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Abstract

The versatile physical properties of heterogeneous materials are intimately 
related to their complex microstructures, which can be statistically characterized 
and modeled using various spatial correlation functions containing key structural 
features of the material’s phases. An important related problem is to inversely 
reconstruct the material microstructure from limited morphological information 
contained in the correlation functions. Here, we present in details a generalized 
lattice-point (GLP) method based on the lattice-gas model of heterogeneous 
materials that efficiently computes a specific correlation function by updating the 
corresponding function associated with a slightly different microstructure. This 
allows one to incorporate the widest class of lower-order correlation functions 
utilized to date into the Yeong-Torquato stochastic reconstruction procedure, 
and thus enables one to obtain much more accurate renditions of virtual material 
microstructure, to determine the information content of various correlation 
functions and to select the most sensitive micro structural descriptors for the 
material of interest. The utility of our GLP method is illustrated by modeling and 
reconstructing a wide spectrum of random heterogeneous materials, including 
“clustered” RSA disks, a metal-ceramic composite, a two-dimensional slice 
of Fontainebleau sandstone and a binary laser-speckle pattern, among other 
examples.

procedure enables one to generate accurate digitized representations 
(images) of the microstructure from lower-order correlation functions 
obtainable in experiments or from theoretical considerations, and 
subsequent analysis can be performed on the images to obtain 
macroscopic properties of the material without damaging the sample. 
Reconstruction of a three-dimensional medium using information 
extracted from two-dimensional plane cuts through the material is 
another application of great practical value, especially in petroleum 
engineering, biology and medicine, because in many cases only two-
dimensional information such as a micrograph is available. One can 
also determine how much information is contained in the correlation 
functions by comparing the original and reconstructed media. 
Construction often refers to generating realizations of heterogeneous 
materials from a set of hypothetical correlation functions, which 
enables one to test the realizability of various types of hypothetical 
functions, which is an outstanding theoretical question [36,37]. 
Recently, the (re)construction techniques have been employed to 
identify and categorize heterogeneous materials based on their 
correlation functions [26,27] and to model a wide spectrum of 
engineering materials, including sandstone [38,39], porous metal/
ceramics composite [40], alloys [41-44], and textile composites 
[45,46]. 

A significant number of reconstruction studies focus on the 
standard two-point correlation function S2(r), which gives the 
probability of finding two points separated by a displacement vector 
r in the phase of interest. This statistical descriptor can be obtained 
in small-angle X-ray scattering experiments [47]. As pointed out 

Introduction
Heterogeneous materials (or random media) are those composed 

of domains of different materials or phases or the same material 
in different states. Such materials are ubiquitous in nature and 
in man-made situations; examples include sandstones, concrete, 
animal and plant tissue, gels and foams and distribution of galaxies 
[1-9]. Their versatile macroscopic (e.g., transport, mechanical and 
electromagnetic) properties which are of great interest in various 
engineering applications are intimately related to the complex 
material microstructure [1-3,10-12]. Accordingly, a larger number 
of statistical morphological descriptors have been devised to 
quantify the key structure features of different material systems [13-
18]. One family of such descriptors includes the standard n-point 
correlation functions Sn(x1; . . . ; xn) [1]. In particular, Sn gives the 
probability of simultaneously finding n points with positions x1; . . 
. ; xn, respectively, in one of the phases of the media. Of particular 
interest are the lower-order Sn (such as S1, S2 and S3), which have been 
computed for various models of heterogeneous materials and, as a 
result, excellent estimations of the effective properties of these media 
have been obtained under certain situations [1]. Recently, lower order 
correlation functions have been also been employed in computational 
material design schemes [19-21]. 

