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Abstract

Avian Influenza Viruses (AIVs) are harbored by wild waterfowl as a natural 
host, and there is a species barrier restricting virus transmission from birds 
to mammals, including humans. However, it has been reported that, through 
genetic mutations, AIVs occasionally infect mammals and acquire high 
pathogenicity. The Amino Acid (aa) substitution of glutamic acid to lysine at 
position 627 (E627K) in polymerase basic protein 2 (PB2) is one of the well-
known factors underlying mammalian adaptation. Although this substitution was 
previously observed in mammalian-adapted H5, H7, and H9 AIV subtypes, the 
impact of this mutation on the mammalian adaptation of other AIV subtypes is 
not fully verified. Here, we isolated the low pathogenic AIV subtype H6N6 from a 
wild bird fecal sample in Tokachi Subprefecture, Hokkaido, Japan. We passaged 
this H6N6 subtype in BALB/c mice four times and acquired the mouse-adapted 
virus. Whole-genome sequence analysis showed that the adapted virus had 
only one aa substitution (E627K) in PB2. The adapted virus-inoculated mice 
tended to show increased weight loss and mortality compared with the original 
virus-inoculated mice. The viral titer in the lungs of the adapted virus-inoculated 
mice was significantly higher than that of the original virus-inoculated mice. 
Additionally, the virus isolated from the lung of the original virus-inoculated mice 
with serious symptoms harbored the E627K substitution. Our findings indicate 
the possibility that the PB2 E627K substitution in H6N6 subtype AIV rapidly 
appears in mammalian hosts and contributes to the enhanced pathogenicity of 
this virus.
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Introduction
Influenza A Virus (IAV) is a negative-sense single-stranded 

RNA virus belonging to the family Orthomyxoviridae with an eight-
segmented genome. Wild aquatic birds are natural hosts of most 
IAV subtypes, and such avian IAVs (AIVs) occasionally cross the 
species barrier and infect mammals, including humans [1]. Several 
Amino Acid (aa) substitutions in the Polymerase Basic Protein 2 
(PB2) subunit of the AIV RNA polymerase have been identified as 
important factors contributing to increased virulence and adaptation 
in mammalian hosts [1]. E627K, which has been detected in human-
adapted highly pathogenic H5 and H7 AIV subtypes, is one of the most 
widely known substitutions associated with enhanced pathogenicity 
in mammalian hosts [2-4]. In addition, the contribution of the E627K 
substitution in H9N2 subtype AIV to the enhanced virulence in mice 
has been shown [5]. This substitution contributes to the improvement 
in PB2 polymerase activity at a lower temperature, which works to 
the advantage of efficient virus proliferation in the respiratory tracts 
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of mammals [4,6]. As mentioned above, although the impact of the 
E627K substitution in H5, H7, and H9 AIV subtypes on mammalian 
adaptation has been reported, the effect of a single aa substitution at 
this position in other AIV subtypes remains poorly understood.

In recent years, H5, H7, H9, and H10 AIV infections have 
reportedly caused diseases in humans [7-11]. In addition to these 
subtypes, the first human case of H6N1 subtype AIV infection was 
reported in Taiwan in 2013 [12,13], suggesting the possibility of an 
epidemic among humans when it becomes adapted to them. In the 
present study, to elucidate the mammalian adaptation mechanism 
of H6 subtype AIV, the wild-bird-origin AIV subtype H6N6 was 
passaged in mice, and the pathogenicity and aa sequences of the 
passaged viruses were evaluated.

Materials and Methods
Viruses

The H6N6 subtype AIV strain A/avian/Japan/14UO0177/2014 
was isolated from a wild bird fecal sample in Tokachi Subprefecture, 
Hokkaido, Japan, in 2014. The virus was propagated in the allantoic 
cavity of 10-day-old embryonated chicken eggs, and the collected 
allantoic fluid was used as the original virus solution. The original 
virus was intranasally inoculated into BALB/c mice generated in 
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our laboratory under light anesthesia with isoflurane (Intervet K.K., 
Tokyo, Japan), and the lung was harvested at 3 Days Postinoculation 
(dpi). The lung homogenate was prepared as previously described 
[14] and inoculated into mice. This passaging procedure was repeated 
three more times (for a total of four passages after the original virus 
inoculation), and the acquired lung homogenate was inoculated into 
the allantoic cavity of eggs. The collected allantoic fluid was named 
P4 virus solution. All animal experiments were approved by the 
Institutional Animal Care and Use Committee of Obihiro University 
of Agriculture and Veterinary Medicine and performed in compliance 
with the institutional guidelines.

Mouse infection study
BALB/c mice were intranasally inoculated with the original or 

P4 virus solution. The amount of inoculated virus was 104 50% tissue 
culture infective dose in 50 µl/mouse. Body weights and survival rates 
were monitored daily for 14 days after the virus inoculation (n=5). 
The mice were euthanized when a 25% reduction in body weight 
was observed. To evaluate the viral titer in the lung, mice in each 
group were euthanized on 3 and 5 dpi (n=4-5). The viral titer in the 
lung (50% Egg Infectious Dose (EID50)/g) was calculated using the 
Behrens-Kärber method [15].

