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Abstract

Crop plant cover may be an appropriate solution to avoid soil losses by 
erosion under Mediterranean climate, where traditional tillage aims to improve 
rainfall water infiltration, and direct evaporation from bare soil is avoided 
because plant water transpiration is a major limiting factor for non-irrigated crop 
productivity. Twelve crop lines of the three Brachypodium distachyon complex 
species with different chromosome number (B. distachyon, 2n=10; B. stacei, 
2n=20; and B. hybridum, 2n=30) were grown in a field trial to assess water 
infiltrability and hydraulic conductivity across crop topsoils considering two 
different plant cover densities (low cover = 150 plants/m2; regular cover = 450 
plants/m2), and in a control no-tillage bare soil. Results showed that superficial 
hydraulic conductivity was significantly higher in Brachypodium-covered soils 
with regular plant density (3.254 ± 0.710 cm.h-1) than in the no-tillage bare soil 
(1.965 ± 0.711 cm.h-1). On an extreme ranking basis, yields were 1.89 < k(h0) 
cm/h < 27.12 under covered soils, and 0.679< k(h0) < 4.330 in the no-tillage 
bare soil. In conclusion, B. distachyon ecotypes can protect soil from being 
eroded and improve water soil infiltration. The adaptation of B. hybridum to 
Mediterranean environments represents an interesting alternative as cover crop 
for typical woody agricultural plantations in Mediterranean soil such as olive 
groves, vineyards, and dry-fruit cropland.
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vegetation. In fact, some B. distachyon complex segregated species 
have been domesticated over several generations, and commercialized 
for soil and water conservation purposes in Spanish olive groves [6].

These Brachypodium species have also been adopted as model 
plants to assess the behaviour of temperate cereals, forge grasses, and 
biofuel grass crops [7,8]. This group includes interesting species that 
can be grown between crop lines, and may therefore be selected for: 
(1) short-life cycle growing, as short as 6 weeks [7,9]; (2) self-fertility, 
ensuring the generation of pure inbred lines within two generation 
cycles [10]; (3) high germination rate under wild and controlled 
greenhouse conditions [9,10]; (4) its phylogenetic relationship with 
economically important Poaceae species, such as Triticum spp., 
Hordeum spp., and Oryza sativa, a tropical cereal with a fully sequenced 
genome [11-13]; (5) its species-specific chromosome number, which 
correlates with altitude and latitude [13], resulting that B. hybridum 
2n=30 ecotypes are frequent in lowland and coastal areas, and in 
intermediate altitudinal areas, and do not require vernalisation for 
flowering [10,13-16]; (6) its high root tensile strength compared to 
other grasses, shrubs, and small trees (Brachypodium species ranked 
second amongst representative Mediterranean plant species of these 
groups, as reported in Baets et al. [17]).

Certain relationships link the tension infiltrometer, pressure, 
and soil core estimates of saturated soil k(h0) [18]. Nonetheless, 
no references have been found to date addressing Brachypodium 
species plant cover and unsaturated soil k(h0). This research trial 
aimed to assess several Brachypodium species as plant cover on soils 

Introduction
Soil water infiltrability across soil surface, sorptivity, and 

diffusivity are relevant physical properties of top soils. Unsaturated 
water flow through topsoil is involved in water infiltration under light 
rainfall conditions, and unsaturated hydraulic conductivity [k(h0)] at 
suction (h0>0) strongly depends on pore geometry, connectivity, and 
soil volumetric water content (θv). As a result, drying soil primarily 
replaces water with air in soil pores. Soils in native woods typically 
show high k(h0) because of the presence of soil organic matter, the 
soil-root interface influence, and the existence of preferential flow 
channels provided by decayed roots [1]. 

Choosing between conventional tillage and no-tillage agricultural 
management system is still a dilemma in Mediterranean soils [2]. 
Olive groves began to be cultivated on no-tillage bare soils from 
1979 [3], but other studies have shown that using plant cover was the 
most effective way to fight against soil erosion and to increase water 
availability by infiltration during rainy seasons [4]. Spontaneous 
vegetation associated with a main crop may however turn to bea 
drawback for the crop yield because of its water consumption, 
particularly within Mediterranean climate [5]. 