In the study of heterogeneous materials, an intriguing and 
important inverse problem is the reconstruction of these media from 
a knowledge of limited microstructural information (a set of lower-
order correlation functions) [22-35]. An effective reconstruction 
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in Reference [48], S2 alone does not provide sufficient information 
to uniquely determine the microstructures in general; and it is not 
clear at all that including higher order n-point correlation functions 
such as S3, S4 etc. would lead to better reconstructions, since these 
quantities only introduce local information about n-point polygons 
(polyhedra). As noted in Reference [1], one can never reconstruct the 
target microstructure perfectly using limited information, i.e., such a 
reconstruction is generally non-unique. Thus, the objective here is not 
the same as that of data decompression algorithms which efficiently 
restore complete information, but rather to generate realizations of 
random microstructure with the key morphological features depicted 
by the correlation functions. Instead of the aforementioned natural 
and obvious extension to higher-order versions of S2, one could 
look at additional lower-order correlation functions other than the 
standard S2 for a better signature of the microstructure.

In Reference [48], we introduced a novel reconstruction 
procedure called the Generalized Lattice-Point (GLP) method, 
which enables one to incorporate the widest class of lower-order 
correlation functions examined to date. The GLP method allows one 
to generate the accurate renditions of the media of interest using 
various combinations of the correlation functions and to determine 
the most sensitive statistical descriptors for the materials of interest. 
Moreover, we showed through several illustrative examples in [48] 
that the two-point cluster function C2(r), which gives the probability 
of finding two points separated by a displacement vector r in the same 
cluster [49] of the phase of interest, is a superior statistical descriptor 
to a variety of “two-point” quantities besides S2, including surface 
correlation functions Fss and Fsv, the pore-size function F, lineal-
path function L and the chord-length density function p [1] (all of 
which are defined precisely in Sec. 2). However, the details of the GLP 
method were not provided in Reference [48]. In this paper, we present 
the algorithmic details of the generalized lattice-point method. In 
particular, the discretized heterogeneous material is considered as a 
lattice-gas system [27], in which pixels with different local states are 
“molecules” of different “gas” species, or a point process on a lattice. 
The correlation functions of interest can be obtained by binning the 
separation distances between the selected pairs of molecules from 
particular species. For simplicity we only provide the formalism for 
binary random media here. The generalization of the methodology 
to multi-phase microstructures is straightforward. The GLP method 
is combined with the Yeong-Torquato stochastic reconstruction 
technique [22,23] to evolve a trial microstructure to match the 
specific target correlation functions as accurately as possible. The 
GLP method is necessary to efficiently update the correlation 
functions of the system during the reconstruction process to make 
it computationally feasible to incorporate those functions into the 
reconstruction: direct re-sampling is too computationally expensive 
to implement in practice.

To demonstrate its utility, we apply the GLP method to 
reconstruct a wide spectrum of random systems from a wide range 
of correlation function, including “clustered” RSA disks, a metal-
ceramic composite, a two-dimensional slice of a Fontainebleau 
sandstone and a binary laser-speckle pattern, among other examples. 
To quantitatively ascertain the accuracy of a reconstruction, 
correlation functions other than the targeted ones are measured 
and compared to those of the original medium and the lineal-path 

function L(r) is used here. Except for the laser-speckle pattern, 
which processes a multi-scale structure with percolating phases, 
reconstructions incorporating C2 always produce the most accurate 
renditions of the target microstructures. This is consistent with our 
conclusion in Reference [48] that incorporation of C2 significantly 
reduces the number of compatible microstructures, even superior 
to certain higher order n-point correlation functions. Statistical 
descriptors that could be used to characterize multi-scale structures 
are also suggested.

The rest of the paper is organized as follows: In Sec. 2, we define 
and discuss various correlation functions used in the reconstructions. 
In Sec. 3 and 4, we provide the details of the GLP method and how to 
incorporate it into the general stochastic reconstruction procedure. In 
Sec. 5, we apply the methodology to reconstruct a variety of random 
media. In Sec. 6, we make concluding remarks.

