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Abstract

Chagas disease is a neglected and widely distributed parasitic disease in 
America, caused by Trypanosoma cruzi parasites. Currently, there are 6 to 7 
million infected people and between 60 to 80 million people remain at risk of 
infection in endemic areas. Normally the infection does not manifest itself in 
the acute phase or it does so in a mild and nonspecific way, but several years 
later infected people suffer from heart or digestive system problems with varying 
degrees of disability and even death. In the acute stage of the infection, there 
are treatments with antiparasitic drugs that are effective and that are why it is 
very important to treat children who are born infected. During the chronic phase, 
on the other hand, the effectiveness of the treatment has been much debated 
by experts, and recent multicenter studies carried out throughout Latin America 
showed that, although drugs eliminate the parasite, they are not effective in 
preventing the development of the illness. Therefore, it is an urgent need to 
have new strategies to control the infection and the development of the disease, 
therefore, the objective of achieving a vaccine that not only prevents primary 
infection (when the parasite comes into contact with the body) but also controls 
the progression of the disease in infected people and reverses the damage 
associated with the infection by that obtaining a vaccine is imperative. This work 
aims to highlight the efforts, progress and show the different approaches in the 
development of the vaccine against ChD.
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-Particles; TLR9: Toll-Like Receptor-9; TGF-β: Transforming 
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Differentiation 8; DNA: Deoxyribonucleic Acid; mRNA: Messenger 
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CpG: Cytosine And Guanine Rich DNA Regions; WHO: World 
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Background
More than 110 years after its discovery, Chagas Disease (ChD) 

or American Trypanosomiasis is considered by the World Health 
Organization (WHO) as one of the neglected tropical diseases. This 
disease affects about 10 million people worldwide [1], most of those 
affected are poor and marginalized people living in rural areas of 
developing countries [2]. It is caused by the Trypanosoma cruzi parasite 
that is transmitted mainly by triatomine bites. Skin bite lesions, or 
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permissive mucosal and conjunctival surfaces, are in contact with 
triatomine feces that contain the parasite in its trypomastigote form, 
infecting neighboring cells, entering the bloodstream, and leading to 
systemic complications, such as cardiomyopathies and enteropathies 
[3,4]. Other forms of transmission of the parasite can be by blood 
transfusion [5], orally [6], transplacental route from infected mothers 
[7], by transplantation of infected organs, and accidentally [8]. 
Recently, several studies suggest that T. cruzi can be spread through 
sexual transmission [9-11]. This pathology can appear in its acute 
and/or chronic form, which can be symptomatic or asymptomatic, 
mainly affecting the heart and digestive system and its importance lies 
in the fact that it produces disability and sudden death in apparently 
healthy people. It is estimated that each year between 10,000 and 
12,500 people die from this disease, with cardiac complications the 
main cause of these deaths [12]. Initially, ChD was endemic to the 
American continent, but due to the various forms of transmission 
and social phenomena such as the migration of infected people, it has 
spread to continents such as Europe, Asia and Oceania; becoming a 
major health problem worldwide [13,14]. However, although there is 
a treatment for this disease, the available drugs have low efficacy and 
very serious side effects. These drugs are very effective in the acute 
stage of ChD infection, but less effective in the chronic stage [15]. In 
addition, many patients do not present symptoms immediately after 
infection, so the years may go by and they are only diagnosed when 
they already have heart and/or digestive disorders, and it is at this 
time that the drugs lose their effectiveness [12,16-18]. Vaccination is 
the cheapest strategy to prevent infectious diseases and a commercial 
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vaccine against ChD is not yet available. Multiple vaccine prototypes 
have been tested and have shown to be good candidates in terms 
of protection and with great advantages for their production and 
application [19-24]. During infection, the immune response that 
is generated against the parasite is not enough to neutralize and/
or eliminate it, this being the main factor in the persistence of the 
parasite as well as the development of the chronic phase of the disease; 
where the parasite load and the unbalance of oxidative stress generate 
the damage in the host tissue [25], therefore, the control of T. cruzi by 
activating the immune system during the acute phase of the disease 
would prevent the development of the pathology [26]. This work aims 
to highlight the efforts, progress and show the different approaches in 
the development of the vaccine against ChD.