Consequently, crop plant cover complemented with 
Brachypodium distachyon (L.) P. Beauv., or any of its recently 
segregated species, may be a good alternative to improve topsoil 
water infiltration in comparison to plant cover composed by Secale 
cereale (L.) M. Bireb, Hordeum vulgare (L.), or spontaneous native 
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of Mediterranean woody crops interlines, such as olive groves and 
vineyards, in terms of soil water infiltrability improvement under 
unsaturated suction conditions.

Materials and Methods
Plant material and layout 

Twelve Brachypodium distachyon, B. stacei and B. hybridum lines 
(four lines per species) were selected to be cultivated along 3 years in 
soils classified in the large group of the Haploxeralfs [19,20], located 
at “Finca la Canaleja”, an experimental field that belongs to the 
“Instituto Nacional de Investigaciones Agrarias” (INIA), in central 
Spain near Madrid (latitude = 40º 30’ 44’’ N; longitude = 03º 08’ 52’’ 
W; altitude=601 m). This area is subjected to a Mesomediterranean 
type of climate, with average annual atmospheric precipitation 
of 438 mm, and an average annual temperature of 13.5oC. The 
corresponding pedo-climate has a Xeric soil moisture regime and a 
Mesic soil temperature regime [21]. 

These Brachypodium species have recently been described as 
separate species [22,23], namely Brachypodium distachyon diploid, 
2n=10 (x=5), Brachypodium stacei, diploid, 2n=20 (x=10), and 
Brachypodium hybridum, allotetraploid 2n=30 (x=5+10). This group 
of species was selected because Spain is rich in wild populations 
[13,15,23,24] that display wide variability in seed characteristics 
and weight [7] according to environmental diversity. Brachypodium 
species generally show different chromosome base numbers (i.e. 
diploidy; Catalán et al. [13]), and B. stacei and B. hybridum tend to 
be larger than B. distachyon [14,23,25,26]. B. hybridum does not need 
vernalisation to flower, and it is therefore able to grow under wider 
environmental conditions than its diploid B. distachyon progenitor 
(Figure 1). 

The 12 Brachypodium lines selected to be sown in this trial were 
the following: (a) four B. distachyon (2n=10) lines, labeled D1, D2, 
D3, and D4, and selected from central Spanish locations at an altitude 
of 830-1200 m (Madrid, Guadalajara and Cuenca); (b) two B. stacei 

(2n=20) lines selected in peripheral Spanish locations at altitudes of 
42-949 m, labeled T3 and T4 (Valencia and Albacete); (c) two other B. 
stacei populations from Iran, labeled A1 and A2, which were used as 
control foreign populations; and (d) four B. hybridum (2n=30) lines, 
labeled H1, H2, H3 and H4, selected from locations of peripheral Spain 
at altitudes of 23-759 m (Córdoba, Jaen and Albacete, and between 
Seville and Huelva).

The crop trial layout consisted of 12 random small rectangular 
plots (18 x 22 m2) per Brachypodium species and each of the following 
crop systems: (1) two plant cover crop systems (CC by randomizing 
the planting of 12 species of the Brachypodium distachyon complex in 
the plot): one considering a low plant density of 150 (±50%) plants/
m2 (LOW CC); and another one considering a regular plant density of 
450 (±50%) plants/m2 (REG CC); (2) a no-tillage system on bare soil 
(NT). The LOW CC system was obtained from a sowing seed density 
of 400 seeds/m2, whereas REG CC was set corresponding to a 1400 
seeds/m2 seed density. Seeds were manually sown. Three increasing 
doses of nitrogen fertiliser [NH4(NO3)] were added in the seeding year 
(0, 100, 200 kg ha-1) after emergence to favour plant establishment 
and proper growth. Plant cover was evaluated counting the number 
of plant individuals inside a sampling 12x12 cm2 small square.

Leaf Weight Ratio (LWR, g.g-1) and Specific Root Length (SRL, 
cm.mg-1) were used to discriminate differences between plant/root 
growth ratios of the assessed Brachypodium cytotype species [27,28]. 
Plant samples were gently washed, and their roots, leaves and stems 
were separately weighed after being dried in an oven at 75oC until 
weight became constant (typically 3 days after placing samples in the 
oven).

