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Abstract

A method is applied for the study of the field distributions in metal matrix fiber 
reinforced composites with periodic microstructure in which localized damage 
exists in the form of complete or partial fiber loss and crack. In addition, the 
behavior of ceramic/metal periodically layered composites with a single broken 
ceramic layer is determined. The pro-posed analysis is based on continuum 
damage mechanics considerations, and the method of solution combines three 
distinct approaches. In the first one, referred to as the representative cell method, 
the periodic composite domain is reduced, in conjunction with the discrete Fourier 
transform to a finite domain problem of a single representative cell. This method 
has been previously applied on linear thermoelastic, smart and electrostrictive 
composites, but is presently extended and applied on elastoplastic composites 
(presently deformation and incremental plasticity). In the second approach, the 
appropriate far-field boundary conditions in the transform domain are applied in 
conjunction with the high-fidelity generalized method of cells micromechanical 
model for the prediction of the macroscopic behavior of the inelastic composite. 
The third approach consists of the application of the inelastic higher-order 
theory for the computation of the elastoplastic field in the transform domain. An 
inverse transform provides the actual field. The effect of damage is included in 
the analysis in the form of eigenstresses which are a priori unknown. Hence an 
iterative procedure is employed to obtain a convergent solution.

The proposed method is verified by a comparison with an analytical solution, 
and several applications illustrate the applicability of the method for metal matrix 
composites with localized damage in the form of a crack or fiber loss.

Keywords: Localized damage; Cracked fiber reinforced materials; 
Representative cell method; High-Fidelity generalized method of cells; Inelastic 
higher-order theory; Elastoplastic composites

of the application of the higher-order inelastic theory, Aboudi et al. 
[4], for the computation of the field in the transform domain. An 
inverse transform provides the actual field. The effect of damage is 
included in the analysis in the form of eigenstresses which are a priori 
unknown. In Ryvkin and Aboudi [5], this approach has been also 
proven to be successful and effective in the analysis of cracked layered 
elastic composites, where one or several combinations of a transverse 
and two longitudinal cracks (H-cracks) caused branching have been 
investigated. Furthermore, it has been successfully applied for the 
prediction of the field distributions in electro-magneto-thermo-
elastic composites with cracks, cavities and inclusions, Aboudi [6]. 
A brief review of various methods for the analysis of localized effects 
in thermoelastic composites has been recently presented by Aboudi 
and Ryvkin [3].

Thus far, the representative cell method has been employed in the 
analysis of linearly thermoelastic [1], electro-magneto-thermo-elastic 
[6] and electrostrictive (nonlinear) [7] composites. In the present 
investigation, this method is extended to elastoplastic materials 
(presently incremental and deformation elastoplasticity). In addition, 
the approach of Aboudi and Ryvkin [1] in analyzing localized damage 
in composites is presently further extended to enable the prediction 
of the behavior of elastoplastic periodic composites which include 
localized damage in the form of a cavity (a fiber loss) or a crack. 
In this approach, the plasticity effects are represented in the form 
of eigenstresses which extend over the entire considered region. In 

Introduction
The micromechanical analysis of composites with periodic 

microstructure is usually carried out by identifying and analyzing a 
repeating unit cell. However, when localized effects such as one or 
several cracks occur in the composite, the periodicity is lost and its 
behavior cannot be determined directly by analyzing a repeating unit 
cell. If these effects are nevertheless included in the analysis of the 
repeating unit cell, the resulting behavior would correspond to that of 
a composite with periodic (i.e., not localized) effects which obviously 
is an unrealistic situation.

In a recent article, Aboudi and Ryvkin [1] proposed the analysis of 
linearly elastic composites with localized damage by representing the 
effect of the latter by eigenstresses. This analysis combines continuum 
damage mechanics considerations with three different approaches. 
In the first one the idea of using the eigenstresses to represent the 
nonlinear effects enables application of the representative cell method, 
Ryvkin and Nuller [2], based on the discrete Fourier transform 
which is applicable to linear problems. As a result the initial problem 
formulated for a domain comprising a large number of cells is reduced 
to a problem for a single representative cell. Appropriate far-field 
boundary conditions (which are not influenced by the localized effects) 
in the transform domain are applied in conjunction with the high-
fidelity generalized method of cells (HFGMC) [3]) micromechanical 
model which forms the second approach. The third approach consists 

Research Article

Localized Effects in Periodic Elastoplastic Composites
Jacob Aboudi* and Michael Ryvkin
Department of Engineering, Tel Aviv University, Israel

*Corresponding author: Jacob Aboudi, Department 
of Engineering, School of Mechanical Engineering, Tel 
Aviv University, Ramat Aviv 69978, Israel

Received: November 24, 2014; Accepted: February 14, 
2015; Published: February 18, 2015



Ann J Materials Sci Eng 2(1): id1017 (2015)  - Page - 02

Jacob Aboudi Austin Publishing Group

Submit your Manuscript | www.austinpublishinggroup.com

addition, these eigenstresses include the effects of localized damage 
which are operative over the damaged region only as has been 
proposed by Aboudi and Ryvkin [1] in the case of linear elasticity. 
Thus, according to our present proposed approach these eigenstresses 
include the combined contributions of the effects of plasticity as well 
as the localized damage. These eigenstresses are not known in advance 
and, therefore, an iterative procedure is employed to establish a 
convergent solution.

