaccinations[4, 5, 10]. These existing models take a long-
term view on seasonal disease outbreaks over years, and assume that 
individuals only make decision to adopt preventive behavior before 
each epidemic season, while doing nothing during an epidemic. 
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by protecting individuals from infection. The disease-behavior 
diffusion model is established based on six assumptions:

1) Individuals in a population are linked together by a social 
network. Individuals have contact with one another through the 
network.

2) Every individual has a property of infection status, which can 
be susceptible, latent, infectious or recovered [14,15]. The contact 
between individuals through the social network triggers the change 
of infection status, which follows the natural history of the disease.

3) Each individual also holds an attitude toward the preventive 
behaviors, which can be positive, neutral, or negative. The initial 
attitude is a mixed product of the individual’s knowledge, experiences, 
perceived barriers and benefits [16]. The attitude may evolve over 
time due to interpersonal influences, and finally determine whether 
to adopt preventive behaviors or not.

4) During a disease epidemic, individuals discuss with their 
contacts about the adoption issue, which in turn influences their 
attitude with one another. The discussion between individuals drives 
the diffusion of preventive behaviors throughout the population. 

5) The adoption of preventive behaviors can reduce the 
transmissibility of a disease to different degrees, depending on 
infection status of individuals. 

6) The manifestation of disease symptoms will change an 
individual’s attitude positively toward the adoption of preventive 
behaviors. 

To build a working simulation model, each of these six 
assumptions is formulated and then programmed. Following steps 
illustrate the formulation design in  a hypothetic population. 

Step 1: Modeling the social network (Assumption 1): A 
hypothetic social network of 5,000 individuals is modeled for 
simulation. Each individual is assumed to have contact with 12 
other individuals, including two family members and ten workplace 
colleagues. This total number of contacts (links) per individual is based 
on the average size of a typical American family and workplace[17,18]. 
Individuals are mixed into a ‘small-world’ network structure [19], i.e., 
an individual can be connected to any other individual through a few 
links (a short path length), and meanwhile the direct contacts of this 
individual are also directly linked with one another (a high degree 
of interconnection). The short path length facilitates the long-range 
diffusion, while the high degree of interconnection supports the local 
diffusion. Following the classic algorithm proposed by Watts [20], 
this “small-world” structure is generated by assigning a majority of 
links (95%) between individuals based on proximity, while the other 
links (5%) randomly among individuals. 

Step 2: Modeling the diffusion of diseases (Assumption 2): 
Influenza is taken as a typical example of infectious diseases, and 
its diffusion is simulated by varying the infection status of every 
individual over time. As shown in Figure 1, once having contact with 
an infectious individual, a susceptible individual may be infected with 
the influenza virus and enter into the latent status. The likelihood of 
infection is specified as a probability referred to as the transmission 
rate (r), based on which the Monte-Carlo method can be applied to 
simulate the transmission or not. The infection starts a latent period, 

during which influenza develops internally and cannot be transmitted. 
The end of latent period moves the individual into an infectious 
status and enables the individual to transmit influenza virus to other 
susceptible contacts. During the infectious period, the individual 
may develop symptoms of influenza or remain asymptomatic. At the 
end of the infectious period, the individual recovers, and develops 
immunity in the remaining period of an epidemic. The diffusion of 
influenza can be then implemented by tracking susceptible contacts 
of infectious individuals every simulation day and emulating the 
transmission between them with the Monte-Carlo method. 

Step 3: Modeling the diffusion of preventive behaviors 
(Assumption 3&4): In behavioral science, the diffusion of a behavior 
in a population can be modeled as gradual variations of  individuals’ 
attitudes toward adoption [13,21,22]. Following steps depict the 
formulation of individuals’ attitude on adoption, their decision 
process, and the interchange of individuals’ attitudes through 
discussion. 

