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Abstract

Density functional theory has been used to investigate the migration barrier 
of a helium interstitial from one octahedral site to an adjacent octahedral site and 
the effects of octahedral helium interstitials on the bulk modulus of Y2Ti2O7. The 
interstitial is shown to travel through the tetrahedral location with an energetic 
barrier that can be largely attributed to the proximal location of the neighboring 
oxygen atom.

The bulk modulus has been investigated with up to three octahedral helium 
interstitials in Y2Ti2O7.

Keywords: Density Functional Theory; Nanostructured Ferritic Alloys; 
Irradiation; Defects

by Edmondson et al., have shown the effectiveness of NCs at trapping 
helium bubbles where the percentage of helium bubbles reaching 
grain boundaries is decreased by greater than 50% [9,16,17]. Similarly, 
due to the attractive self-interaction of helium, the bubbles trapped at 
the surface of NCs act as further trapping sites for helium diffusing 
through the matrix [15]. Thus, the trapping of helium at NCs has the 
potential to significantly mitigate the risk of helium embrittlement. 
Likewise, developing an understanding of the interactions of helium 
with the NCs and the effects of helium on their properties is of 
critical importance to further improving the ability to prevent helium 
embrittlement.

Further improvement of the prevention of helium embrittlement 
in candidate reactor materials relies heavily on the use of multi-
scale modeling that must be parameterized with large quantities 
of thermodynamic and kinetic information describing the matrix 
material, the oxide/matrix interface and the oxide [18-25]. Likewise, 
it is important to understand the changes that occur to the mechanical 
properties as a growing number of radiation induced defects, such as 
helium interstitials, are introduced.

Investigation of such quantities as the bulk modulus may help 
to understand why the oxides are well suited for trapping helium 
bubbles. Thus, this study deals with determining the migration 
barrier of helium in Y2Ti2O7 from the most stable interstitial site to an 
adjacent symmetry equivalent interstitial position and the effects of 
helium interstitials in Y2Ti2O7 on the bulk modulus.

Computational Methods
Density functional theory (DFT) as implemented by the VASP 

code [26-29] has been used in order to calculate the ground state 
properties of the migration path of helium and the bulk moduli of 
Y2Ti2O7 containing helium interstitials. One fully periodic unit 
cell has been used for each calculation where atoms are described 
by pseudopotentials generated with the projector-augmented 
wave method [30,31] and Brillouin zone integration is performed 
with a 4x4x4 k-point mesh. Due to the fact that DFT does not 
explicitly account for Van der Waals interactions, the ability of the 
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NFAs: Nanostructured Ferritic Alloys; NCs: Nanoclusters; 

DFT: Density Functional Theory; GGA: Generalized Gradient 
Approximation; CI-NEB: Climbing Image Nudged Elastic Band

Introduction
The challenges opposing the efforts to develop materials systems 

for the next generation of fission reactors and future fusion reactors 
include; high neutron flux, high temperatures and pressures, corrosion 
and especially, embrittlement due to the transmutation product 
helium. Nanostructured ferritic alloys (NFAs) offer a promising 
solution to overcoming these challenges due to microstructural 
features such as a high stable dislocation density and a high number 
density of complex oxide nanoclusters (NCs) that serve to act as 
trapping sites for helium [1-4]. Despite experimental evidence of 
NCs acting as trapping sites, no concrete and complete theoretical 
understanding exists for the interaction of helium with the NCs and 
the resulting effects of its presence on the mechanical properties.

The migration barrier of helium in BCC iron is extremely low 
allowing helium to readily diffuse to preferential nucleation sites 
such as, dislocations, grain boundaries and voids [5-9]. Previous 
ab initio simulations have shown helium to have an attractive self-
interaction, making the formation of clusters favorable [5]. Likewise, 
the displacement cascade resulting from the kinetic energy transfer 
between an incident neutron and a constituent atom exacerbates the 
risk of growing bubbles as vacancies have been shown to stabilize 
the growth of helium bubbles [5,10,11]. Thus, a high concentration 
of vacancies coupled with the implantation of high-energy alpha 
particles promotes the risk of increased helium bubble formation. 
At high temperatures, helium bubbles become highly pressurized, 
resulting in damage to the surrounding lattice and potentially 
catastrophic cracking [12-15].