Soil analyses and infiltrability determinations
Twenty-four cylindrical soil samples (10 cm deep; eight 

corresponding to each NT, LOW CC and REG CC management 
systems) were air-dried, and standard procedures for soil analyses 
[29,30] were carried out to determine granulometric fractions (sand 
between 2 mm and 60 µm, silt fraction between 20-60 µm, fine silt 
fraction between 2-20 µm, and clay fraction < 2 µm) by the pipette 
method.

Soil bulk density (BD, kg.m-3) and natural water content (NWC, 
%) were determined by standard soil analysis methods [31]. BD was 
measured by the core method [32] after collecting soil samples with 
10-cm-high stainless steel cylinders that contained a total volume 
of 340 cm3. Cylinders were pushed into soil with both ends open 
using a hydraulic device [29]. Volumetric NWC was determined 
by drying samples at 105oC until constant weight [33]. Soil Organic 
Matter (SOM) was measured by wet oxidation following the Walkley-
Black method [34]. Electrical Conductivity (ECe, dS/m at 25ºC) was 
determined in aqueous saturation extract [35]. Soil analysis results 
are shown in Table 1. 

After infiltration through soil surface, water vertically flows 
from surface soil to the bottom according to its vertical k(h0). The 
flow in unsaturated soil is affected by approximately constant gravity 
and variable suction (h0<0). The assay to determine infiltrability and 
vertical unsaturated k(h0) was carried out using a Decagon minidisk 
infiltrometer with a 4.5-cm diameter disc, and by exerting a tension 
of h0=2 cm. The parameters that were obtained by this infiltrometer 

Figure 1: Descriptive images of the three Brachypodium spp. ecotypes 
considered in this essay, grown under standard greenhouse conditions until 
maturity. Scale in centimeters.
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device were: (1) Infiltration Velocity (InfVel), that is, infiltration 
rate or infiltrability (i, mm.s-1); and (2) Accumulative Infiltration 
(InfAcum), i.e. infiltration (I, litre.m-2 = mm), as determined by the 
following formula:

i =dI/dt = V dθv/dt

Where t is time and θv is the volumetric water content (m3.m-3) in 
the soil profile affected by water infiltration, with a soil volume per m2 
of soil surface equal to V (mm). 

Infiltration (I, mm) can be estimated in dry soils by the equation 
proposed by Zhang [36], which uses the two first terms of the equation 
addressed by Philip [37], that is:

I = S. t1/2 + B.t

Where S is called sorptivity, a parameter that is approximately 
equal to cumulative infiltration during the first unit of time, i.e. a 
measure for the capacity of soil to absorb water; B is a parameter 
related to the unsaturated hydraulic conductivity [k(h0)] at suction h0 
that is estimated by the following equation:

k(h0) = A/B

Where A is the a-dimensionless van Genutchten parameter 
[38,39], which depends on soil type, suction value, and the diameter 
of the infiltrometer disc. Considering a sandy loam soil texture such 
as the one found in the experimental field, suction h0=2 cm, and 
the diameter of the infiltrometer disc (4.5 cm), the van Genutchten 
parameter value resulted A = 4.24.

Unsaturated k(h0) was estimated considering the above formula 
[36] by computing the measured InfAcum vs. the square root of time, 
and by fitting the results with the dimensional formula L.T-1, which 
conveniently resulted in k(h0) in units of mm.s-1 or cm.h-1 (1 mm.s-1 
= 360 cm.h-1). 

Statistical and geostatistical analysis
A standard statistical analysis (mean, median, standard deviation, 

etc.) was carried out to describe the different analysed parameters. 
Differences between experimental groups were first determined by 
analysis of variance (ANOVA). However, these statistical analyses 
ignore spatial variability, which may be the result of differences 
among plots characteristics widespread the experimental field; 
for example, not very big differences in SOM or clay content may 
significantly affect unsaturated k(h0) value.