Definition of Correlation Functions
Consider a d-dimensional two-phase (binary) microstructure in 

which phase i has volume fraction φi (i = 1; 2) and is characterized by 
the indicator function I(i)(x) defined as

( ) 1   in phase 
( )

0     otherwise
i i

I 
= 


x
x                             (1)

The two-point correlation function is defined as
( ) ( )( )

2 1 2 1 2( , ) ( ) ( )i iiS I I=< >x x x x                         (2)

where <> denotes ensemble average. This correlation function 
is the probability of finding two points x1 and x2 both in phase i. 
hence forth, we will drop the superscript “i” and only consider 
the correlation functions for the phase of interest. For statistically 
homogeneous and isotropic microstructures, which is the focus of the 
rest of the paper, two-point correlation functions will only depend 
on the distance r = | x1 - x2| between the points and hence S2(x1; x2) = 
S2(r). In the absence of long-range order, which is the most common 
occurrence, S2 rapidly decays to Á2, i.e., the probability of finding two 
points independently in the phase of interest.

The surface-void and surface-surface correlation functions are 
respectively defined as

Fsv(r) = <M(x1)I(x2)> ; Fss(r) = <M(x1)M(x2)> ;                (3)

where ( ) | ( ) |M I= ∇x x  is the two-phase interface indicator 
function. By associating a finite thickness with the interface, Fsv and Fss 
can be interpreted, respectively, as the probability of finding x1 in the 
“dilated” interface region and x2 in the void phase and the probability 
of finding both x1 and x2 in the “dilated” interface region but in the 
limit that the thickness tends to zero [1].

The lineal-path function L(r) is the probability that an entire line 
of length r lies in the phase of interest, and thus contains a coarse level 
of connectedness information, albeit only along a lineal path [1,50]. 
The chord-length density function p(r) is the probability density 
function associated with finding a “chord” [51] of length r in the 
phase of interest and is directly proportional to the second derivative 
of L(r) [52]. The pore-size function F(r) is related to the probability 
that a sphere of radius r centered at a random point can lie entirely 
in the phase of interest [1], and therefore is the “spherical” version of 
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the lineal measure L.

The two-point cluster function embodies a greater level of 
connectedness information than either L or F. In particular, C2(r) 
is defined to be the probability of finding two points separated by 
a distance r in the same cluster of the phase of interest [49,53], as 
schematically shown in Figure 1. When the phase is not percolating, 
C2 is short ranged and decays to zero rapidly. As the size of the clusters 
in the systems increases, C2 becomes a progressive longer-ranged 
function such that its volume integral diverges at the percolation 
threshold [1]. Thus C2 is extremely sensitive to topologically 
connectedness information and it takes into account all possible 
connecting paths, not only the “lineal” and “spherical” ones.

Sampling the Correlation Functions: The 
Generalized Lattice-Point Method

The aforementioned probabilistic interpretations of the 
correlation functions enable us here to develop a general sampling 
method for reconstruction of statistically homogeneous and isotropic 
digitized microstructures using the “lattice-gas” formalism described 
in detail in Reference [27]. In the “lattice-gas” formalism, the pixels 
have two local states, i.e., they are either hard “lattice-gas molecules” 
or unoccupied lattice sites. Here we generalize the formalism to 
include multiple local states and “gas” species: different pixel values 
correspond to distinct local states and pixels with the same value 
are considered to be “molecules” of the same “gas” species [54,55]. 
The correlation functions of interest can be obtained by binning the 
separation distances between the selected pairs of molecules from 
particular species.

Standard Two-Point Correlation Function
We denote the number of lattice-site separation distances 

of length r by NS(r) and the number of molecule-pair separation 
distances of length r by NP (r). Thus, the fraction of pair distances 
with both ends occupied by the phase of interest, i.e., the two-point 
correlation function, is given by S2(r) = NP (r)/NS(r).

Two-Point cluster function

To obtain C2, one needs to partition the “molecules” into different 
subsets Гi (“species”) such that any two molecules of the same species 
are connected by a path composed of the same kind of molecules, i.e., 
molecules that form a cluster, which is identified using the “burning” 
algorithm [56]. The number of pair distances of length r between the 
“molecules” within the same subset Гi is denoted by Ni

P (r). The two-
point cluster function is then given

by C2(r) = Σi N
i
P (r)/ NS(r).