Overview of Vaccinology in Chagas disease
Current control measures for protozoal infection rely solely on 

chemotherapy to improve the disease. Vector control is also helping 
to reduce the transmission of infections by this type of parasite. To 
date, no reliable vaccines are available against these infections, and 
there is also an alarming increase in drug resistance [27]. As is the case 
of the ChD [28]. Developing a vaccine is a long and complex process 
that often takes 10-15 years, and involves the combined participation 
of public and private organizations. Vaccine development and testing 
follow a standardized set of steps. The early stages are exploratory. 
Regulation and oversight increase as the candidate vaccine progresses 
through the process [29,30]. Initially, the development of a vaccine 
for ChD was slow and cautious due to considerations regarding 
autoimmunity as a potential cause of pathogenesis [31], however, it 
has recently been suggested that the persistence of the parasite in the 
host plays a key role in disease progression and pathogenesis [32,33]. 
These studies have shown that in animal models control of T. cruzi 
can be achieved during the disease [31] and these advances have 
increased and accelerated the search for a vaccine as a treatment for 
ChD [34].

Complete Parasites (Inactivated, Live, or 
Attenuated)

For various pathogens, one of the most common and traditional 
strategies in vaccines is the use of inactivated or attenuated pathogens 
[35], for the case of T. cruzi some have been tested with a certain 
margin of success [36,37], vaccines that used whole parasites to 
combat ChD have been evaluated in initial studies with mixed results, 
but these types of vaccines are difficult to implement [38,39].

Subunit Vaccines (Recombinant Proteins)
Many recombinant antigens derived from T. cruzi have been 

generated using various prokaryotic and eukaryotic hosts [21,40,41]. 
Antigens such as TSA1, Tc24, TcG1, TcG2, TcG4, Tc52, Cruzipain, 
ASP2, Trans-Sialidase (TS), are examples of genes used for the 
development of recombinant proteins and that have been used as 
vaccine candidates [21,42-47]. A key challenge for the development 
of not only vaccines with recombinant proteins against T. cruzi is the 
activation of CD8+ cells and CD4+ cells of the Th1 subpopulation [48-
50]. Therefore, multiple adjuvants have been tried to bias the immune 
response towards such a cellular response. Among the advantages of 
this type of vaccine candidate is the easy production, however, some 
disadvantages such as performance, the formation of inclusion bodies 

during their purification, the lack of adequate post-translational 
modifications [51], and contamination with endotoxins due to the 
use of bacteria for their production are some points to take into 
account and that must be resolved so that these vaccine candidates 
have better availability and safety [52,53].

DNA Vaccines
DNA vaccines have been used in mouse and dog models that 

carry genes encoding T. cruzi antigens and have been shown to reduce 
parasitemia and increase survival rates [42-45]. However, despite the 
ease of construction and production of vectors, the stability of DNA, 
the easy production and administration of vaccines, and the ability 
to enhance the immune response through the co-administration of 
genes encoding cytokines such as IL-12, GM-CSF, or costimulation 
molecules such as CD40 [54-56]. CpG motifs have also been used 
as adjuvants that can activate the production of Th1 cytokines 
through the TLR9 pathway [57-59]. Some preclinical studies have 
highlighted the importance of its administration being combined 
with recombinant proteins to improve immunogenicity [42]. Most 
importantly, the administration of antigens by DNA vaccination has 
been shown to be effective in inducing the production of antibodies, 
Th1 cytokines, and CD8+ T cell-mediated immune responses [54,55].

Synthetic Peptides
The identification of epitopes in proteins recognized by 

medically relevant antibodies is useful primarily for the development 
of diagnostic tests [59-62], however, some peptides have been 
used as vaccine candidates. T. cruzi is coated by a thick layer of 
Glycosylphosphatidylinositol (GPI) -anchored glycoproteins, such 
as mucins, Mucin-Associated Surface Proteins (MASP), and Trans-
Sialidase (TS)/gp85 glycoproteins. MASP is the second largest gene 
family, accounting for approximately 6% of the T. cruzi genome 
[63,64]. Overlapping B and T cell epitopes of this protein by using 
synthetic peptides were able to control T. cruzi infection in mice by 
inducing humoral and cellular immunity [65].