Simple geostatistical techniques based on semi-variograms 
determination have increasingly been used to analyze the spatial 
pattern of soil variables [40-42]. Experimental semi-variograms were 
calculated to analyze spatial autocorrelation of edaphic variables, 
and to determine the spatial dependence range [43,44]. The spatial 
correlation range should be interpreted as the separation distance 
beyond which observations are not spatially dependent [41,42,45]. 
Normally, a wide range expresses a major area of influence, which is 
also attributed to intrinsic properties [46,47]. Unsaturated soil k(h0) 
was mapped by Ordinary Kriging (OK) based on the parameters that 
derived from the spherical model fitted to semi-variance data. The 
prediction accuracy of the unsaturated soil k(h0) map was evaluated 
by the cross-validation technique, which removes each data location, 
one at a time, and predicts the associated data value. Cross-validation 
analysis served to compare measured and predicted values. Spatial 
errors are so determined by making a comparison between the 
experimentally measured k(h0) values and the estimated k(h0) values 
obtained from the spatial model. These errors reflect unsaturated 
k(h0) variability among field trial plots, as indicated by standard 
deviations of original data, and by the uncertainty that is inherent to 
interpolating from a widely dispersed site [48-50]. As a result, kriging-
estimated errors are considered a covariate to avoid the variability 
attributed to environmental factors that affected experimental field 
plots. The residuals of Kriging analyses, as a random component and 
a new independent variable, provide short-scale information of the 
variation of unsaturated soil k(h0). These differences in the kriged 
values of unsaturated k(h0) were therefore used as a covariate in a 
new ANOVA performance.

Results 
Soil characterization

Topsoils of field plots were not homogeneous (Table 1). At 
the 95% level of probability confidence, the Shapiro-Wilks test 
nevertheless showed no significant differences in Soil Organic 
Matter (SOM) and salinity, estimated by the EC of the saturated 

Soil parameter Treatment Min Max Mean* Median SD

SOM (%)

NT 0.18 0.69 0.52a 0.58 0.18

LOW CC 0.38 0.87 0.52a 0.72 0.15

REG CC 0.39 0.78 0.55a 0.55 0.15

ECe (dS/m at 25oC)

NT 0.121 0.183 0.152a 0.153 0.021

LOW CC 0.129 0.155 0.149a 0.152 0.008

REG CC 0.135 0.158 0.148a 0.149 0.010

Clay < 2 µm (%)

NT 12.2 16.4 13.9a 13.9 1.4

LOW CC 12.6 17.1 13.7a 13.3 1.4

REG CC 11.2 13.6 12.3b 12.2 0.7

Fine silt 2 - 20 µm (%)

NT 8.7 12.7 10.8a 11.5 1.7

LOW CC 8.4 11.9 09.6b 9.1 1.3

REG CC 8.0 10.4 08.8b 8.6 0.7

Coarse silt 20 - 60 µm 
(%)

NT 12.7 17.4 14.6a 14.3 1.5

LOW CC 12.8 16.5 13.9ab 13.7 1.1

REG CC 10.0 13.0 11.7b 11.5 1.0

Sand 0.060 - 2 mm (%)

NT 53.6 64.9 60.6b 60.7 4.1

LOW CC 53.4 66.6 62.7b 63.8 3.8

REG CC 64.4 69.5 67.2a 67.4 1.7

NWC (%)

NT 2.21 8.06 5.74a 6.98 2.53

LOW CC 7.13 8.41 7.85b 7.94 0.52

REG CC 7.06 8.45 7.54b 7.41 0.48

BD (kg·m-3)

NT 1405 1562 1484c 1477 50

LOW CC 1593 1798 1654b 1667 35

REG CC 1545 1867 1711a 1687 97

Table 1: Statistical summary of the general descriptive soil properties of the three 
sets of eight plots that correspond to the following management systems: no-
tillage bare soil (NT), low plant density cover (LOW CC) and regular plant density 
covered (REG CC).

*Significant differences at the 95% level of significance (LSD test) are labeled by 
different letters; SD = standard deviation.
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extract, among the soils of these plots, located low terrace of River 
Henares; although significant differences were observed in particle 
size and water content. These differences were not however enough 
to explain the differences that were found in Bulk Density (BD) 
figures among the three sets of field plots which soil cover properties 
resulted different. Therefore, the treatment of these soils may have 
been responsible for an increased BD in the no-tillage bare soils (NT) 
compared with the low plant cover (LOW CC) and regular plant 
cover crops (REG CC). In summary, these soils are classified in the 
large group of Haploxeralfs.

The addressed differences in particle size distribution (Table 1) 
among these topsoils were consistent with continental heteromeric 
sediments from fluvial deposition, and also with the residual 
accumulation of sand in topsoil because of the natural pedogenesis 
of their A-Bt-Ck soil horizons sequence. The increase in BD from the 
NT to LOW CC and REG CC plots was in accordance with both the 
increase in sand content and the decrease in clay and silt contents. 
However, soil compaction maybe partially explained by the tension 
of water that is exerted during soil desiccation, promoted by the 
presence of Brachypodium plants density and their corresponding 

water consumption.