This article is organized as follows. In the next section the problem 
is formulated which followed by the method of solution section. The 
verification of the method is performed by a comparison with analytical 
solution for an infinite elastoplastic (deformation plasticity) medium 
with embedded cavity subjected to a remote biaxial loading, Ishikawa 
[8]. The application section presents the applicability of the proposed 
method for the prediction of the behavior of elastoplastic solids with 
embedded cavity, fiber reinforced metal matrix composites with a 
complete and partial fiber loss, and layered metal matrix composite 
with a single broken layer. The final section presents the conclusions 
and several possible future generalizations.

Problem Statement
The present investigation deals with elastoplastic composites 

that possess a periodic microstructure and include a localized 
damage such as a crack, fiber loss or cavity. This type of composites is 
illustrated in Figure 1(a) where the fibers, oriented in the x1-direction 
and arranged in a doubly periodic manner, are embedded in an 
elastoplastic material.

The response of the considered composite is determined by 
satisfying the equilibrium equations in every one of its constituents, 
namely:

∇ . σ = 0 				    (1)

in the absence of body forces, where σ is the stress tensor. In 
addition, the interfacial conditions that requires in the case of perfect 
bonding the continuity of displacements u and tractions t between 
the fibers (f) and matrix (m) constituents must be imposed:

uf = um, tf = tm 				    (2)

In the present investigation elastoplastic materials are considered 
whose constitutive equations are given (assuming isothermal 
conditions) by

σ = C: (∈ - ∈P)				    (3)

where C is the stiffness tensor of the material, and ∈and ∈P are 
the strain and plastic strain tensors, respectively. In the framework 
of classical plasticity, the evolution law of the plastic strain ∈P is 
governed by the Prandtl-Reuss equations, c.f.  Mendelson [9]:

∆∈P = ∆λ s				    (4)

where ∆λ is the Prandtl-Reuss proportionality function and s is 
the deviator tensor of σ.

In Aboudi and Ryvkin [1], the effect of localized damage in 
perfectly elastic composites was represented by eigenstresses as 
follows. The constitutive equations of elastic material in the presence 
of damage are determined by the principle of strain equivalence 
Lemaitre and Desmorat [10], according to which the strains in the 
damaged and effective configurations are equal. This implies that

σ = C: ∈ - σe				    (5)

where σe is eigenstress which has the form

σe = DC: ∈				    (6)

where D is the damage variable which is equal to zero in the 
undamaged constituents, whereas D = 1 in cracks and cavity regions 
thus representing a complete damage. In addition to the contribution 
of Aboudi and Ryvkin [1] where this method was presented and 
applied to investigate localized damage in elastic composites, this 
approach has been also shown to be successful in the modeling of an 
H-crack (a transverse crack accompanied by two longitudinal ones) 
in ceramic matrix composites Ryvkin and Aboudi [5], and cracks, 
cavities and inclusions in electro-magneto-elastic composites Aboudi 
[6].

In the present paper where the constitutive equations of the phases 
incorporate inelastic effects we propose to continue representing the 
constitutive equations by Equation (5) but generalize Equation (6) as 
follows

σe = DC: ∈ + (1-D)C: ∈P			   (7)

Figure 1: (a) A doubly periodic unidirectional fiber reinforced composite 
with a localized damage, is subjected to a remote strain 22  at infinity. (b) A 
rectangular domain 2H × 2L of the composite is divided into repeating cells.  
These cells are labeled by (K2, K3) with −M2 ≤ K2 ≤ M2 and −M3 ≤ K3 ≤ M3, 
and the size of every one of which is 2h × 2l (the figure is shown for M2 = 
M3 = 2).  (c) A characteristic cell (K2, K3) in which local coordinates ( )2 3,x x′ ′  
are introduced whose origin is located at the center. It is divided into Nβ × Nγ 
subcells (the figure is shown for Nβ = Nγ = 10). (d) Subcell (βγ).
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Thus, the eigenstresses presently include the plasticity effects 
in addition to the damage. It should be noted that in the absence 
of damage (D = 0) the plasticity effects are included in the analysis 
in the form of eigenstresses and their effects extend over the entire 
region. In the presence of damage in certain localized regions (0 < D 
< 1) further terms are added to the latter. In regions with complete 
damage (D = 1) where cracks and cavities are simulated, the plasticity 
effects as expected are absent. It can be readily observed that with 
introduction of the damage parameter D, it is possible to model a 
region whose behavior is elastoplastic everywhere except for one or 
more localized domains where D = 1 which corresponds to cavities 
and cracks. Evolving damage, stiff and soft inclusions, where D 
takes suitable values between zero and one have been utilized in 
the modeling of thermoelastic, electro-magneto-thermo-elastic and 
electrostrictive composites, see Aboudi and Ryvkin [1], Aboudi [6] 
and Aboudi [7], respectively.