Reverse Vaccination
Previously, in the development of conventional vaccines, the 

process began with the cultivation of the microorganism, which could 
be complicated according to the pathogen as well as the biological 
risks during process, Subsequently, the components or structures 
capable of generating an immune response were identified, the 
process could be long and tedious since it is based on trial and error 
until the candidates for the vaccine are found [66]. An alternative 
strategy that seeks to solve the difficult implementation of vaccines 
for inactivated or attenuated pathogens, or for vaccine candidates 
made up of subunits (recombinant proteins or cDNAs) is based on 
the section of antigens [67]. What makes the identification of antigens 
a key point in the development of effective vaccines, previously it was 
one of the processes in which more time was invested, but now the 
approach of reverse vaccinology with the help of bioinformatics and 
genomic analyzes and proteomics of T. cruzi [63,68] have facilitated, 
accelerated and diversified the number of candidate antigens [69]. 
In this sense, the development of vaccines from the knowledge of 
the genome of pathogens has increasingly gained ground due to the 
advantages that this represents. A clear example of the use of reverse 
vaccinology is its use in the development of the vaccine against SARS-
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CoV-2, wherefrom genome sequencing and in silico analysis using 
computational methods for the prediction and design of vaccines 
[70], a large number of vaccine candidates was generated, developing 
(because of the critical situation), a vaccine approved and applied 
in less than 1 year for this virus [71], demonstrating the potential 
of this approach having a significant impact on reducing the time 
required for vaccine development and minimizing adverse effects 
[67,69,72,73]. Now with reverse vaccinology, it is no longer necessary 
to culture the parasite, from the information of the genome and 
proteome in databases, the analysis and selection of antigens are made 
using different prediction tools [74,75], later they are synthesized to 
be used in experimental animal models and to evaluate the capacity 
to activate the immune response [76]. The objective of this type of 
approach is the identification of the minimum essential information 
for the prediction of antigens with the greatest protection potential 
against the pathogen in question, with the optimization of this new 
approach, the time could be reduced by up to one or two years of 
experimentation (Figure 1) [77].

Other Vaccine Alternatives
The development of vaccines for the control of ChD is an urgent 

need and the main challenge lies in the biological complexity of the 
parasite, characterized mainly by the stages of its life cycle, which is 
why the search for antigenic candidates for the design of vaccines 
represent a big problem. Therefore, the application of technology 
including Virus-Like -Particles (VLP) has become an interesting tool 
for the development of vaccines [78]. The structural conformation 
of VLPs mimics the morphology and structures of viral particles. 
One of their main advantages as vaccine prototypes is safety since 
the particles do not count the virus genome and, therefore, are not 
infectious viral particles, and the ability to induce a robust immune 
response [79-82]. In addition, there are several ways to produce 
recombinant VLPs through the expression of genes in systems of 
bacteria, fungi, insects, mammalian cells, among others, but this will 
depend on the biology of the viral particle [83,84]. On the other hand, 

from a biotechnological point of view, plants have opened up new 
low-cost strategies to develop affordable vaccines against parasitic 
diseases, such as malaria, leishmaniasis, toxoplasmosis, among 
others [85]. In this sense, carrots, papaya, lettuce, and tobacco have 
been used to express antigens derived from parasites in the nucleus 
or the chloroplast of cells [86]. The low cost of plant-based vaccine 
technology represents a great opportunity for governments in poor or 
middle-income countries that have serious parasitic disease problems 
but are not served by the pharmaceutical industry (Figure 2).

What Should be Taken into Account, Where 
are we and where are we Going?

The remarkable advance in DNA sequencing has provided more 
and more extensive information on the genome of various strains of 
T. cruzi, improving the ability to identify antigens [31,86-89]. This 
type of information is essential since it is well known that one of 
the main characteristics of T. cruzi is its wide genetic and antigenic 
variability. It is currently classified by molecular techniques into 
7 lineages called Discrete Typing Units (DTU’s) TcI-TcVI and 
TcBat [90, 91]. Large amounts of experimental data show great 
heterogeneity between strains of T. cruzi in various parameters: 
biological, biochemical, parasitemia, virulence, tissue tropism, drug 
susceptibility, and immune response [92]. However, there is still 
controversy between the possible association that has been suggested 
of this genetic diversity with the heterogeneity in various parameters 
with the evolution of the infection, clinical manifestations, and 
treatment during ChD [93]. Overlooking genetic variability during 
drug development, evaluation, and optimization is not recommended 
[94]. This same recommendation is suggested during the antigen 
search (antigen conservation) because all DTU’s have been reported 
in human infections with some genotypes less frequently than others. 
Therefore, a vaccine must seek to protect against a wide variety of 
genotypes [30].