Surface correlation functions
The calculation of Fss and Fsv requires partitioning the “molecules” 

into two subsets: the surface set ГS containing only the “molecules” on 
the surfaces of the clusters and the volume set ГV containing the rest. 
In a digitized medium, the interface necessarily has a small but finite 
thickness determined by the pixel size. Thus, the surface-surface and 
surface-void correlation functions can be regarded as probabilities 
that are given by Fss = Nss(r)/NS(r) and Fsv = Nsv(r)/NS(r), respectively; 
where Nss(r) gives the number of distances between two surface 
molecules with length r and Nsv(r) is the counterpart for pairs with 
one molecule on the surface and the other inside the cluster.

Pore-size Function and Lineal-Path Function
The pore-size function F(r) can be obtained by integrating 

the pore-size probability density function f(r), which provides the 
distribution of the maximal distance from a randomly selected point 
in the “pore” phase to the two-phase interface. We note here that 
“pore” phase is just used to refer a generic phase which is necessarily 
to be void. To compute the probability density function f (and thus 
the pore-size function F), the pixels are again partitioned into the 
surface set ГS and the volume set ГV. Then the maximal distance from 
each pixel in ГV to the associated boundary pixel in ГS is computed 
and a histogram is generated to obtain f. A numerical integration of f 
will lead to the pore-size function F.

The lineal path function L (and hence the chord-length density p) 
is computed by only sampling along orthogonal directions consistent 
with the underlying lattice of the digitized microstructure. This 
method has been well documented in literature [22,23,54,55], and 
hence will not be elaborated here.

Stochastic Microstructure Reconstruction
The Yeong-Torquato Procedure

The stochastic optimization reconstruction procedure introduced 
by Yeong and Torquato [22,23] is ideally suited here because it can 
incorporate any types of statistical descriptors. The Yeong-Torquato 
procedure has become a popular reconstruction technique [57-61] 
because it is both robust and simple to implement. Consider a given 
set of correlation functions 1( ,..., )n nf r rα of the phase of interest 
that provides partial information on the microstructure of the 
medium. The superscript α denotes the type of correlation functions, 
and the subscript n denotes the order. The information contained 
in 1( ,..., )n nf r rα  could be obtained either from experiments or 
it could represent a hypothetical medium based on simple models. 
In both cases we would like to recover or generate the underlying 
microstructure. In the former case, the formulated inverse problem 
is frequently referred to as a “reconstruction” procedure, and in the 
latter case as a “construction”. The (re)construction problem can be 

Figure 1: Probability interpretation of C2 and S2. The point pair separated by 
r1 contributes to both C2 and S2; the point pair separated by r2 only contributes 
to S2.
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formulated as an optimization problem in which the discrepancies 
between the statistical properties of the generated structure and the 
imposed ones are minimized. This is achieved by introducing the 
“energy” function E, defined as a sum of squared differences between 
target correlation functions which we denote by nf

α
, and those 

calculated from generated structures, i.e.,

                               (4)

For every generated structure (configuration), there is a set 
of corresponding 1( ,..., )n nf r rα . If we consider every structure 
(configuration) as a “state” of the system, E can be considered as a 
function of the states. The optimization technique suitable for the 
problem at hand is the method of simulated annealing, the concept 
of which is based on a well-known physical fact: if a system is heated 
to a high temperature T and then sufficiently slowly cooled down to 
absolute zero, the system equilibrates to its ground state. At a given 
temperature T, the probability of being in a state with energy E is given 
by the Boltzmann distribution P(E) ~ exp(-E/T ). At each annealing 
step k, the system is allowed to evolve long enough to equilibrate 
at T(k). The temperature is then lowered according to a prescribed 
annealing schedule T(k) until the energy of the system approaches 
its ground state value within an acceptable tolerance. It is important 
to keep the annealing rate slow enough in order to avoid trapping in 
some metastable state.