Finally, as it is discussed in the next section, the far-field boundary 
conditions that are applied on the composite should be incorporated.

Method of Solution
Far away from the region with localized damage, the periodic 

elastoplastic composite is governed at any instant of loading by its 
macroscopic (global) behavior. The constitutive equations that model 
this behavior can be micromechanically established by the HFGMC 
model, Aboudi et al. [4] chapter 6, and are given by

( )* :
P

Cσ ∈ ∈= − 			   (8)

where C* is the effective stiffness tensor and ,  and 
Pσ ∈ ∈  are the 

global stress, total strain and plastic strain tensors, respectively.

Let us consider a rectangular domain −H ≤ x2 ≤ H, −L ≤ x3 ≤ L 
of the composite which includes the damaged region. Although this 
region includes the localized damage, it is assumed that it is extensive 
enough such that the inelastic stress, strain and displacement fields 
at its boundaries are not influenced by the damage existence and 
therefore, the macroscopic constitutive equations (8) are applicable. 
Consequently, the boundary conditions that are applied on x2 = ± 
H and x3 = ± L are referred to as the far-field boundary conditions. 
According to the representative cell method, Ryvkin and Nuller [2], 
this region is divided into (2M2 + 1) × (2M3 + 1) identical cells, see 
Figure 1(b) which is schematically shown for M2 = M3 = 2 cells. Every 
cell is labeled by (K2, K3) with K2 = −M2, ..., M2 and K3 = −M3, ..., M3. In 
each cell, local coordinates (x’2, x’3) are introduced whose origins are 
located at its center, see Figure 1(c) which shows the representative 
cell that is schematically divided into Nβ= 10 and Nγ = 10 subcells.

The equilibrium equation (1) of the materials within the cell (K2, 
K3) takes the form

					      (9)

The constitutive equation in the cell, Equation (5), can be written 
as

					     (10)

where the eigenstresses in cell (K2, K3) are given according to 
Equation (6) by

						      (11)

and

0 no damage
1 full damage

D 
= 
 				    (12)

and 0 < D < 1 for a partial damage.

The continuity of displacements u(K2,K3) and tractions t(K2,K3) 
between adjacent cells should be imposed. Thus,

						      (13)

 						      (14)

where K2 = −M2,..., M2 - 1, K3 = − M3,..., M3 − l ≤ x’3≤ l, and

						      (15)

	

						      (16)

where K2 = −M2, ..., M2, K3 = −M3, ..., M3 − 1, −h ≤ x’2 ≤ h. Here 
t(j) is the traction vector acting at a boundary perpendicular to the xj 
-axis, j = 2, 3.

In the following, the appropriate form of the far-field boundary 
conditions that specify the tractions and displacements at the opposite 
sides x2 = ±H, x3 = ±L of the rectangle of Figure 1(b) are presented. The 
tractions at the opposite sides of the rectangular domain are equal:

( ) ( ) ( ) ( )
( )2 32 3 ,, 2(2)

3 3 3 3 3 3, , 0,   ,...,   -
M KM K

t h x t h x K M M l x l
−

 ′ ′ ′  − − = = − ≤ ≤    	
						      (17)

( ) ( ) ( ) ( )
( )2 32 3 ,, 3(3)

2 2 2 2 2 2, , 0,   ,...,   -
K MK M

t x l t x l K M M h x h
−

 ′ ′ ′  − − = = − ≤ ≤    	
						      (18)

The displacements at the opposite sides, on the other hand, differ 
by certain jumps as follows

							     
						      (19)

( ) ( ) ( ) ( )2 3 2 3, ,
2 2 3 2 2 2 2, , ,   ,...,   -K M K Mu x l u x l K M M h x hδ−′ ′ ′− − = = − ≤ ≤ 	

						      (20)

where δ2 and δ3 denote the vectors of the far-field displacement 
differences whose components are given by

2 32 32 ,   2 ,   j=1,2,3j jj jH Lδ δ= =∈ ∈ 		  (21)

and 2 2,  j j∈ ∈ are the macroscopic (global) strains of the 
unperturbed periodic composite which have to be determined 
from Equation (8) for a given type of applied loading. Suppose, for 
example, that the composite is subjected to a transverse strain loading 

2 3( , ) 0K Kσ∇⋅ =

( )2 32 3 2 3 ,( , ) ( , ): e K KK K K KCσ σ= ∈ −

( )2 32 3 2 3 ,( , ) ( , ): (1 ) : P K Ke k k K KDC D Cσ = ∈ + − ∈

( ) ( ) ( ) ( )2 3 2 3, 1,
3 3, , 0

K K K K
u h x u h x

+
′ ′− − =      

( ) ( ) ( ) ( )2 3 2 3, 1,(2) (2)
3 3, , 0

K K K K
t h x t h x

+
′ ′   − − =   

( ) ( ) ( ) ( )2 3 2 3, , 1
2 2, , 0

K K K K
u x l u x l

+
′ ′− − =      

( ) ( ) ( ) ( )2 3 2 3, , 1(3) (3)
2 2, , 0

K K K K
t x l t x l

+
′ ′   − − =   

( ) ( ) ( ) ( )2 3 2 3, ,
3 3 2 3 3 3 3, , ,   ,...,   -M K M Ku h x u h x K M M l x lδ−′ ′ ′− − = = − ≤ ≤
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22  with 0ijσ∈ =  in all other directions. The macroscopic equations 
(8) that describe the (undamaged) composite’s behavior are utilized to 
determine the remaining average strains , 2ij i j∈ = ≠ to be employed 
in Equation (21).