Virus genome sequence analysis
RNAs were extracted from the original and P4 viruses, and 

next-generation sequencing was performed as previously described 
[16]. RNAs extracted from the lung of the original virus-inoculated 
mice with severe symptoms were transcribed into cDNA using 
FastGene Scriptase II (Nippon Genetics Co., Ltd., Tokyo, Japan), 
and the partial PB2 genome (the 1078th-1986th nucleotides 
containing the 627th aa-coding codon) was amplified using the 
following primers: 5’-TAYGARGARTTCACAATGGT-3’ and 

5’-ATATGGTCTCGTATTAGTAGAAACAAGGTCGTTT-3’. 
Polymerase Chain Reaction (PCR) was conducted under the 
following conditions: an initial denaturation step at 95°C for 5 min, 
followed by 40 cycles of 95°C for 30 s, annealing at 52°C for 30 s, and 
70°C for 3 min, and a final extension at 72°C for 10 min. The sequence 
analysis of amplified PCR products was performed as previously 
described [17]. The obtained nucleotide sequence data were analyzed 
using BioEdit software, and the genetic mutation and translated aa 
substitution site were identified.

Statistical analysis
P values were calculated using the following statistical analyses 

with GraphPad Prism 8 (GraphPad Software, Inc., San Diego, CA). 
Student’s t-test and log-rank test were performed to analyze the 
body weight changes and viral titers in the lung, and the survival 
rate, respectively. P-values less than 0.05 were considered statistically 
significant.

Results
First, to identify aa substitutions retained in the P4 virus, next-

generation sequencing was conducted. The whole-genome sequence 
analysis of the original and P4 viruses showed that the P4 virus had 
only one aa substitution (E627K) in PB2. Next, these original and 
P4 viruses were inoculated into mice, and body weight changes and 
survival rates were monitored. After 5 dpi, 25% weight loss/death was 
observed in 1/5 mice in the original virus-inoculated group, whereas 
these events were observed in 3/5 in the P4 virus-inoculated group 
(Figure 1A, B). However, no statistical difference was found between 
the two groups. The viral titer in the lungs of the P4 virus-inoculated 
group was ≥102 and ≥103 EID50/g higher than that of the original 
virus-inoculated group at 3 and 5 dpi, respectively (Figure 1C).

Figure 1: Evaluation of the pathogenicity of the P4 virus in mice.
(A-C) The original and P4 viruses were intranasally inoculated into mice. (A) Body weight changes and (B) survival rates were monitored daily for 14 days after virus 
inoculation (n=5). (C) The viral titers in the lungs were evaluated at 3 (n=5) and 5 dpi (n=4). Student’s t-test (A, C) and log-rank test (B) were performed to analyze 
statistical significance; *P < 0.05, ***P < 0.001.
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As shown in Figure 1A and B, a 20% death rate was observed even 
in the original virus-inoculated group. Therefore, we inoculated the 
original virus into mice two more times and monitored body weight 
changes to confirm the reproducibility. As a result, ~15% of mice 
showed severe body weight reductions and clinical symptoms in the 
second and third experiments. The lungs were harvested from these 
mice, and the aa sequence at position 627 was analyzed. As expected, 
the E627K substitution was observed in all of the viruses isolated from 
the three tested mice (Figure 2).

Discussion
In the current experiment, the E627K substitution, which is one 

of the well-known mammalian adaptation markers, was observed 
in the wild-bird-origin H6N6 AIV subtype after its inoculation into 
mice. Similar to other mammalian-adapted strains, including H5, 
H7, and H9 subtypes, this single aa substitution contributed to the 
enhanced pathogenicity of H6N6 subtype AIV in mice. The D701N 
mutation in PB2 is also a well-known mammalian adaptation marker. 
The D701N substitution enhances the binding of PB2 to importin, 
which promotes PB2 transport into the nucleus and facilitates virus 
proliferation in mammalian cells [18]. Although the effect of the 
single D701K substitution on virus proliferation and pathogenicity 
in mammalian hosts may be smaller than that of the single E627K 
substitution [19,20], dual E627K and D701N substitutions enhance 
viral polymerase activity and virulence in mammalian hosts compared 
with the single E627K substitution [19]. In the current study, the 
E627K substitution rapidly appeared in the original virus-inoculated 
mice, whereas the D701N substitution was not observed even in the 
P4 virus. Similar to this report, a previous virus transmission study 
using ferrets showed that the E627K substitution was more likely 
to occur than the D701N mutation [19]. Therefore, it is possible 
that, as the passaging of the current H6N6 subtype AIV is repeated 
in mammalian hosts, mammalian adaptation-related substitutions 
other than E672K occur, including D701N. In our study, the mouse 
was used as a mammalian model. However, the mouse is considered 
as a poor model for virus transmission because it does not show 
sneezing and running nose. This point is one of the limitations of 
our research. On the other hand, the ferret shows a sneeze reflex and 
can be available for IAV transmission study [21]. Hence this more 
suitable animal model should be used in the future study for further 
understanding of the mammalian adaptation mechanisms of the 
current H6N6 subtype AIV.

Although a human infection case of H6N1 subtype AIV was 
reported in 2013, this virus did not retain either E627K or D701N in 
PB2 [13]. However, our finding indicates the possible occurrence of 
human-adapted H6 AIV subtypes harboring the E627K substitution 
with the potential to threaten human health. Hence, conducting AIV 
surveillance and monitoring aa substitutions related to mammalian 
adaptation in not only H7, H5, and H9 subtypes but also other AIV 
subtypes to control human AIV infection cases are important.

Conclusion
We showed that the E627K substitution appeared when the wild-

bird-origin H6N6 AIV subtype was infected into mice, and this single 
aa substitution resulted in enhanced pathogenicity in mice. Our 
finding indicates the potential emergence of mammalian-adapted 
viruses of not only H5, H7, and H9 strains but also the H6 AIV 
subtype. The present study contributes to a better understanding of 
the mammalian adaptation mechanisms in H6 subtype AIV.
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