Step 3.1: Decision process toward adoption: The human 
decision making is formulated as a staged process, following the 
concept of Precaution Adoption Process Model (PAPM) [23,24]. 
As shown in Figure 2, an individual starts with an Unaware status 
of the preventive behaviors. At some time point, this individual may 
be Informed about the behaviors through discussion with contacts. 
Once informed, this individual develops an initial attitude (positive, 
neutral or negative) toward the adoption. If the initial attitude is 
positive or neutral, this individual is willing to further discuss this 
issue with others (Engaged). Otherwise, this individual will disregard 
this issue (staying at Informed). After engaging in discussion for a 
certain period (the discussion period tc), this individual moves into 
a decision status (Deciding about Adoption). The decision making 
finally leads to one of three results according to the current attitude: 
Adopting if holding a positive attitude, or Not to Adopt if holding a 
negative attitude, or return to the Engaged stage for further discussion 
if holding a neutral attitude. At the Adopting stage, if an individual 
can keep the positive attitude for a certain period (the maintenance 

Figure 1: The infection events and status in the natural history of influenza.

Figure 2: The staged process of an individual to adopt the preventive 
behaviors. The squares and diamonds represent adoption stages. The 
comments on arrows describe the conditions for transition.
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period tm), then the adoption is Maintained; otherwise, the individual 
will give up the adoption during the maintenance period.

Individuals’ attitude toward adoption is formulated by 
introducing a concept of attitude segment, as an individual property, 
from previous work by Deffuant et al. [25]. The attitude segment of 
individual i is defined as a mathematic range within ai ± uai, where ai 
is the attitude value and uai is the associated uncertainty. The attitude 
value (ai) is a negative or positive real number, initially drawn from 
a normal distribution N (m, σ). The associated uncertainty (uai) is a 
real number that represents a mix between individual i’s uncertainty, 
conviction, and openness to the attitudes of others. For simplicity, it 
is initialized with a same value for every individual. 

Turning back to Figure 2, if ai - uai>0, individual i is positive 
toward adoption. If ai + uai <0, individual i has a negative attitude. 
Otherwise (ai + uai ≥0 and ai - uai≤0), individual i is neutral [25]. 
Individuals’ attitude values vary over time by discussions with social 
contacts, and as a result, the staged decision process is propelled.

Step 3.2: Discussion between individuals: Corresponding to 
Assumption 4, once an individual has contact with another, there 
is a probability γ that they will discuss the adoption issue. During 
the discussion, an individual’s attitude will be influenced by others 
following rules of “relative agreement” [25]. These rules assume that: 
1) the attitude segment with low uncertainty (e.g., strong minded 
people) are more influential than that with high uncertainty; 2) the 
more the overlap between attitude segments, the more likely that the 
individuals may influence one another; 3) when the overlap between 
two attitude segments is too small, there is no influence. These 
“relative agreement rules” are formulated as follows:

Given that individual i has an attitude segment ai ±uai, the influence 
of individual i on individual j, when they discuss, is determined by 
their agreement, i.e., the overlap section (hij) of the two individuals’ 
attitude segments minus the non-overlap section (2uoi-hij) (Equation 
1 and illustration in Figure 3).  

Agreement= hij-(2uai-hij)=2(hij- uai)

Where, hij=|min(ai+ uai,aj+uaj)-max(ai-uai,aj-uaj)|

Then, the relative agreement between i and j is calculated by the 
agreement divided by the total range of i’s attitude segment 2uai:

      (2)

If hij> ui (the relative agreement>0), then the modifications of aj 
and uaj by the interaction with i are updated as Equation 3:

                         (3)

By varying individuals’ attitudes according to their social network 
and these formulated interaction rules, the model emulates the 
decision making process (Figure 2) for every individual. As a result, 
the variation of individuals’ adoption status collectively leads to the 
diffusion of preventive behaviors over the population.

Step 4: Interactions between the two diffusion processes 
(Assumption 5&6):

Previous three steps have formulated the two diffusion processes 

independently, and the last step is to model their interactions. For 
model simplicity, the interactions are formulated into two factors 
corresponding to Assumption 5 and 6, namely, the efficacy of 
preventive behaviors (p) and the change of attitude by infection (q). 
Specifically: 

1) If Individual i is susceptible, the adoption of preventive 
behaviors can reduce the probability of being infected by p%; 

2) If Individual i is in the latent status, the adoption can 
reduce the probability of becoming infectious by p%/2;

3) If Individual i is already infectious, the adoption may 
reduce the probability of infecting others by p%/2;  

4) Once Individual i is symptomatic, the attitude value ai 
will increase by q% of the uncertainty uai, i.e., ai +q%· uai; Further, if 
Individual j has discussed with i, the attitude value will increase by 
q%/2 of associated uncertainty uaj, i.e., aj +q%· uaj/2;

Upon the completion of the four steps described above, a disease-
behavior (dual) diffusion model is established. This model is then 
parameterized for simulation and sensitivity analysis.