The double finite discrete Fourier transform of the displacement 
vector ( )2 3,u K K , for example, is defined by

( ) ( ) ( ) ( )
32

2 3

2 2 3 3

,
2 3 2 3 2 3ˆ , , , , exp

MM
K K

p q p q
K M K M

u x x u x x i K Kφ φ φ φ
=− =−

 ′ ′ ′ ′= + ∑ ∑
	

						      (22)

where

2 3
2 3

2 2,   0, 1, 2,..., ,   ,   0, 1, 2,..., ,
2 1 2 1p q

p qp M q M
M M
π πφ φ= = ± ± ± = = ± ± ±
+ +

The application of this transform to the boundary value problem 
(9)-(20) for the rectangular domain −H < x2 < H, −L < x3 < L, divided 
into (2M2 + 1) × (2M3 + 1) cells, converts it to the problem for the 
single representative cell −h < x’2 < h, −l < x’3 < l with respect to the 
complex valued transforms. The field equations obtained from the 
equilibrium and constitutive equations have the form

ˆ 0σ∇⋅ = 					     (23)

and

ˆ ˆ ˆ eCσ σ= ∈− 					     (24)

where the transformed eigenstress tensor is given by

ˆ ˆ ˆ: (1 ) :e pDC D Cσ = ∈+ − ∈ 			   (25)

The conditions relating the opposite boundaries of the 
representative cell in the elastic problem case were derived by Aboudi 
and Ryvkin [1]. Following their approach one obtains from (13)-(20)

3 3 0, 3 2 2 3ˆ ˆ( , ) exp( ) ( , ) (2 1) exp( ),   -p q pu h x i u h x M i M l x lφ δ δ φ′ ′ ′= − − + + ≤ ≤               	
						      (26)

(2) (2)
3 3 3

ˆ ˆ( , ) exp( ) ( , ),   -pt h x i t h x l x lφ′ ′ ′= − − ≤ ≤ 	                       	
						      (27)

and

2 2 0, 2 3 3 2ˆ ˆ( , ) exp( ) ( , ) (2 1) exp( ),   -q p qu x l i u x l M i M h x hφ δ δ φ′ ′ ′= − − + + ≤ ≤ 	
						      (28)

(3) (3)
2 2 2

ˆ ˆ( , ) exp( ) ( , ),   -qt x l i t x l h x hφ′ ′ ′= − − ≤ ≤ 		
						      (29)

where p = −M2, ..., M2; q = −M3, ..., M3. In these equations, δp,q  
denotes the Kronecker delta.

The representative cell boundary value problem (23)-(29) have 
been solved by employing the inelastic higher-order theory, Aboudi 
et al. (2013), chapter 11.  According to this theory, the domain −h 
≤ x’2 ≤ h, −l ≤ x’3 ≤ l (the representative cell) is divided into Nβ × Nγ 
rectangular subcells β = 1, ..., Nβ , γ = 1, ..., Nγ , see Figure 1(c) where 
Nβ =  Nγ = 10. The transformed displacement vector is expanded 
into a second-order polynomial in the subcell (β,γ), Figure 1(d), 
and the equilibrium equations, interfacial and boundary conditions 
are imposed in the average (integral) sense. In order to model a 
(line) crack, a single row of subcells filled with a fully damaged 

(D = 1) elastoplastic material is introduced. Thus the value of the 
damage variable D is pre-determined in accordance with the crack 
configuration. If on the other hand a cavity is modeled, then its entire 
elastoplastic region of subcells is modeled with D = 1.

Once the solution at a current instant of loading in the transform 
domain has been established, the actual elastoplastic field can be 
readily determined at any point in the desired cell (K2, K3) of the 
considered rectangular region −H ≤ x2  ≤ H, −L ≤ x3  ≤ L by the inverse 
transform formula whose form for the displacements, for example, is:

( ) ( )2 3,
2 3

2 3

1,
(2 1)(2 1)

K Ku x x
M M

′ ′ =
+ + 		  (30)

( ) ( )
32

2 3

2 3 2 3ˆ , , , exp
MM

p q p q
p M q M

u x x i K Kφ φ φ φ
= =

 ′ ′× − + ∑ ∑

In the application of this theory, the eigenstress tensor ˆ eσ , to be 
used in Equation (24) is not known. Hence an iterative solution has 
to be employed as shown in the flow chart.

This procedure should be continued until a convergence to a 
desired degree of accuracy is achieved. Having established the solution 
at the current increment, one can proceed to the next increment by a 
slight change of the applied loading.

