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Abstract

We study the role of internal fluctuations and the thermodynamic limit in the 
population dynamics of deer mice, and describe the evolution of infected mice 
with Sin Nombre virus. This virus is the main cause of Hantavirus Pulmonary 
Syndrome (HPS) among humans in North America. In this way, we try to support 
those features observed in phenomenological models as the critical carrying 
capacity, Kc and the delay between population of mice and infected ones. 
We introduce the underlying processes, in particular the delayed maturation 
process, and derive from the master equation the mean field description for 
the thermodynamic limit. It matches the phenomenological model. Then we 
compare the model with the numerical Gillespie algorithm for the long-term 
phenomenon related to El Niño southern oscillations. Internal fluctuations are 
able to drive the infection to extinction, mostly in the scenario of El Niño, for 
both the transient and the steady state. We also study analitically the steady 
state. On the other hand, the thermodynamic limit plays the opposite role, and 
supports the infection. In general, we see how those features observed in the 
phenomenological description are where recovered both in the scenario related 
to La Niña and in the thermodynamic limit.

Introduction
The population dynamics of deer mouse is central to the study 

of Hantavirus Pulmonary Syndrome (HPS), and is the subject of 
intense research since in 1993 deer mouse was identified as the host 
of SinNombre virus, which causes HPS [1].

Consequently, HPS cases are related to population of infected 
mice. We study this relation in terms of the basic epidemiological 
theory that suggests a link between HPS cases and contagion events. 
In particular humans get infected mainly through the contact with 
mice, or the inhalation of an aerosolized mixture of virus, feces and 
dried urine particles. Nowadays the mortality rate due to HPS is 40% 
[2].

At the same time contagion events are correlated with available 
resources. In the long term phenomena they depend on the climate 
variations and in particular on El Niño southern oscillations.

On the other side, the virus remains inside the mouse without 
causing its death and propagating among mice horizontally, i.e., from 
mouse to mouse, mainly through direct contact [2]. In this direction 
several studies have pointed out how the number of infected mice 
is sensitive to El Niño southern oscillations. During adverse periods 
the population of mice drastically decreases and the virus may even 
disappear. While on the contrary, when conditions improve, there 
is a big increase of population, high enough to cause an outbreak of 
infection [2,3].

In order to study the infection in deer mice at long-term, several 
simple models have been proposed [4-6].

The first model corresponds to Abramson-Kenkre (AK model), 
and describes the dynamics in terms of 2 variables, susceptible 
and infected mice [4]. The fundamental parameter of the model is 
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the carrying capacity, K, that accounts for the amount of resources 
available for mice, and which value depends on the different 
scenarios related to El Niño southern oscillations. When the 
scenario corresponds to El Niño the amount of resources is high and 
consequently K increases, together with the population. In this case 
when K is bigger than a critical value, Kc, the infection spreads. While 
in La Niña period, there are less resources and the scenario is related 
to a low value of K, and consequently the decrease in the number of 
mice. If K goes under Kc, the infection disappears.

In a new model, developed by the authors, we introduce a slightly 
different scheme to take into account a division in terms of age [5]. 
It is based on field studies that claim young mice do not contract 
the virus [7,8]. The model has 3 variables: young mice, susceptible 
adults and infected adults. It shows a characteristic time given by the 
maturation term, T, which produces a delay in both the outbreak and 
disappearance of infection in relation with the population of mice.

These phenomenological models are also extended to other 
climatic variations as the climate change mainly through the amount 
of available resources. An estimation of those resources, described by 
K, is crucial for the prediction and control of infection in areas where 
climate change is significant. As for El Niño, good conditions are 
correlated with outbreaks while bad conditions are correlated with 
the reduction or the eradication of the infection.

While these models are deterministic, real systems are discrete 
and the number of related mice finite. This approach requires a better 
description in order to see the relevance of internal fluctuations and 
its relation with phenomenological models [9-11]. In particular, 
if those feature seen before for the phenomenological model in the 
long-term are supported by a more fundamental description [5].
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In section II we consider the analytical approach given by the 
master equation. After that, in section III, we compare it with the exact 
numerical description for both above and below the thermodynamic 
limit. The numerical description is introduced by the modified 
Gillespie algorithm that considers non-markovian processes. In 
section IV, we first study fluctuations in the steady state with a 
perturbative method (subsection IV A) and later numerically with 
the modified Gillespie algorithm (subsection IV B). We also compare 
both approaches. Finally, conclusions summarize the results.