Soil hydraulic conductivity and infiltration 
Cumulative infiltration of water in soil (I) and unsaturated topsoil 

k(h0) significantly increased with Brachypodium plant cover (Table 
2), which did not agree with the previously reported increased soil 
compaction provided by BD figures (Table 1) on the basis of the 24 
field trial samples that were analysed (NT, LOW CC, REG CC). This 
surely occurred by the influence of secondary permeability, caused 
by adsorbed water on vertical surfaces of small root channels and 
dependant on vegetation cover density and developed root systems.

Table 3 shows the relations obtained by classical statistical and 
spatial approach analyses for cumulative water infiltration (I) in soil, 
and unsaturated k(h0), across the topsoils of the experimental field 
plots, and on the basis of 132 determinations equally distributed 
by the designed treatments (LOW CC, REG CC; data not shown). 
As a result, infiltration (I) ranged from 0.47 to 5.03 cm showing no 
significant differences among the 12 lines of the three Brachypodium 
species by the classical ANOVA test. Unsaturated k(h0) ranged 
from 1.89 to 27.1 cm.h-1; extreme values were identified close to the 
coloured zones on the map (Figure 2), and significant differences 
among the three Brachypodium species within CC treatments (LOW 
CC, REG CC) were addressed by classical ANOVA (Table 4).

Ranking differences were observed for I and k(h0) among different 
species and management treatments (NT, LOW CC, REG CC), which 
can be partially explained by the influence of soil granulometric particle 
distributions, the presence of crop cover, and the soil compaction 
effect on (I) and k(h0). The spatial pattern in the geostatistical analysis 
was described in dissimilarity terms of the observed data according 
to the distance in between. The semivariogram (Figure 2) showed the 
degree of spatial continuity for k(h0) across spatial locations, and the 
spatial dependence given by the scale range. This scale range displayed 
a spatial influence at a 6.25 m distance, which considered the distance 
of spatial dependence between field measurements. The spatial 
variability of water infiltration rate through topsoil surface could 
be affected by intrinsic traits of soils, such as structure, texture, and 
SOM content; as well as by extrinsic ones, like agricultural practices 
(e.g. tillage), seed density, or type of the species used as plant cover. 

Soil parameter Treatment Min Max Mean* Median SD

I (cm)

NT 0.169 0.602 0.328b 0.283 0.145

LOW CC 0.175 0.961 0.440ba 0.583 0.245

REG CC 0.316 1.130 0.726a 0.650 0.273

k(h0) (cm·h-1)

NT 0.679 2.906 1.965b 2.080 0.711

LOW CC 0.849 3.311 2.303b 2.122 0.831

REG CC 2.292 4.330 3.254a 3.165 0.710

Table 2: Standard statistical summary of the cumulative infiltration of water in 
soil (I) and unsaturated hydraulic conductivity [k(h0)] of topsoil in the three sets 
of eight plots that correspond to the following management systems: no-tillage 
bare soil (NT), low plant density cover (LOW CC) and regular plant density cover 
(REG CC).

*Significant differences at the 95% level of significance (LSD test) are labeled by 
different letters; SD = standard deviation.

Brachypodium 
cytotypes

Measured 
values

Estimated 
values Spatial errors

Pl Family n mean SD mean SD mean SD

2n = 10

D4 11 2.578 0.664 2.528 0.631 0.050 0.744

D3 11 2.361 1.133 2.629 0.801 -0.268 0.997

D2 11 2.692 0.989 2.583 0.673 0.109 1.093

D1 11 2.716 1.233 2.867 0.785 -0.151 1.132

2n = 20

A2 11 2.792 1.093 2.577 0.722 0.215 0.537

A1 11 2.228 0.955 2.497 0.964 -0.254 0.732

T2 11 3.225 1.898 2.961 0.946 0.265 1.461

T1 11 3.047 2.555 3.149 1.240 -0.102 2.394

2n = 30

H4 11 3.077 1.516 2.797 1.180 0.280 1.550

H3 11 2.870 1.511 3.020 1.083 -0.150 1.235

H2 11 3.379 1.236 2.904 0.934 0.475 0.902

H1 11 2.468 0.988 2.900 0.829 -0.432 0.777

Total 132 2.794 1.382 2.795 0.789 -0.001 1.211

Table 3: Statistics of the measured vs. estimated values of field unsaturated 
hydraulic conductivity, k(ho) in cm·h-1, through top soils covered with 12 lines of 
different Brachypodium distachyon, B. stacei and B. hybridum cover crops. Figure 2: Kriging map of infiltrability (cm.h-1) for the field trial design and 

semivariogram of the experimental values.