Verification
In all cases given in this paper, the computations of the 

elastoplastic field were carried out with a square representative cell h 
= l, Figure 1(c). Which is discretized into 2500 subcells with Nβ = Nr 
= 50 subcells. The region −H ≤ x2 ≤ H, −L ≤ x3 ≤ L has been divided 
into 289 cells with M2 = M3 = 8. This choice was verified in providing 
a periodic (unperturbed) field far away from the localized damage 
which was always taken to exist in cell M2 = M3 = 0 only. Thus, the use 
of global constitutive relations, Equation (8), for the determination of 
the far-field inelastic boundary conditions is justified.

The verification of the present approach has been performed by 
comparing the resulting response to a remote biaxial loading of an 
elastoplastic material with an embedded circular cavity. This problem 
has been originally investigated by Budiansky and Mangasarian 
[11]. The material is described by the Ramberg-Osgood deformation 
theory of plasticity which for a uniaxial stress-strain case is given by

nY
E E Y
σ α σ ∈= +  

 
				    (31)

where E is the Young’s modulus of the material, Y is its yield 
stress and α and n are material parameters. For elastic strains 
which are negligible compared to the plastic strains, Budiansky and 
Mangasarian [11] provided a closed-form expression for the material 
response in this special case. An analytical solution for arbitrary 
values of the elastic strains has been derived by Ishikawa [8]. This 
solution is presently employed for comparison with the proposed 
analysis to verify our approach.

The uniaxial stress-strain Ramberg-Osgood relation (31) can be 
generalized to a multiaxial one yielding

1

,
1 3

2

n
eq

ij ij kk i j ij
v v s

E E E Y
σασ σ δ

−
 +

∈ = − +  
  		  (32)
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where ν is the Poisson’s ratio of the material and the equivalent 
stress is defined by 3 2eq ij ijs sσ = with sij being the deviators of the 
stresses σij. This equation can be inverted (R. Haj-Ali, personal 
communication) to yield (see Appendix for a proof):

, 1
1 3

2 2

ij
i jij kk n

eq

e
K

G E Y

σ δ
σα

−= +∈
 

+  
  			   (33)

where K, G are the bulk and shear moduli and σeq is the root of the 
following nonlinear equation

3 0
2 2

n
eq eq

eq
Y Y e
E Y G Y

σ σα    
+ − =   

    			   (34)

In these equations, 3 2eq ij ije e e= with eij being the deviators of the 
strain components ∈ij. Consequently, in the present case Equation (4) 
should be replaced by

1
3
2

n
eqp s

E Y
σα

−
 

∈ =  
  				    (35)

With α = 3/7, the analytical solution of Ishikawa [8], expressed in 
polar coordinates (r,θ) located at the cavity center whose radius is a, 
is based for plane stress conditions and remote biaxial loading on the 
following nonlinear equation

( )
( 1) 22 2 21

1
2 2 2 2

3 1 1 2 2 33 2 1 0
7 4 12 7

n n
n na r rs s

r r a r aθθ θθξ ξ
−

−
−

      + + − + =      + +        	
						      (36)

where rr Yσξ = being the applied remote radial stress rrσ  
normalized with respect to the yield stress Y, and rrsθθ θθ σσ= . Once 
the root sθθ of this equation for an applied value of is rrσ  determined, 
the value of σrr is evaluated from

2

2

1
1rr

a
a θθσ σ−

=
+

It should be noted that Ishikawa [8] solution is independent of 
the elastic parameters of the material.

The comparison between variations along x3 at x2 = 0 of σ22 ≡ σθθ 
and σ33 ≡ σrr as predicted by the present approach and Ishikawa [8] 
analytical solution is shown in Figure 2 for a cavity radius of a/(2h) 
= 0.28. For a nonlinear epoxy, the material properties are given by 
Table 1 and the loading is given by 22 33∈ =∈ which is incrementally 
increased up to the value of 22 33 1.8%∈ =∈ = . Plane stress condition 
is assumed in the present case such that σ11 = 0 everywhere. This 
final value of applied strain corresponds to a far-field stress of

22 33 142MPaσ σ= =  (which is slightly below the yield stress Y = 
157.6MPa). The figure shows comparisons between the analytical and 
the present solutions at far-field loading of 22 33 1.2%∈ =∈ =  (which 
corresponds to 22 33 95.6MPaσ σ= = ) and at 22 33 1.8%∈ =∈ = . Very 
good agreements between the two solutions can be observed (the 
radial stress variations coincide). As can be expected, the equivalent 
plastic strain P

eq∈  attains its maximum value at the r = a and rapidly 
decays with increasing r. The maximum values of P

eq∈  obtained from 
the applied far-field of 1.2% and 1.8% are 1.7% and 5.3%, respectively.

It should be noted that the selection of M2 = M3 = 8 as the number 

of cells results in a ratio of about 60 between the size of the considered 
region 2H = 2L and the cavity radius a which is sufficiently high.

Applications
In the following applications, results are shown in which an 

elastoplastic aluminum alloy whose behavior is governed by the 
incremental classical plasticity, Equation (4), is employed to form the 
inelastic phase. The parameters of this elastoplastic linear hardening 
material are given in Table 2.