Analytical Results
Due to the stochasticity of the system, one has to rely on statistics 

and try to determine in a more solid description those features 
already seen in the phenomenological description. We first start 
writting down a general approach corresponding to the master 
equation. It describes the temporal evolution for the probability of 
the variables. In particular, we work with 3 variables: young mice, 
Y, susceptible adults, S, and infected adults, I. In compact form they 
look as following:

X = (Y, S, I) and X’ = (Y′, S′, I’)

' '
'

'
, ,

( , ) ( ( , ) ( , ))
X X X X

X

dP X t P X t P X t
dt

ω ω= −∑   (1)

In our case, the master equation is built on several processes 
that account for the different ingredients introduced in [5]. They are 
represented through the transition rates, ',X X

ω and ' ,X X
ω , and consist 

in births, deaths, competition, contagion and maturation. They are 
all markovian processes except the maturation that lasts a finite time.

•	 Maturation

  Y Sτ→     (2)

In order to go further and be able to derive the master equation, it 
is necessary to study in depth the maturation process. In this way, we 
divide it into more manageable sub processes.

Among them, the first sub process corresponds to a birth. Second, 
a period that describes the time mouse overcomes youth, Ʈ. And 
third, how mouse becomes adult, Y  → S. The probability of the whole 
process is described as follows.

'
'

', ',
', ',

( , , , ; 1, 1, , ; ; )
Y S I

Y S I

P Y S I t t Y S I t+ ∆ + − Γ ϒ∑   
      (3)

We analyze each process in a more precise and mathematical 
form [12].

The probability starts with the summation of all possible 
initial states corresponding to births '( ', ', )Y S I . This probability is 
represented by '', ',Y S I

ϒ , and corresponds to the following expression:

( ) ( )( ) ( )  1 , , ,ô .Y S IP b S I Y P Y S I t tγ ′ ′ ′ ′ ′ ′ ′= + ′ −′+ − ∆

Once the mouse is born it enters in the maduration period, 
represented by Γ. It describes how the mouse becomes adult and 
approached by e-γτ, where τ is the maduration period and γ the 
difficulty to passing from youthhood to adulthood.

Finally, when the mouse arrives at (Y + 1, S - 1, I, t) it becomes a 
susceptible adult (Y, S, I, t + Δt). This last stage always happens when 
the other conditions fulfill.

At this point, we are able to write down the master equation in a 
more suitable form. In particular, we present it in terms of creation 
and destruction operators.

  1

( , ) ( 1, )
( , ) ( 1, )

Ef X t f X t
E X t f X t−

= +

= −    (4)

The final master equation for all the processes [5,9], reads as 
follows.

  

      

      (5)

This expression describes the time evolution for the probability 
of the 3 variables (Y,S,I). However, the set of equations is not closed 
and cannot be solved directly. On the other hand it is possible to get 
insight looking at different moments. In particular we study the first 
moment. For this case we approximate i j i jX X X X= , where i and j 
indicate the different variables.
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This new description corresponds to the mean values of the 
probability. We can go a step further and consider the thermodynamic 
limit as a particular case. If N → ∞ and Ω → ∞ keeping constant N/Ω, 
and considering the density instead of the number of mice, the 
remaining expressions are

( )-  - - - -Y Y
Y
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dt K

γτ τ=
  (9)

( )-  - - - -s s

s s i

A A
A A A

dM M M
be M t cM aM M

dt K
γτ τ=   (10)

  - -i i

i s i

A A
A A A

dM M M
cM aM M

dt K
= +    (11)

Where, s i s iY A A Y A A
Y s IM  = , M  = , M  =  and M = M +M +M .
Ù Ù Ù  Parameters do not 

change, while a=aΩ and K=2k/Ω.

This mean field approach is in consonance with the 
phenomenological model introduced in [5]. In this case, the 
phenomenological description and its features are capture in the 
thermodynamic limit. However, we still do not know if those features 
are also valid in regions where internal fluctuations are significant.

Numerical Studies Comparision
The delayed Gillespie algorithm has been studied recently [13-

15]. Following the exact scheme developed by Cai, we have adapted it 
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to our system by introducing a probability in the process that governs 
the transition to adulthood.