J Plant Chem and Ecophysiol 1(2): id1008 (2016)  - Page - 05

González Moreno A Austin Publishing Group

Submit your Manuscript | www.austinpublishinggroup.com

Kriging process estimates were calculated by the weighted sums of the 
adjacent topsoil k(h0) values. 

The results in the map (Figure 2) show areas with high k(h0) values, 
which were associated with higher plant density, and with a 70-cm 
distance spatial resolution. Spatial errors determined by comparing 
experimentally measured and estimated k(h0) values obtained from 
the spatial model are shown in Table 3. The effects of different factors 
on the k(h0) values, by either considering kriging-estimated errors as 
a covariate (obtained by the geostatistical analysis) or not, are shown 
in Table 4. In the first case, only plant density proved statistical 
significance, with an 88.3% contribution factor. No differences 
due to either the species type factor or nitrogen fertilization factor 
were detected. However, when tKriging process residual values 
were considered as a covariate, differences were attributed to the 
species type factor because the covariate removed soil properties 
contribution due to the existing spatial variability in the experimental 
field. Even though plant cover density had no effect on unsaturated 
k(h0), B. hybridum showed a significantly higher unsaturated k(h0) 
across topsoils than the other two species.

Brachypodium biomass partition assessment
The four B. hybridum lines had bigger seeds than the B. stacei 

and B. distachyon lines. As a result, their seed germination was better 
and their crops were more viable in dry habitats. In fact, B. hybridum 
individuals were also the biggest plants, and were affected by certain 
genetic gigantism; i.e. their plants had a high leaf proportion on a dry 
weight basis, and they obtained higher root system/aerial part ratio 
values (Table 5) and a longer specific root length (SRL = 13.08 ± 4.24 
km.kg-1).

Discussion
Brachypodium plant cover of croplands may play a relevant 

role in Mediterranean agricultural soils. For example, only 11.4% 
of Spanish agricultural soil can be used for optimum olive grove 
farming, and about a 44% cropland area is estimated to be affected 
by desertification [51], mainly because of soil erosion on slope land. 
Increasing soil water infiltrability and conductivity establishing a 
plant cover between the rows of woody crops, such as olive groves, 
vineyards, and other dry-fruit tree orchards [3], significantly reduces 

surface runoff and soil erosion [52],

A relation has been found between other cover crops, such as 
Sulla and Atriplex shrubs, and water content in soils [53], but the 
effectiveness of plant cover to reduce soil erosion has not yet been fully 
achieved when used to protect soils of woody crops in Mediterranean 
environments because of the existing water competition against 
the main crop, e.g. olive trees [3] or vineyards [54]. Nevertheless, a 
genuine crop cover based on autochthonous mountain species has 
previously been assayed providing good soil erosion reduction in 
olive groves [55]. In this essay, a cover crop based on the three species 
of the Brachypodium distachyon complex was designed to examine 
the association of its species and polyploid occurrence (B. hybridum) 
with its adaptation to environmental aridity [56].

B. distachyon can display certain germination success depending 
on both soil water content retained in its micro-pores and the surface 
of soil particles at suction, as provided by the matric water potential 
as follows: 2% germinated seeds < - 1.5 MPa <Ψm< - 0.05 MPa < 50% 
germinated seeds [57]. This property affects seed germination and 
the viability of the different Brachypodium species and ecotypes here 
in selected as cover crops. Non-dormant seeds were germinated at 
suitable temperature and matric potential [58], similar to BdTR4A 
and BdTR4B lines of Brachypodium distachyon sensu lato reported in 
Filiz et al. [59]. In fact, B. distachyon seeds maintain a high germination 
rate under wild conditions, and a high auto-seeding capacity for these 
BdTR4A and BdTR4B lines that belong to the B. hybridum species 
(2n=30 cytotype; Vogel et al. [60]). Temperature was identified as 
the major driver of their growth rate [61]. In addition, Brachypodium 
pinnatum and Brachypodium sylvaticum seeds are able to remain 
viable in the ground for 5 years [62].