Figure 3 shows the response of an infinite elastoplastic aluminum 
alloy in which a cavity of radius a/(2h) = 0.28 is embedded. This system 
is subjected to a far-field uniaxial strain loading which is incrementally 
applied reaching the final value of 22 110.02 with 0∈ = ∈ = . For a 
transverse traction-free 33 0σ = , the component 33∈  is determined 
at any stage of loading by the HFGMC model for a homogeneous 
elastoplastic material. This figure shows the elastoplastic variations of 
the σ22 along x3 at x2 = 0 at the final stage of loading together with the 
equivalent plastic strain whose increment is given by

2 :
3

p p p
eq∆∈ = ∆∈ ∆∈

			   (37)

This figure also shows, for a comparison, the corresponding 
response in the special case of perfectly elastic aluminum. Obviously, 

Figure 2: Elastoplastic material of the Ramberg-Osgood type with an 
embedded cavity, subjected to a remote biaxial strain loading. Comparison 
between the response along x3 at x2 = 0 between the present and 
Ishikawa (1975) analytical solution exhibiting σ22 vs. x3 and σ33 vs. x3.  

22 33 22 33( ) 1.2% and (b) 1.8%a = = = =    , both with σ¯11 = 0.
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the cavity forms a stress concentrator which in the perfectly elastic 
case generates a stress concentration factor equal to 3 for normal 
stress in the loading direction. The ratio between σ22 at the edge of the 
cavity and the far-field 22σ  value in this latter case shows that the stress 
concentration factor is about 2.8 as compared to the theoretical value 
of 3. As expected, the elastoplastic results predict a far lower value of 
about 2. The graph of the equivalent plastic strain P

eq∈  indicates that 
the intensity of the plastic field is concentrated near the edges of the 
cavity and decays rapidly away from it.

Similarly, the response to a biaxial strain loading of the infinite 
aluminum alloy with embedded cavity is shown in Figure 4. Here 
the far-field strain components 22 33∈ =∈  are incrementally increased 

up to 0.02 together with 11 0∈ = . The stress concentration factor in 
the elastic case provides the value of about 1.9 as compared to the 
theoretical value of 2. The corresponding elastoplastic value is seen 
to be about 1.6.

Finally, the response of the infinite aluminum alloy with 
embedded cavity which is subjected to a biaxial loading of the form

22 33 110.02 with 0∈ = −∈ = ∈ =  is shown in Figure 5. Here, the elastic and 
elastoplastic stress concentration factors are about 3.9 (theoretically 
4) and 3.25, respectively.

The next two applications concern with a periodic unidirectional 
boron/aluminum metal matrix composite in which one of the elastic 
boron fibers is either completely lost (D = 1) thus forming a cavity, 
or his Young’s modulus deteriorated to one half of its original value 
(D = 0.5). These two situation might caused by a production defect or 

E(GPa) ν Y (MPa) α n

5.2 0.35 157.6 3/7 4

Table 1: The parameters of the Ramberg-Osgood elastoplastic material.

E, ν, Y , α and n denote the Young’s modulus, Poisson’s ratio, yield stress and 
two parameters, respectively.

E(GPa) ν Y (MPa) H(GPa)

68.3 0.3 371.5 23

Table 2: The parameters of the elastoplastic aluminum alloy with linear hardening 
material.

E, ν, Y and H denote the Young’s modulus, Poisson’s ratio, yield stress and 
hardening, respectively.

Figure 3: The response along x3 at x2 = 0 of elastoplastic material 
with an embedded cavity, subjected to uniaxial strain loading of 

22 11 330.02 with 0 and 0σ= = =  . 22 3 3(a)  vs. x ,  (b)  vs. P
eq xσ  .

Figure 4: The response along x3 at x2 = 0 of elastoplastic material with an 
embedded cavity, subjected to biaxial strain loading of 22 33 110.02 with 0.= = =  

22 3 3(a)  vs. x ,  (b)  vs. P
eq xσ   .

Figure 5: The response along x3 at x2 = 0 of elastoplastic material with an 
embedded cavity, subjected to biaxial strain loading of 22 33 110.02 with 0= − = =   . 

22 3 3(a)  vs. x ,  (b)  vs. P
eq xσ  .

E(GPa) ν

400 0.2

Table 3: The elastic properties of the boron.

E and ν denote the Young’s modulus and Poisson’s ratio, respectively.

Figure 6: The response along x3 at x2 = 0 of boron/aluminum elastoplastic 
composite (vf = 0.25) with a missing fiber, subjected to uniaxial strain loading 
of 22 11 330.02 with 0 and 0σ= = =  . 22 3 3 22 3(a)  vs. ,  (b)  vs. ,  (c)  vs. P

eqx x xσ σ  assuming perfectly elastic 
aluminum.