To study the role of fluctuations we identify two different 
scenarios depending on climatic conditions as the El Niño southern 
oscillations [5]. Scenario A corresponds to favorable conditions (El 
Niño) for the increase of population and the subsequent outbreak of 
infection. And scenario B where the conditions are harsh (La Niña), 
and consequently the number of mice decrease together with the 
infection.

We will describe the system in both, in and out the thermodynamic 
limit. However, computational capabilities constrain our simulations 
to real domain (finite Ω). In order to get the thermodynamic limit 
we introduce fluctuations in the number of infected mice i.e., mice 
coming from adjacent niches. We introduce these fluctuations as a 
minimum source of infected mice.

A. Scenario A
In scenario A, the phenomenological model corresponds to K 

> Kc, is favorable to the increase of population [4,5]. As the virus 
spreads among adults, there is a delay between the population growth 
generated by the increase of youth, and the infection, which occurs 
when youth mice become adults. It is given by the maturation time, 
τ, and characterizes the system [5]. We see how the evolution of the 
system comes into 2 different and consecutive time intervals. First, 
from (0, τ), the system evolves towards the absence of infection, and 
second, in (τ, ∞), the system evolves towards the outbreak of infection.

In (Figures 1a & b), we see the evolution of the mean value for those 
realizations above (dashed (red) line) and below thermodynamic limit 
(dash-dotted (magenta) line). In (Figure 1a), for the case of infected 
mice, the dash-dotted line does not follow the phenomenological 
model (solid (blue) line). It is due to the 0 absorbent state, reachable 
mainly in the interval (0, τ). In this scenario infection can disappear, 
and the outbreak of infection may not happen.

The dashed (red) line corresponds to the thermodynamic limit, 
and evolves in consonance with the phenomenological description. 
In this case the absence of infection is not reachable. For the period (τ, 
∞), the system evolves towards the outbreak of infection.

B. Scenario B
When climatic conditions are harsh, the phenomenological 

model is described by K < Kc, and the population decreases (see 
Figures 2a & b) following general trends [4,5]. The infection tends to 
disappear after a period of persistence given by the maturation time 
(see Figures 2a) [5]. This persistence is a serious thread that could lead 
to HPS cases.

In this scenario, (Figures 2a & b), fluctuations do not play any 
fundamental role since realizations evolve from finite values of 
infected mice in (0, τ) towards the lack of infection in the interval (τ, 
∞), and both kind of realizations, below and above the thermodynamic 
limit fit qualitatively well with the phenomenological model.

It is also worth mentioning how the evolution of the number of 
mice in regimes, scenario A (Figure 1b) and B (Figure 2b), and the 

Figure 1: (Color online) Comparison of the temporal evolution for the phenomenological model in solid (blue) line and the mean value of realizations, in dash-dotted 
(magenta) line below the thermodynamic limit, while the dashed (red) line above it. Both set of realizations are obtained from the modified Gillespie algorithm. It 
describes scenario A. In (a) & (b), it is depicted MAi and M respectively. The carrying capacity is K = 15. K > Kc.

Figure 2: (Color online) Comparison of the temporal evolution as in figure 1 for scenario B. Both situations, above and below the thermodynamic limit, evolve 
together. The carrying capacity takes the following value, K = 7.5. K < Kc.



Austin J Infect Dis 3(1): id1019 (2016)  - Page - 04

Reinoso JA Austin Publishing Group

Submit your Manuscript | www.austinpublishinggroup.com

phenomenological model fit well and are described by the logistic 
equation [5].

Steady State
In this section we study the probability density for the steady state 

in scenario A. First we introduce the analytical perturbative method 
and later we study numerically the steady state through the modified 
Gillespie algorithm. Finally, we compare both approaches.

A. Analytical approach
It is possible to develop a stochastic model based on the mean 

field description from which we can derive an approximation to the 
stationary probability for infected mice [9]. Let us decompose M in its 
steady mean value and its internal fluctuations: M + δM.

( ) ( ) ( )M t K b c M tδ= − +     (12)

Where δM (t) is a random variable whose probability is given by 
the following expression with a white noise,ξ . [9].
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We start from the mean field description (see equations. 9,10 and 
11), and consider that δM is independent of δM (t-τ). Through some 
calculations, we arrive at a stochastic description for MAi.
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This is a stochastic equation with colored noise. The approximate 
Fokker-Planck equation [16,17] which describes the process is the 
following one.
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              (18)

Where the different terms in the stochastic equation correspond 
to:

( )( )- 2( )  - - -
i i iA A AG M aK b c e b M aMγτ=   (19)

( )Ai Aig M M= −     (20)
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Now we look for the stationary probability density of MAi, 
considering that the boundary condition at ∞ is natural. N 
corresponds to the normalization constant.