The plant density of the cover crop provided by the tested 
Brachypodium distachyon complex species resulted statistically 
significant, with an 88.3% contribution to the unsaturated k(h0) value 
of the covered sandy loam compacted soil (Table 4). These results 
confirmed those addressed by Hooke and Sandercok [63], and by 
Ruiz-Colmenero et al. [54]. Nevertheless, soil infiltration responds 
to a complex mechanism that involves organic matter content 

Factor ANOVA df Mean square P-value Contribution

Ploidy
Without covariate 2 209407 0.151 6.24%

With covariate 2 139781 0.047 1.97%

N-fertilization
Without covariate 2 72781 0.415 2.17%

With covariate 2 77339 0.191 1.09%

Plant density
Without covariate 1 2962550 0.000 88.34%

With covariate 1 5129 0.736 0.07%

Covariate
Without covariate - - - -

With covariate 1 6842430 0.000 96.24%

Error
Without covariate 110 108889

With covariate 110 44760

Table 4: Analysis of variance for unsaturated soil hydraulic conductivity (k(h0), 
cm.h-1)by ploidy, NH4(NO3) fertilization, and plant density as sources of variation. 
Kriging residuals of the plots were used as a covariate alternative to perform the 
2nd ANOVA, which improved the field trial error term by a 41.1% (44760/108889). Mean Range SD

Plant density / Number of samples*

LOW CC 6 - 9 (11 - 28) ± 0.03

REG CC 18 - 31 (19 - 46) ± 0.03

Plant biomass partition

Volume 0.055 0.014 - 0.099 ± 0.027

Weight 0.102 0.028 - 0.191 ± 0.052

Specific root length (SRL),cm/mg 1.308 0.784 - 2.029 ± 0.424

Leaf weight ratio (LWR), g/g 0.413 0.484 - 0.552 ± 0.026

Steam weight ratio (SWR) ,g/g 0.300 0.286 - 0.319 ± 0.013

Root weight ratio (RWR),g/g 0.287 0.153 - 0.228 ± 0.038

Aerial weight ratio (AWR),g/g 0.713 0.771 - 0.872 ± 0,039

Table 5: Number of plants sampled in the two tested seed density values, and 
plant biomass partition main parameters measured for Brachypodium hybridum 
(2n=30) plants.

*Number of plants sampled in 400 cm2 of soil surface for 2 years. Values in 
parentheses are the number of plants in year 2. SD = standard deviations.
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change, aggregated stability [64], total porosity [65] and pore space 
connectivity [66], all of which result in increased available water 
capacity [67,68] and soil water infiltration [69].

The statistical significance shown for BD corresponded to 
the tested NT, LOW CC and REG CC treatments. BD generally 
addresses the effects of decreasing pore volume and the size of the 
pores through which water moves. Nevertheless, infiltrability and 
unsaturated k(h0) increased correlatively with soil compaction, which 
could be attributed to the development of secondary permeability, 
linked to the surfaces generated by the appearance of mini-cracks and 
root channels, where adsorbed water moved according to differences 
in matric water potential. The increase in unsaturated k(h0) after 
cropping Brachypodium hybridum plants for 2 years (2n=30), 
compared with single inbred lines, was similar to that reported by 
Rahman [70] for a sandy soil of SE Burkina Faso. The unsaturated 
k(h0) in the no-tillage bare soil treatment (NT) decreased and fell 
within the 0.679-2.906 cm.h-1 range, which is in accordance to a soil 
compaction value of BD = 1562 ± 50kg.m-3. Similar data have been 
previously reported to reduce rooting [71,72].

Soil compaction decreases the volume of pores in quantity 
and size terms; both consequences lower infiltration rates and 
unsaturated hydraulic conductivity [73-75]. Although dry BD in NT 
plots was lower than BD for LOW CC and REG CC, unsaturated 
k(h0) and cumulative infiltration were also lower in NT plots than 
for plant cover treatments. This apparent paradox could be attributed 
to the disaggregation effect of soil structure by rain erosivity and soil 
erosion ability under bare soil conditions after a dry summer, when 
the first storm episodes clog pores and soil is affected by sealing when 
it becomes wet, and by crusting when it is dry [2,4].