The objective of the ChD vaccine should be to act on the two 

Figure 1: The use of reverse vaccinology in the development of the vaccine for Chagas disease. In conventional vaccinology, the microorganism is cultivated, 
the next step is the identification and selection of conserved antigens, which takes a great deal of time and the experimental part is trial and error. On the other 
hand, reverse vaccinology starts with the sequencing of the genome and proteome, later, through bioinformatic and immunomic analyzes, potential antigens are 
identified, once the candidates are selected, they are cloned and expressed to make way for the studies immunogenicity tests in animal models to evaluate safety 
and efficacy (preclinical phase) and then in humans (clinical phase). The implementation of new technologies in reverse vaccinology considerably reduces the time 
in the development of the vaccine.
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different phases of the parasite, trypomastigotes (infective phase) 
and amastigote (intracellular replicative phase), managing to prevent 
infection and the spread of T. cruzi to control parasitemia [95]. For 
the development of vaccines against T. cruzi, VLPs represent a good 
alternative to generate good immune responses in a targeted way, 
since the resistance and susceptibility mechanisms of these infections 
are related to the polarization of the immune response that occurs 
during a natural infection, specifically during the acute phase. With 
this type of vaccines, a greater amount of the selected antigen could 
be expressed compared to that expressed naturally by the parasite, 
in addition to the fact that they can be coupled to other components 
that help develop immunogenicity and allow a much more robust 
immune response [96].

Therapeutic or Prophylactic?
There are two ways to approach ChD vaccine development from 

a prophylactic and therapeutic perspective. It is difficult to decide 
which is the best approach to address ChD due to the solutions 
involved. The area’s most affected by ChD are poor areas and the 
majority of those infected never receive a diagnosis or treatment [85]. 
Therefore, in this scenario, the benefits that a prophylactic vaccine 
could provide stand out. In this scenario, economic studies project 
that a prophylactic vaccine to prevent or reduce heart disorders could 
represent only 20% of the costs of treatment annually. In the context 
of a disease associated with socioeconomic indicators such as poverty, 
a low-cost prophylactic vaccine is considered the best option [86,97-
99]. However, more studies are needed because socioeconomic 
indicators suggest that affected populations have less access to basic 
and general health services; In this sense, how valid is it to take as a 
reference the costs of cardiac treatments to which only some patients 
have access?. In addition to this, it is a reality that these indicators are 
also associated with cultural factors that do not allow approval of the 
use of vaccines by the most affected populations [100-103].

On the other hand, the therapeutic approach [104] has 

proposed the application of vaccines alone or in conjunction with 
chemotherapy. Vaccine-chemotherapy treatment is one of the 
most promising strategies to counteract the deficiencies posed by 
drugs for the treatment of ChD [99]. In the context of a disease that 
has treatments with efficacy delimited by the phase of the disease 
[105], long treatments and associated with serious adverse effects 
that end up impacting non-compliance with the treatments [17] a 
prophylactic vaccine combined with chemotherapy suggests a quite 
feasible solution [4,106]. Pre-clinical studies in mice have shown 
decreased parasitic load in heart fibrosis and cardiac pathologies 
[18,105-107]. In addition to this, it is suggested that this strategy 
could reduce the duration and dosage of the medications currently 
used, bringing as a benefit the reduction of adverse events, favoring 
the rates of completed treatments [33]; likewise, indirectly delaying 
the appearance of strains with resistance induced by exposure to 
Nifurtimox (NFX) and Benznidazole (BNZ). However, to dimension 
this approach, two questions must be raised to consider: Regardless 
of a possible vaccine-chemotherapy strategy, the affected populations 
have little access to treatment and, on the other hand, the application 
of the therapeutic approach implies a huge advance in diagnostic 
deficiencies that are still presented.