For our problem, the discrete configuration space includes 
the states of all possible pixel allocations. Starting from a given 
state (current configuration) with energy Eold, a new state (trial 
configuration) can be obtained by randomly moving an arbitrarily 
selected pixel (“gas molecule”) of the phase of interest. This simple 
evolving procedure preserves the volume fraction of all involved 
phases and guarantees ergodicity in the sense that each state is 
accessible from any other state by a finite number of steps. However, 
in the later stage of the procedure, biased and more sophisticated 
pixel (“molecule”) selection rules, i.e., surface optimization, could be 
used to improve the efficiency [23]. Then the correlation functions of 
the trial configuration are computed to obtain the energy Enew of this 
new state. Whether the trial configuration will be accepted or rejected 
is based on the Metropolis criterion: the acceptance probability P is 
given by

( ) min 1,   exp expold newE EP old new
T T

    → =     
    

               
      (5)

The temperature T is initially chosen so that the initial 
acceptance probability of trial configurations with Enew > Eold averages 
approximately 0.5. An inverse logarithmic annealing schedule which 
decreases the temperature according to T(k) ~ 1/ln(k) would in 
principle evolve the system to its ground state. However, such a slow 
annealing schedule is difficult to achieve in practice. Thus, we will 
adopt the more popular and faster annealing schedule T(k)/T (0) = λk, 
where constant λ must be less than but close to unity. This may yield 
suboptimal results, but, for practical purposes, it will be sufficient. The 
convergence to an optimum is no longer guaranteed, and the system 
is likely to freeze in one of the local minima if the equilibration and 
annealing rate are not adequately chosen.

Cluster and Surface Events: Efficient Updating Correlation 
Functions

The aforementioned stochastic reconstruction procedure requires 
generating and sampling a large number of configurations. The 
efficient and isotropic sampling method introduced in Sec. 3.A also 
enables one to quickly re-compute the desired correlation functions 
of the new configuration based on the old ones, and thus make the 
incorporation of those functions feasible: direct re-sampling is 
too computationally expensive to implement in practice. In this 
section, we present the details for efficiently updating the correlation 
functions.

A distance matrix Dij storing the separation distances of all 
“molecule” pairs is established when the system is initialized and the 
“molecules” are partitioned into different “species” depending on 
their positions. The quantities NP, Ni

P, Nss, and Nsv can be obtained by 
binning the distances of corresponding pairs. For NP one simply bins 
the distances of all “molecule” pairs. For example, for Ni

P one needs 
to consider only the distances between two “molecules” belonging 
to the same cluster; for Nsv and Nss the distances between “molecule” 
pairs in which one “molecule” belongs to the surface set and the other 
belongs to the volume set, and the distances between “molecules” on 
the surface, respectively, are considered. The motion of the randomly 
chosen “molecule” could result in changes of the distances between 
it and all the other “molecules” as well as two kinds of “species” 
events. The first kind involves breaking and combining clusters: if 
the chosen “molecule” happens to be the “bridge” between two sub-
clusters, removing the “bridge” would make the original single cluster 
break into two pieces, i.e., a new “species” is generated; similarly, the 
reverse of the above process would lead to combination of clusters 
and annihilation of “species”. The other kind of “species” event is the 
transition of “molecules” between surface and volume “species”: if a 
surface “molecule” is removed, certain volume “molecules” would 
now constitute the new surface and vice visa; the chosen “molecule” 
could also undergo such transitions depending on its original and 
new positions, e.g., an volume “molecule” originally inside a cluster 
could be moved outside and becomes a surface “molecule”.

The old contributions of the number of distance pairs to NP, Ni
P, Nss, 

and Nsv from the “molecules” undergone the “species” transitions due 
to the moved “molecule” are computed and subtracted accordingly; 
the new contributions can be obtained by binning the distances of 
“molecule” pairs belonging to particular new “species” and are added 
to the corresponding quantities. This method only requires operations 
on a finite small number of “molecules”, including retrieving and 
binning their separation distances and updating the “species” sets. 
The distance matrix Dij would speed up the former process; however, 
for very large systems (including millions of “molecules”) storing Dij 
requires very large memory space on a computer. An alternative is to 
re-compute the distances involving the “molecules” undergone the 
“species” transitions for every trial configuration instead of explicitly 
storing all distances. This may slightly slow down the process but 
make it easy to handle very large systems. Correlation functions of 
the new configuration could be obtained by dividing updated NP, 
Ni