Model parameterization for simulation
Based on a pilot study and the literature, Table 1 specifies a 

default setting for model parameters during the simulation [24-
28]. This default setting produces a population with approximately 
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Figure 3: The influence of individual i on individual j based on the “relative 
agreement rules” proposed by Deffuant et al [25].

Components             Parameters Values

Social Network

Population size 5000

Average number of contacts of an individual 12

Average path length 5.1

Clustering coefficient 0.7

Influenza

Transmission rate (r) 0.1

Latent period (tl) 1 day

Infectious period (ti) 4 days

Preventive Behaviors

Mean of initial attitude distribution (m) 0
Standard deviation of initial attitude distribution 

(σ) 0.1

Initial uncertainty of individuals’ attitude (ua) 0.05

Probability of discussion (γ) 0.25

Discussion period (tc) 1 day

Maintenance period (tm) 1 day

Interaction
Efficacy of preventive behaviors on infection 

(p) 60%

Change of attitude by infection (q) 50%

Table 1: The default disease-behavior scenario for model simulation.
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equal proportions of individuals with positive, neutral and negative 
attitude at the start of the simulation, hereinafter referred to as 
initially positive, neutral and negative individuals, respectively. The 
transmissibility of influenza is set to be close to a moderate seasonal 
influenza [28, 29].

All individuals are initially assigned susceptible and unaware 
of the adoption. At the first day of simulation, one individual is 
randomly selected to become infectious to initialize the diffusion 
of influenza. Meanwhile, another individual is randomly selected to 
become informed to initialize the diffusion of preventive behaviors. 
The simulation of both diffusion processes takes a daily time step over 
120 days.

Scenario and sensitivity analysis
As model outcomes, the diffusion of influenza is described by an 

epidemic curve that depicts the percent of infection in the population 
through the course of the epidemic. The diffusion of preventive 
behaviors is described by an adoption curve that depicts the percent 
of adoption in the population during the diffusion. In addition, 
the evolution of individuals’ attitudes is also displayed by plotting 
respective proportions of positive, neutral and negative individuals in 
the population during the diffusion. 

This research first compares how one of the two processes diffuses 
with and without the other. In other words, the dual-diffusion 
scenario (from the default parameter settings) is compared to an 
adoption-only scenario (no disease epidemic: transmission rate r =0), 
and to an influenza-only scenario (no spread of preventive behavior: 
the probability of discussion γ =0). For each of the three scenarios, 
the average value of 100 realizations is used to construct the epidemic 
curve, adoption curve, and the attitude evolution curves. 

Furthermore, a sensitivity analysis is conducted to explore 
effective strategies to control influenza epidemics. In particular, this 
research is interested in the minimum proportion of initially positive 
individuals required to control an epidemic by voluntary preventive 
behavior. The proportion of initially positive individuals in the 
population, denoted as β0, is varied from 0 to 100% by increasing the 
mean of initial attitude distribution (m). The parameter β0 is paired 
with four other parameters respectively in the sensitivity analysis, 
including: 1) the transmission rate of influenza r (from 0 to 0.2); 2) 
the efficacy of preventive behaviors on infection p (from 0 to 100%); 
3) the infection-related change in attitude q (from 0 to 100%); and 4) 

the probability of discussion γ (from 0 to 1). Each pair of parameters is 
given alternative values while holding all other parameters as default 
(Table 1). For a given pair of parameter values, 100 model realizations 
are performed to estimate the percent of infection in the population. 
The epidemic is assumed to be controlled if the resultant percent of 
infection is less than 10% of the population.  