During the acute phase of T. cruzi infection, the parasite replicates 
extensively and releases immunomodulatory molecules that delay or 
polarize specific parasite responses mediated by effector T cells. This 
avoidance mechanism allows the parasite to spread in the host. In 
the chronic phase, the TGF-β signaling pathway involved in tissue 
regeneration is affected. As a consequence, the death and replication 
rates of the parasites are very similar to what occurs during the acute 
phase of infection. T. cruzi is adapted to coexist with a vigorous 
immune response mounted by CD8+ T cells, calling into question 
the efficacy of conventional vaccines [108]. Early work shows that T. 
cruzi suppresses lymphocyte activation [109], an effect that depends 
on the density of the parasites. Therefore, the suppression induced 
by parasite molecules is more relevant in the acute phase, when the 

Figure 2: New technological alternatives for the development of vaccines for Chagas disease. In addition to being potential vaccines against the viruses from which 
they are derived, VLPs can also be used to present individual epitopes of other organisms to the immune system. This can be done by gene fusion and subsequent 
expression of the resulting recombinant protein or by chemical conjugation between the target antigen and the VLPs-generating structural protein. On the other 
hand, the low cost of plant-based vaccine technology represents a great opportunity that together with VLPs offer new perspectives in vaccine development.
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concentration of such molecules can be quite high. Furthermore, T 
cell depletion can be observed at the peak of parasitemia [110]. In 
this sense, for example, cruzipain can induce the secretion of IL-10 
and TGF-β, as well as the expression of arginase by macrophages, 
which leads to an increase in the intracellular replication of T. cruzi. 
Tc52 induces an inflammatory response because it is through TLR2 
and only confers protection when combined with adjuvants. In the 
absence of adjuvants, Tc52 increases IL-10 mRNA in macrophages, 
which is a macrophage-inactivating cytokine. Furthermore, the 
expression of Tc52 appears to be necessary for optimal replication 
of T. cruzi in the host [110-112]. Other molecules such as mucins, 
including the trans-sialidase families, which are abundant in the 
parasite membrane, induce a state of immunosuppression in the 
host specifically in T cells, due to the absence of IL-2 and cause 
dysfunctional functioning in dendritic cells [113]. These behaviors 
should be taken into account for the use of these proteins as 
candidates in therapeutic cows. On the other hand, in most cases, 
the specific immune response generated against T. cruzi does not 
eliminate the parasite efficiently and its persistence is generated in 
the host, this being a factor for the appearance of the pathology in 
the chronic phase, this is why the elimination of the parasite in the 
acute phase would be of importance in preventing the survival of the 
parasite and preventing the development of chagasic pathologies. In 
this sense, prophylactic vaccination would be more appropriate [25].

It should be noted that a limitation in a large part of the vaccine 
candidates evaluated is that they have been mainly tested in murine 
models, so it is unknown whether this observed efficacy is similar in 
humans. This leads to the use of other animal models, such as dogs 
[115], non-human primates [25], as well as the cellular response in 
chagasic patients [20], and mixed therapy trials have been carried 
out where low-dose chemotherapeutic treatment is combined with 
the application of vaccines [4], which in some cases it reduces heart 
disease [21] in others oxidative damage is controlled, observing a 
cardioprotective effect [116-118].

Finally, vaccines are developed, tested, and regulated in much the 
same way as other drugs. In general, vaccines have more meticulous 

testing than drugs because, in general, there are more humans in 
clinical trials of vaccines, so do not underestimate the efforts made by 
different consortia and initiatives that develop candidate’s vaccines, 
since these only aim to reduce the transmission and socioeconomic 
impact of ChD (Figure 3) [119-121].

Conclusion
Recent efforts have been made to evaluate the T cell epitope 

response of defined parasites to examine the molecular basis of the 
immune reaction elicited during infection with protozoan parasites. 
The severity of the infection is a function of the infecting species 
together with the consequent inflammatory and immune responses 
and the genetics of the host. This has been observed with the use of 
animal models. Studies in computational models suggest that the 
vaccine against T. cruzi would be economically viable, reducing costs 
in therapies used to combat Chagas’ cardiomyopathy, as well as in 
the prevention of congenital transmission, thus, the development 
of a vaccine will contribute to prolonging the life of patients with 
higher quality, by halting the progression of the disease and for its 
distribution in low and middle-income countries where this disease 
is endemic and above all, by having a positive impact on health 
systems that invest large amounts of resources in your attention. One 
reason for the lack of parasitic vaccines could be low profitability 
for the pharmaceutical industry. Consequently, research is crucial 
to generate inexpensive vaccines since the development of new 
technologies could propose different approaches as well as new and 
diverse vaccine candidates to address the development of the vaccine 
against ChD.
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