P, Nss, and Nsv by NS, as discussed in Sec. 3.A. The complexity of 
the algorithm is linear in the total number of “molecules” within the 
system.
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Applications
The generalized lattice-point method has been employed to 

reconstruct a wide spectrum of statistically homogeneous and isotropic 
random media, including both theoretical model microstructures 
[1] and digitized representations of real materials. Each of the two-
point functions considered depends only on scalar distance. In the 
following, we will present in details several reconstruction examples 
to illustrate the utility of the GLP method, which include “clustered” 
RSA disks (explained below), a metal-ceramic composite [62], a two-
dimensional slice of a Fontainebleau sandstone [54,55] and a laser-
speckle pattern [27].

Reconstructions from various combinations of the standard two-
point correlation function S2(r), the surface correlation functions Fss(r) 
and Fsv(r) and the two-point cluster function C2(r) are shown here. 
(Since the pore-size function F(r) only contains partial connectedness 
information, reconstructions based on F are expected to be inferior 
to those incorporated C2.) For any target configuration, one must 
choose different cooling schedules for different choices of the set of 
target correlation functions in order to achieve the same final energy 
E (or error), which is of order 108-1011, depending on the example. 
The accuracy of a reconstruction can be ascertained quantitatively 
by measuring correlation functions other than the targeted ones 
and comparing the other correlation functions to those of the 
original medium. Here we measure the lineal-path function L(r) of 

each reconstruction and compare with that sampled from the target 
media. We will see the results clearly indicate that when the phase of 
interest is not percolating, C2(r) not only contains appreciable more 
microstructural information than S2, but more than a variety of other 
“two-point” quantities.

“Clustered” RSA Disks
Figure 2 shows a two-dimensional realization of packing circular 

disks and the target correlation functions of the particle phase 
(shown in blue). To obtain the target system in Figure 2(a), a random 
sequential addition (RSA) distribution of hard disks is generated [1] 
and then several randomly chosen disks are brought into proximity 
with one another to form complex “clusters”, and thus are called 
“clustered” RSA disks.

Figure 3 shows that the reconstruction using S2 alone 
overestimates clustering in the system and incorrectly yields a 
percolating “particle” phase. Thus, although S2 of the “particle” phase 
of the reconstructed realization matches that of the target one with 
very small error (E~109), such information is insufficient to get a 
good reconstruction. Incorporating both S2 and surface correlation 
functions Fss or Fsv leads to better renditions of the target system but 
the reconstructions still overestimate the degree of clustering. On 
the other hand, incorporating C2 of the particle phase yields the best 
reconstruction. Although the latter is still not perfect, it is clear that it 
has the essential features of the actual dispersion, such as the presence 

Figure 2: (a) Target configuration: a “clustered” RSA disk system as described in the text. The volume fraction of the particle phase (shown in blue) is 0.523 and 
the volume fraction of the void phase (shown in white) is 0.477. (b) The correlation functions of target and reconstructed systems: various tick curves correspond 
to the target functions; the thin solid curves correspond to the reconstructed functions.

Figure 3: Reconstructed “clustered” RSA disk systems: (a) S2-alone reconstruction. (b) S2-Fss reconstruction. (c) S2-Fsv reconstruction. (d) S2-C2 reconstruction.
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of individual circular disks as well as small clusters. The lineal-path 
functions of the target and reconstructed systems are shown in Figure 
4. Again, L of the S2-C2 hybrid reconstruction matches the target 
lineal-path function (unconstrained in the reconstruction) much 
better than the others.

Metal-Ceramic Composite
A two-dimensional digitized image of a boron-carbide/

aluminum (B4C/Al) interpenetrating composite and the target 
correlation functions of the aluminum phase (shown in white) are 
shown in Figure 5 [23,56]. Figure 6 shows the reconstructions, which 
all well match the target image visually. However, the reconstruction 
incorporating C2 has the minimum sum of absolute discrepancies 
between the measured and target lineal-path functions (Figure 7), 
indicating it is superior to other statistical descriptors utilized. The S2-
alone reconstruction again overestimates the clustering in the system, 
leading to larger values of L for intermediate range of r.