Simulation Results and Discussion
Scenario analysis

Figure 4 compares the diffusion of preventive behaviors with 
and without an influenza epidemic. For the adoption-only scenario 
(influenza transmission rate r=0), the adoption curve starts with an 
abrupt rise during the first 20 days, and then increases slowly till 
the last day (the red dashed line in Figure 4a). Approximately 50% 
of the population would adopt the preventive behaviors. The early 
abrupt rise can be attributed to the initially positive individuals, 
who are informed by discussion and quickly adopt the preventive 
behaviors. The later slow increase could be explained as a number 
of initially neutral individuals changing their attitudes to positive 
after discussions, and finally adopting the preventive behaviors (the 
red curve with circles in Figure 4b). Compared to the adoption-only 
scenario, adding the diffusion of influenza causes a marked increase 
in adopters (the blue solid line in Figure 4a). The total number of 
adopters has the same rise as the adoption-only scenario before 
Day 20, but remains a fast increase from Day 20 to 60. This later 
fast increase is because a number of negative individuals change to 
positive attitudes due to infection (the blue curve with diamonds in 
Figure 4b). More individuals, therefore, finally adopt the preventive 
behaviors and the percent of adoption reaches a higher level (about 
70% of the population). 

Figure 5 illustrates the difference between the spread of influenza 
with and without the diffusion of preventive behaviors. For the 
influenza-only scenario (the probability of discussion γ =0), influenza 
can infect nearly entire population within 30 days (the red dash line 
in Figure 5a). Due to the lack of discussion, individuals are unaware 
of the preventive behavior, and no one starts the decision making 
process toward adoption (the flat red curves in Figure 5b). Once the 
diffusion of preventive behaviors is added (γ =0.25), the transmission 
of influenza can be significantly slowed with only half of the 
population being infected (the blue solid line in Figure 5a). Through 
discussion, an increasing number of individuals are gradually aware 

(a) Adoption curves              (b) Evolution of attitudes 

Figure 4: The comparison of the dual-diffusion scenario (blue) to the adoption-
only scenario (red). (a) The adoption curves depict the percent of adoption in 
the population over time. The solid line represents the dual-diffusion scenario 
(transmission rate r=0.1), while the dash line represents the adoption-only 
scenario with r=0. (b) The evolution of the proportion of positive (square), 
neutral (circle) and negative (diamond) individuals in the population over time.

(a) Epidemic curves            (b) Evolution of attitudes 

Figure 5: The comparison of the dual-diffusion scenario (blue) to the influenza-
only scenario (Red). The epidemic curves depict the percent of infection in 
the population over time. The solid line represents the dual-diffusion scenario 
(discussion probability γ =0.25), while the dash line represents the influenza-
only scenario with γ =0. (b) The evolution of the proportion of positive (square), 
neutral (circle) and negative (diamond) individuals in the population over time. 
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of the adoption issue, change their attitude to positive, and decide 
to adopt preventive behaviors, which reduce the transmissibility of 
influenza (See the blue curves in Figure 5b). 

Sensitivity analysis
The model is further used to explore the minimum value of β0 (the 

proportion of initially positive individuals in the population) needed 
to control influenza epidemic by voluntary preventive behavior. 
Figure 6a displays the percent of infection as as a function of β0 and 
the transmission rate (r). For any given value of r, there exists a critical 
value for β0 to reduce the percent of infection under 10% (the cyan 
colored area in Figure 6a). The greater the transmission rate r, the 
higher the threshold value for β0 will be required. For a moderately 
transmissible influenza (r =0.1), e.g., the seasonal influenza, the 
epidemic can be controlled if at least 60% of the population initially 
holds positive attitude (β0 ≥ 60%). For a highly transmissible strain of 
influenza (r =0.2), e.g., the 1918 pandemic strain [30], the threshold 
value for β0 needs be raised to nearly 95% of the population to control 
the epidemic. 

Figure 6b shows how the preventive efficacy (p) interacts with the 
β0 to control epidemics. Given the value of p around 60%, e.g., the 
efficacy of taking anti-viral drugs [28], β0 must be greater than 70% 
of the population to achieve a successful control. Once the value of p 
can be improved to 90% (for example, anti-viral drugs + facemask), 
a critical value of 50% for β0 is sufficient for a successful control. A 
higher preventive efficacy can inhibit the transmission of influenza 
more effectively, and hence a small number of initially positive 
individuals are required. These results suggest an incentive program 
that offers individuals free facemasks or hand sanitizers if they buy 
anti-viral drugs in pharmacies. This multi-prevention strategy could 
be practical and effective in influenza control, because it not only 

improves the efficacy of prevention, but also motivates the adoption 
of preventive behaviors.