Macro-pores volume and soil strength both limit root elongation 
rates in soil. Soil compaction hinders root growth, thus it is a soil 
quality-related parameter [76]. BD for the three treatments (NT, 
LOW CC and REG CC) showed mechanical impedance for both 
root and shoot growth [77]. The localised soil compaction position 
determines root and, subsequently, shoot growth responses. The 
root system of Brachypodium spp. is similar to that of wheat [78], 
which is mainly cultivated under similar climate conditions to those 
of the herein considered experimental fields, and corresponds in 
plant density and soil sand content. Nitrogen fertilization was not 
statistically significant for the sets of plots located in the trial field 
because the B. distachyon complex species had no such avidity for 
the fertiliser, and its root system was able to colonize relatively poor 
soils without further aid [7,79]. Nevertheless, using Brachypodium 
hybridum as a cover crop helped reduce net leaching nitrate-N losses, 
as previously reported by Delgado and Bausch [80] in soils covered by 
malting barley and winter rye crops.

Hydraulic conductivity showed spatial variability. The second 
ANOVA was performed using the residual values obtained by Kriging 
to reduce this spatial soil disturbance, and to separate the species type 
and ploidy factors of Brachypodium distachyon. Significant differences 
in unsaturated k(h0) linked to the species type and ploidy level of 
the plant lines were difficult to assess. Nevertheless, the individuals 
of B. hybridum (2n=30) displayed better root system development 
(Table 5) compared with B. distachyon (2n=10) and B. stacei (2n=20) 
individuals; as well as a higher absolute average unsaturated k(h0) 

value was also addressed.

Differences in biomass partition results could be attributed to soil 
compaction, as previously reported by Atwell [81] for wheat plants 
that grew in compacted soils in the U.K., where the RWR/SWR ratio 
was limited due to seminal root axes growth inhibition. Ecotypes 
of Brachypodium hybridum 2n=30 tend to be larger than ecotypes 
of Brachypodium distachyon 2n=10 [26]. Spanish Brachypodium 
hybridum grows faster and produces more biomass than polyploid 
lines [16,25]. The allotetraploid Brachypodium hybridum generally 
adapts better to drought conditions than the diploid Brachypodium 
distachyon due to its eco-physiological performance, including gas 
exchange, photosynthesis [2] and its “escapist” strategy to cope with 
aridity situations associated with water stress [56]. Plants with long 
roots and vast aerial green cover have also shown advantages for soil 
and water conservation, such as Brachypodium hybridum and the 
shrub Atriplex halimus, which have previously been addressed to 
increase soil macro-porosity [53,82]. Root growth is also proportional 
to the development of the aerial part [83]. Therefore, big plants 
develop big root systems, which improves soil water infiltration 
because the necessary preferential channels for water movement are 
precisely provided by root growth. This has already been shown for 
two commercial varieties of B. distachyon (Ibros and Zulema), which 
have been tested for interlines plant cover in olive groves in Spain 
[15]. B. hybridum also increased Soil Organic Matter content (SOM) 
near the root channel surface after 2 years of crop growing thanks to 
dead root decomposition and root channels abundance. 

Conclusion
In summary, B. distachyon ecotypes can protect soil and improve 

water soil infiltration. The cover of Brachypodium distachyon, B. 
stacei and B. hybridum plants positively affects soil properties and 
water conservation by reducing rain erosion effects. The aerial part 
of vegetation acts as a protective shelter against rainwater drop 
tapping, which would otherwise pull off and move soil fine particles 
of organic matter and clay. The hidden-half root part acts as a 
swelling and shrinking agent during wetting and drying processes, 
which increases soil-connected macro-pores where water moves. The 
use of residual values that derive from geostatistical analyses ensures 
relations between soil infiltration and plant cover density. Spatial 
analysis can be a new method for evaluating soil characteristics 
variability in plant breeding essays. A long developed Specific Root 
Length (SRL, km.kg-1) is significant for increasing macro-porosity 
from death gross and medium roots, where water moves and is 
adsorbed on the surface of these root channels; whereas soil organic 
matter increases from fine roots decomposition. The adaptation of B. 
hybridum to Mediterranean environments characterizes this species 
as an interesting alternative to be used as a cover crop in woody crops, 
such as olive groves, vineyards or dry-fruit croplands.
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