Fontainebleau Sandstone

Figure 8(a) shows a tomographic image of a two-dimensional 
(2D) slice of Fontainebleau sandstone [54,55,63]. Sandstone is a 
porous material that has important applications in geophysical 
science and petroleum engineering. The volume fraction (porosity) 
and the topology of the pore phase (shown in white) are crucial to the 
physical properties of the sandstone, such as fluid permeability and 
relaxation times. The correlation function of the pore phase is shown 
in Figure 8(b).

The reconstructions are shown in Figure 9. In two dimensions, 
the pore phase corresponds to topologically disconnected regions 
enclosed by complicated concave contours. This feature is best 
captured in the S2-C2 reconstruction. Although the average size of 
the pore regions in other reconstructions also match the target well, 
as can be seen from the comparison of the lineal-path functions 
(Figure 10), their shapes are not very satisfactory. Note that even the 
discrepancies of the S2-alone reconstructions of the metal-ceramic 
composite and the Fontainebleau sandstone are not that significant as 
in the first two examples, which is consistent with our conclusion in 
Reference [27] that S2 is able to model the structures the two materials 
to a high accuracy.

Laser-Speckle Pattern
In all the aforementioned examples, the phases of interest are 

not percolating so that C2 could provide essential connectedness 
information and lead to the best reconstructions. When percolating 
clusters appear in the system, C2 will become long ranged and contain 
less additional structural information. In the limit that all pixels 
belong to a single percolating cluster, C2 and S2 become identical.

In this section, we study a binary laser-speckle pattern exhibiting 
a multi-scale structure, in which both phases are percolating [64]. 
In Reference [27] we pointed out that the structural information 
contained in S2 is averaged out over the several length scales of the 
pattern and the S2-alone reconstruction produced a typical Deybe-
random microstructure (containing clusters of “random shapes and 
sizes”) [26] associated with the exponentially decreasing S2, instead of 
generating a multi-scale pattern.

Figure 11(b) shows the target correlation functions of the red 

Figure 4: The lineal-path function L(r) of the target and reconstructed 
systems.

Figure 5: (a) Target configuration: a digitized image of a boron-carbide/aluminum composite. The black phase is boron carbide with volume fraction 0.647 and the 
white phase is aluminum with volume fraction 0.353. (b) The correlation functions of target and reconstructed configurations: various tick curves correspond to the 
target functions; the thin solid curves correspond to the reconstructed functions.
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phase. It can be seen that C2 is long-ranged and almost identical with 
S2 except for large r values. This indicates that the medium contains 
a single large cluster composing most of the pixels; the discrepancies 
between C2 and S2 are due to the “background noise”, i.e., individual 
pixels dispersed in the white phase. Also the information in C2 is 
averaged over the length scales. These could all make C2 less efficient 
than in the other examples.

Indeed as we can see in Figure 12, S2-alone and S2-C2 
reconstructions produce similar microstructures of Debye-random 
type. The reconstructions using surface correlation functions are 
better in the sense that they contain compact regions of similar 
sizes with those in the target medium, as can be seen from the 
sampled lineal-path functions (Figure 13). In other words, in the 
best reconstruction of the laser-speckle pattern we obtained, only 
the structures on the largest length scale could be resolved; the 
filamentary structures connecting the compact clusters in the target 
medium seem to mix up with the “noise” pixels in the reconstructed 
media and are not observed.

We emphasize that the failure of C2 in producing accurate 
renditions of the target medium here is due to two reasons: 
percolation of the phases and average of the length scales. The former 

Figure 6: Reconstructed configurations of the boron-carbide/aluminum composite: (a) S2-alone reconstruction. (b) S2-Fss reconstruction. (c) S2-Fsv reconstruction. 
(d) S2-C2 reconstruction.

Figure 7: The lineal-path function L(r) of the target and reconstructed 
configurations.