Another parameter that impacts epidemics is the probability 
of discussion between individuals (γ). Figure 6c shows that a 10% 
chance of discussion between individuals (γ=0.1) is the minimum 
requirement to control an influenza epidemic. Given that all 
individuals are initially unaware of the adoption issue, they need 
to be gradually informed to start their adoption processes. With a 
10% chance of discussion, β0 must be greater than 90% (almost all 
individuals) to control the epidemics. If the probability of discussion 
can be raised to 0.5, the β0 only needs to reach 50% for a successful 
control. A higher probability of discussion means that individuals 
can be informed faster and make earlier decision toward adoption. 
These early adopters could timely limit the transmission of influenza 
and thus reduces the incidence of infection. This result suggests the 
importance of encouraging individuals to discuss the adoption issue. 
A propagation strategy can be designed to attract public attention 
onto the adoption issue through mass media, such as television, 
newspapers, and the internet.

Interestingly, Figure 6d indicates that the change of attitude by 
infection (q) is independent of the infection rate. Given any fixed β0, 
the percent of infection remain almost constant as q increases from 
0 to 100%. This implies that even if an individual can make a ‘big-
turn’ in attitude after infection and decide to adopt immediately, the 
influenza epidemic still cannot be controlled. The possible reason is 
that both the influenza and preventive behaviors diffuse on the same 
social network. When an individual is infected, the contacts of this 
individual might also be infected at the same time or even before. 
Although they may change their attitudes and adopt preventive 
behaviors, their infection status cannot change. The result could 

 (a)       (b)  

 
(c)         (d) 

Figure 6: The percent of infection (represented by color ramp) as a function of the proportion of initially positive individuals (β0) and a) the transmission rate (r),  
b) the efficacy of preventive behaviors (p),  c) the probability of discussion (γ), and d) the change of attitude by infection (q). The full cyan area indicates that the 
percent of infection is under 10%, and the influenza epidemic is controlled. 
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be more realistic if the infection network for disease diffusion and 
the communication network for behavior diffusion are modeled 
separately.  

Still in its infancy, the presented model is so far a crude 
approximation of reality. The indirect contacts between individuals 
through telecommunications and the internet are not considered, 
which may play an important role in the diffusion of preventive 
behaviors. The role of mass media in informing people has not been 
modeled in this research, but can be taken into account in the future 
by setting a broadcasting rate among the population. Furthermore, 
the uncertainties in some model parameters may also affect the 
model results, such as the structure of social network and the initial 
distribution of individuals’ attitude. The compensation for these 
limitations can improve the model accuracy, but also increase the 
complexity. It is argued that the goal of modeling is not to look for 
exactly what may happen, but rather for differences in outcomes 
between different scenarios [31]. In this sense, the proposed model 
framework could be a valuable prototype to guide the design of more 
realistic working models.

Conclusion
In this paper, an original simulation model has been proposed to 

couple the disease transmission and voluntary preventive behaviors 
against the disease. Based on the relative-agreement rules, this 
model explicitly represents discrete individuals, the social network 
between individuals, their responses to disease risks, and most 
importantly, their decision making processes. This model allows 
disease transmission to alter individuals’ decision making, which in 
turn affects disease transmission. The comparison study show that 
any model that fails to account for this interaction mechanism could 
not accurately portray a realistic epidemic. 

 Using the proposed model, this research also explored the 
lower threshold of initially positive individuals to control influenza 
epidemics solely by voluntary preventive behavior. For disease 
control, it is not practical to have all individuals holding positive 
attitude toward adoption at the beginning of an epidemic. Many 
individuals may be reluctant to adopt preventive behaviors because of 
their knowledge, prior experience, incomes, occupations, and other 
factors [32,33]. The sensitivity analysis estimates that about 60% of the 
population with an initial positive attitude is necessary to successfully 
control a moderately transmissible influenza. This threshold would 
elevate as the transmissibility of influenza increases, but can also 
be reduced by improving the efficacy of preventive behaviors or by 
encouraging discussions between individuals. These results suggest a 
number of effective strategies to control influenza epidemics, such as 
the combination sale of anti-viral drugs and facemasks and the use of 
mass media to propagate adoption issues. 
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