Figure 7: The response along x3 at x2 = 0 of boron/aluminum elastoplastic 
composite (vf = 0.25) with a half missing fiber, subjected to uniaxial strain 
loading of 22 11 330.02 with 0 and 0σ= = =  . 22 3 3 22 3(a)  vs. ,  (b)  vs. ,  (c)  vs. P

eqx x xσ σ

assuming perfectly elastic aluminum.
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damage during service. The properties of the boron fibers are given in 
Table 3 and the fiber volume ratio is vf = 0.25. Figure 6(a) shows the 
variations of σ22 along x3 at x2 = 0 of the boron/aluminum composite 
with a missing filer at the final stage of uniaxial strain loading of

22 110.02 with 0∈ = ∈ = . The other far-field strain component is 
determined by the HFGMC modeling of an unperturbed periodic 
unidirectional boron/aluminum metal matrix composite by imposing 
the condition that 33 0σ = . Figure 6(b) and the corresponding 
variations of the equivalent plastic strain P

eq∈ reveal that the effect of 
missing fiber is confined to the vicinity of the cavity with a rapid decay 
away from the defect location. Figure 6(c) shows a similar behavior 
when the aluminum matrix is assumed to be perfectly elastic.

The corresponding response of the boron/aluminum metal 
matrix composite in which the value of the Young’s modulus of a 
single boron fiber is reduced from 400GPa to 200GPa (e.g., by 
an imperfect bonding) is shown in Figure 7. The first two parts of 
this figure indicates that the effect of this defect is quite minor in 
the elastoplastic case, but Figure 7(c) in which the aluminum alloy 
is assumed to behave elastically a small stress deterioration can be 
detected across the defective fiber.

Thus far, the effects of cavities, missing and partially missing 
fibers have been investigated. Presently, the effect of cracks in 
homogeneous, fiber reinforced and layered metal matrix composites 
are addressed.

Consider a single crack in the infinite aluminum alloy which is 
subjected to a far-field uniaxial strain 22 11 330.02 with 0 and 0σ∈ = ∈ = =
. The length of the crack is 2a/(2l) = 0.5.  The resulting σ22 and P

eq∈  
variations along the crack line x3 at x2 = 0 are shown in Figure 8(a) 
and (b).

Also shown is the response in the special case when the aluminum 
is assumed to be perfectly elastic. Here an analytical solution is 

Figure 8: The response along x3 at x2 = 0 of elastoplastic material 
with an embedded crack, subjected to uniaxial strain loading of 

22 11 330.02 with 0 and 0σ= = =  . (a) Comparison with the perfectly elastic cases 
(present and analytical) of 22 3 3 vs. ,  (b)  vs. P

eqx xσ  .

Figure 9: The response along x3 at x2 = 0 of boron/aluminum elastoplastic 
composite (vf = 0.25) with an embedded crack, subjected to uniaxial strain 
loading of 22 11 330.02 with 0 and 0σ= = =  . 22 3 3(a)  vs. x ,  (b)  vs. P

eq xσ  .

available, e.g. Sneddon [12], which is compared with the prediction 
of the present approach in this special elastic case. This comparison 
reveals an excellent agreement. The reduction of the magnitude of 
the stress in the vicinity of the crack’s tip in the elastoplastic case is 
well observed and the sharp high values of the plastic strains there is 
shown in Figure 8(b).

The next application concerns with the periodic boron/
aluminum metal matrix composite (vf = 0.25) with an embedded 
crack of length 2a/(2l) = 0.6 along the x3-axis within the aluminum 
matrix. The composite is subjected to a far-field uniaxial strain

22 110.02 with 0∈ = ∈ = . As discussed, the other strain component is 
determined by the HFGMC by imposing the condition 33 0σ = . The 
resulting variations of σ22 and P

eq∈  along the crack’s line are shown in 
Figure 9(a) and (b), respectively. Also shown in Figure 9(a) is the 

A

B

C

Figure 10: Field distribution of boron/aluminum elastoplastic composite (vf = 
0.25) with an embedded crack in the region −2 ≤ x2/(2h) ≤ 2, −2 ≤ x3/(2l) ≤ 2. The 
composite is subjected to uniaxial strain loading of 22 11 330.02 with 0 and 0σ= = =  . 
(a) The distribution of the equivalent stress σeq, (b) of the equivalent strain 
∈eq and (c) The distribution of the equivalent stress σeq assuming a perfectly 
elastic aluminum.
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corresponding variation when the aluminum is assumed to behave 
as a perfectly elastic material. The reduction of the magnitude of 
the stress in crack’s tip as compared to elastic case is noticeable. 
The equivalent plastic strain reaches the value of 0.22 (not shown 
in the figure) rendering the employed infinitesimal plasticity theory 
questionable there.

It should be interesting to show the distribution of the equivalent 
stress σeq and plastic strain P

eq∈  in the vicinity of the crack. These are 
shown in Figure 10(a) and (b), respectively, in the region −2 ≤ x2/
(2h) ≤ 2, −2 ≤ x3/(2l) ≤ 2.   These two figures well display the resulting 
effect of the crack on its surrounding region of fibers and matrix. 
For comparison, Figure 10(c) shows the corresponding equivalent 
stress distribution when the aluminum matrix is assumed to behave 
elastically. Note that the scale of the plot is twice the scale of the 
elastoplastic case.