Figure 8: (a) Target configuration: a microstructural image of a slice of a Fontainebleau sandstone. The volume fraction of the rock phase (shown in gray) is 0.825 
and the volume fraction of the porous phase (shown in white) is 0.175. (b) The correlation functions of target and reconstructed configurations: various tick curves 
correspond to the target functions; the thin solid curves correspond to the reconstructed functions.
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could be possibly resolved by defining different pixel-connectivity 
rules. However, it is the latter makes the medium extreme difficult to 
reconstruct. To efficiently characterize multi-scale media, descriptors 
carrying non-trivial information on different length scales are 
necessary.

Conclusion
In this paper, we provide the algorithmic details of the generalized 

lattice-point method for heterogeneous material reconstruction. The 
GLP method based on the lattice-gas model of digitized random 
media enables one to incorporate the widest class of lower-order 
correlation functions utilized to date into the Yeong-Torquato 
stochastic reconstruction technique. Thus one could use various 
combinations of those correlation functions to generate renditions 
of the microstructures of interest with high accuracy and determine 
the most sensitive statistical descriptors for the material of interest. 
To illustrate its utility, we apply the GLP procedure to reconstruct a 
wide spectrum of random media, including “clustered” RSA disks, a 
metal-ceramic composite, a two-dimensional slice of a Fontainebleau 

Figure 9: Reconstructed configurations of the slice of the Fontainebleau sandstone: (a) S2-alone reconstruction. (b) S2-Fss reconstruction. (c) S2-Fsv reconstruction. 
(d) S2-C2 reconstruction.

Figure 10: The lineal-path function L(r) of the target and reconstructed 
configurations.

Figure 11: (a) Target configuration: a digitized image of a binary laser-speckle pattern. The volume fraction of the red phase is 0.639, and the volume fraction of 
the white phase is 0.361. (b) The correlation functions of target and reconstructed configurations: various tick curves correspond to the target functions; the thin 
solid curves correspond to the reconstructed functions.
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sandstone and a binary laser-speckle pattern, among other examples. 
Except for the laser-speckle pattern with a multi-scale microstructure 
with percolating phases, reconstructions incorporating C2 always give 
the best renditions of the target medium. We note that a few past 
investigations have recognized the need to use descriptors containing 
connectedness information, such as the lineal-path function L [22,23] 
and the pore-size distribution function F [57]. Those quantities 
only crudely reflect this crucial topological information and the 
reconstructions using C2 are always found to be much more accurate 
than those involving L or F.

As we pointed out in [48], C2 is a superior microstructural signature 
because it is extremely sensitive to topologically connectedness 
information and becomes a progressively longer-ranged function as 
clusters increase in size in the system. By contrast, the quantities S2, 
L, F, Fss and Fsv are insensitive to crossing the percolation threshold. 
Thus, for statistically homogeneous and isotropic media in which the 
phase of interest was below its percolation threshold and contains 
essentially compact clusters of that phase, incorporation of C2 in 
reconstructions of such media could provide renditions of the target 
structure with heretofore unattained accuracy.

The unsuccessful reconstructions of the laser-speckle pattern are 
mainly because that structural information on different length scales 
are averaged out, and currently only the structures on the largest scale 
can be resolved. To capture the salient features of the multi-scale 
structures, statistical descriptors containing information on different 
length scales are necessary. The fluctuations of local properties, such as 
local volume fraction [65-67] or surface area are possible candidates, 
which give the fluctuations of local properties for different sized 
observation windows. Interestingly, our preliminary calculations 
show that these quantities could indeed capture structural features on 
different length scales.

Although we focused on the reconstruction problems here, the 
potential applications of the new method in the constructions should 
not be underestimated. Besides S2, the properties of other “two-point” 
function are less well studied. The conditions (both necessary and 
sufficient) for a hypothetical correlation function to be realizable, 
i.e., whether it corresponds to a particular microstructure, have not 
been systematically considered. Progress in these related topics would 
open new doors for many fruitful applications. Our reconstruction 
technique is ideally suitable to explore the nature of these “two-
point” functions and would lead to a better understanding of their 
properties. Moreover, given a particular correlation function such 
as the two-point correlation function, one could generate a family 
of microstructures with identical S2 but different C2 or Fsv, etc., 
which could lead to development of new schemes to model complex 
microstructures.
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