       
    

      (22)

We see how the stationary probability density has a singularity at 
0. In some cases it can be normalizable. In particular when K is above 
the curve 

( )c
beK

a b c

γτ

=
−

.

This curve is identified in (Figure 3) with the solid (black) line. 
There are also 2 more transitions. The region between the curves Kc 
and *

cK in dashed (blue) line still have a singularity at 0 together with 
a finite distribution for low values of infected mice. Above a second 
curve, **

cK  in dash-dotted (red) line, a local maximum appears. And 
finally, for values above *

cK  the singularity at 0 disappears.

Thus, we find following the analysis developed in [9], that the 
steady state under internal fluctuations presents a general transition 
characterized by Kc. Behind it; internal fluctuations can drive the 
system to the 0 fixed point. However, as MAi increases together with 
K this chance decreases, K > Kc, and eventually the 0 fixed point 
becomes unreachable (above *

cK  or a bottleneck to access the 0 fixed 
point for high values of K).

B. Numerical approach. Comparison
We study the numerical probability density for the steady state of 

scenario A with the modified Gillespie algorithm and compare it with 
the previous analytical results.

Since we only compute a small number of realizations (1000 
realizations) in a finite time, we may describe partially the probability 
distribution. In (Figure 4) we see in (red) histograms the numerical 
approach. When K increases, the absorbent 0 fixed point becomes less 
reachable until it is finally unattainable (Figure 4 from (a) to (d)). At 
this point, (Figure 4d), the system is above the thermodynamic limit.

We now compare these results with theoretical probability 
distribution density in the steady state (solid (blue) line). In Figure 4, 
we show the spreading of the steady state due to internal fluctuations. 

Figure 3: Phase diagram for the theoretical stationary probability density of 
infected mice. We discuss it in terms of K and a, leaving constant the rest of 
parameters: b = 2, c = 0.6, γ=0.42 and, τ=2. The solid (black) line corresponds 
to Kc, the dashed (blue) line to the transition given by *

cK  and the dash-dotted 
(red) line to **

cK . Points labeled from (a) to (d) represent the values for the 
stationary probability density depicted in figure 4.
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For K < Kc there is no infection as we see in (a). However, from 
panels (b) to (d), K > Kc, we see how the system evolves towards 
a maximum for finite values of infection, and tends to leave 
unreachable the 0 fixed point. Following this evolution we see how in 
panel (c) the numerical description shows already a local maximum 
in contrast to the analytical description, where it has not appeared yet. 
The infection is more robust in the numerical distribution. Finally, 
in panel (d), we show how the system enters in the thermodynamic 
limit. Numerically, where the 0 fixed point becomes unreachable, and 
analytically, in those cases where there is a bottleneck that makes very 
difficult to reach the 0 fixed point.

In all, this suggests that the infection could get extincted in the 
stationary state out of the thermodynamic limit.

The mean field of these distributions coincides with the mean 
value of the phenomenological model when we consider the 
thermodynamic limit (vertical (blue) line).

Conclusions
Considering the finiteness and discreteness of our system, we 

have studied under the same conceptual framework as in [5], new 
analytical and numerical approaches in order to support those 
features observed in the phenomenological model for El Niño 
southern oscillations. Throughout the article we have seen how 
in both, the temporal evolution and the steady state, the absent of 
infection is an absorbent state reachable out of the thermodynamic 
limit. In particular internal fluctuations are relevant in scenario A, 
unlike scenario B, where infection evolves to extinction. Mainly 
above the thermodynamic limit, we observe Kc and the delay among 
the total number of mice and those infected.

Figure 4: Stationary distribution density for infected mice corresponding to those parameters label in figure 3. We consider internal fluctuations both in the 
theoretical distribution in solid (blue) line and in the numerical (red) histogram. The phenomenological steady state is drawn with a vertical (blue) line. Displayed 
numerical distributions are taken over 1000 realizations at a finite time. The zoom in (d) shows the probability for the 0 absorbent state.
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