Our last application of the present theory concerns with the 
effect of a broken ceramic layer in periodically ceramic/aluminum 
layered composite. The elastic Al2O3 ceramic layer is characterized 
in Table 4. The composite is subjected to a far-field uniaxial strain

22 110.02 with 0∈ = ∈ =  and other applied strain component is determined 
by the HFGMC analysis by imposing the condition 33 0σ = . 
Comparisons between the variations of σ22 along the crack’s line are 
shown in Figure 11 of the elastoplastic and elastic cases. In this figure, 
the widths of the ceramic and aluminum layer are equal so that the 
crack’s length is 2a/(2l) = 0.5.

Let us consider a very thin aluminum layer such that the length of 
the crack in the broken ceramic layer is 2a/(2l) = 0.95. The resulting 
comparison between the variations of σ22 along the crack’s line is 
shown in Figure 12(a) for the elastoplastic and elastic aluminum 
layer. More interesting is distribution of the equivalent plastic strain 

P
eq∈  in the region −2 ≤ x2/(2h) ≤ 2, −2 ≤ x3/(2l) ≤ 2. This is shown in 

Figure 12(b) where P
eq∈  reaches the value of 0.45 in the vicinity of the 

crack’s tip. In addition, the spread of plasticity over quite an extended 
region along the aluminum layer is notable.

Asymptotic fracture analysis of the considered case of a very 

E(GPa) ν

380 0.2

Table 4: The elastic properties of the Al2O3 ceramic material.

E and ν denote the Young’s modulus and Poisson’s ratio, respectively.

Figure 11: The response along x3 at x2 = 0 of periodically layered Al2O3/
aluminum elastoplastic composite (vf = 0.5) with an embedded crack in 
the ceramic phase. The composite is subjected to uniaxial strain loading of 

22 11 330.02 with 0 and 0σ= = =  . The figure shows a comparison of σ22 vs. x3 
with the perfectly elastic case.

thin elastoplastic layers sandwiched between brittle elastic ones was 
performed by Chan et al. [13]. In this latter work a transverse crack 
in an elastic layer of thickness 2w was terminated at the plastic zone 
which was modeled by open or closed cracks of length 2d developed 
within elastoplastic layers, thus forming an H-crack configuration. It 
was found, in particular, that in the case of shear traction- free closed 
cracks in the plastic zone of the size characterized by the ratio d/w = 
0.5, the stress concentration factor for the tensile stresses in the brittle 
layer adjacent to the cracked one is about 2. Inspection of the results 
in Figure 12 obtained in the present investigation shows that they 
confirm with Chan et al. [13] finding.

Conclusion
A method for the modeling of localized damage in elastoplastic 

composites with periodic microstructure has been presented. As a 
result of the localization effects (perturbations) the periodicity is lost 
and a repeating unit cell cannot be identified anymore. The method 
is based on the combination of three distinct types of analyses, 
namely the representative cell method, the higher-order theory for 
inelastic composites and the high-fidelity generalized method of cells 
micromechanical analysis which is needed for the determination of 
the far-field boundary conditions.

The representative cell method has been previously applied to 
solve linear and nonlinear problems, but the present method enables 
for the first time the analysis of elastoplastic materials. To this end, 
the plasticity effects are represented in the form of eigenstresses which 
are distributed over the entire region. In addition, these eigenstresses 
include the perturbation effects which are distributed over the 
damaged regions. The method has been applied in various cases for 
the prediction of the field distributions in elastoplastic materials 
and metal matrix composites with fiber loss and crack. Finally, the 
elastoplastic field in ceramic/aluminum layered composite in which a 

Figure 12: (a) The response along x3 at x2 = 0 of periodically layered Al2O3/
aluminum elastoplastic composite (vf = 0.95) with an embedded crack in 
the ceramic phase. The composite is subjected to uniaxial strain loading 
of 22 11 330.02 with 0 and 0σ= = =  . The figure shows a comparison of σ22 vs. x3 
with the perfectly elastic case. (b) The resulting equivalent plastic strain 
distribution in the region −2 ≤ x2/(2h) ≤ 2, −2 ≤ x3/(2l) ≤ 2.
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single ceramic layer is broken has been determined. Results confirm 
with a previously derived asymptotic analysis [13]. Presently, results 
for normal loading have been presented. Shear loading can be carried 
out in the same manner.

The present approach can be extended to the analysis of elastic-
viscoplastic composites with a localized damage by changing the 
flow rule of the elastoplastic matrix, Equation (4), to a viscoplastic 
one. In addition, although the present analysis has been confined 
to isothermal conditions, the inclusion of temperature effects in the 
eigenstresses can be easily performed, see Ryvkin and Aboudi [5] for 
the case of H-cracks in thermoelastic composites. Another possible 
general-ization is to allow the damage to evolve with the applied 
loading. Thus instead of applying an a priori a constant damage 
(e.g., D = 0.5 in the previously discussed case of a boron fiber with a 
reduced Young’s modulus), an evolution law can be adopted which 
according to Lemaitre and Desmorat [10] has the form

y S
P
eqD

S
 ∆ = ∆∈ 
   				    (38)

where y is the energy release, S and s are material parameters. 
Finally, extension to inelastic metal matrix composites with triply 
periodic microstructure (short-fiber composites) which include 
localized damage that appears in several locations is possible.
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