The complex oxide nanoclusters in NFAs exist in three main 
stoichiometric compositions; Y2Ti2O7, Y2O3 and Y2TiO5 [1]. Helium 
implanter transmission electron microscopy experiments carried out 

Research Article

Ab Initio Investigation of Helium Interstitials in Y2Ti2O7: 
Kinetics and Bulk Moduli
Danielson T1* and Hin C1,2

1Department of Materials Science and Engineering, 
Virginia Polytechnic Institute and State University, USA
2Department of Mechanical Engineering, Virginia 
Polytechnic Institute and State University, USA

*Corresponding author: Danielson T, Department of 
Materials Science and Engineering, Virginia Polytechnic 
Institute and State University, 460 Turner St, Blacksburg, 
VA, 24060, USA

Received: November 06, 2015; Accepted: December 
28, 2015; Published: December 30, 2015



Ann  Materials Sci Eng 2(2): id1026 (2015)  - Page - 02

Danielson T Austin Publishing Group

Submit your Manuscript | www.austinpublishinggroup.com

pseudopotentials to accurately reproduce the interaction energy of a 
helium dimer at a variety of interatomic distances has been tested and 
compared to quantum Monte Carlo and configuration interaction 
simulations [32,33]. The generalized gradient approximation (GGA) 
from Perdew, Burke and Ernzerhoff (PBE) [34,35] best describes the 
behavior of the helium dimer. Thus, the GGA from PBE has been 
used to describe the exchange correlation effects where the semi-core 
3p electrons and 4s and 4p electrons are treated as valence electrons 
for Ti and Y respectively.

In previous DFT calculations by Danielson and Hin [36,37] the 
four distinct helium interstitial positions in the Y2Ti2O7 unit cell 
and their relative stabilities have been determined. The interstitial 
positions (Figure 1) are the octahedral, tetrahedral, Y-Y and O-O 
configurations simply described as:

•	 Octahedral: Located between Y and Ti atoms in (100) 
directions

•	 Tetrahedral: Located on the O 8a vacancy tetrahedrally 
surrounded by Ti atoms

•	 Y-Y: Located between two Y atoms in (110) directions prior 
to relaxation

•	 O-O: Located at the midpoint of two O atoms prior to 
relaxation

The octahedral interstitial location is the most energetically 
preferable site for the helium interstitial to occupy and thus, 
the migration of helium from one octahedral site to an adjacent 
octahedral site, as well as the mechanical properties of the oxide 
containing increasing numbers of helium interstitials on octahedral 
sites is the focus of this study.

The migration barrier and migration path of a helium interstitial 
traveling between adjacent octahedral locations has been investigated 

using the climbing image nudged elastic band (CI-NEB) method as 
implemented by VASP and G. Henkelman [38-40]. The NEB works 
by linearly interpolating the geometry of the cell using a string of 
images connecting the initial and final states of the diffusion pathway. 
Each image is connected by a spring with a constant, k, and is relaxed 
to its ground state energy using a force projection scheme where 
potential forces act perpendicular to the band and the spring forces 
act along the band. As each image is relaxed to its ground state, the 
minimum energy path is determined. The climbing image NEB uses 
these same principles, except in this case, the highest energy image 
climbs to the saddle point and feels no spring forces. The nudged 
elastic band relaxes each image with a fixed cell shape and volume 
into its ground state rendering the migration barrier and path [39,40].

The bulk modulus of Y2Ti2O7 has been calculated by applying 
strain in the x,y, and z directions in the range of +/- 6% in increments 
of 0.5%. In order to maintain the perfect cubic symmetry, the pure 
crystal has been first relaxed to its ground state and subsequently 
helium interstitials are introduced on the octahedral sites. In order 
to investigate the effects of increasing concentrations of helium, up to 
three helium interstitials have been introduced. The single octahedral 
helium interstitial configuration can be seen in Figure 1 and the two 
and three helium interstitial configurations can be seen in Figure 2. 
The two and three helium interstitial configurations have been chosen 
based on the work from L. Yang et al. [41], and represent three of the 
most energetically stable multi-octahedral interstitial configurations. 
From first-principles the bulk modulus can be calculated by 
performing a polynomial fit to the energy-volume data obtained and 
substituting the equilibrium volume as:

2
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where, V0 is the equilibrium volume.

 

 

 

 

 

 

 

 
a.) Octahedral b.) Tetrahedral  c.)  Y-Y d.) O-O 

Figure 1: Four fully relaxed interstitial locations in Y2Ti2O7 as found previously by Danielson and Hin.  Red, blue tan and black atoms represent Y, Ti, O and He 
respectively.

 

 

 

 

 

a.) 2 He Oct I b.) 2 He Oct II c.) 3 He Oct 

Figure 2: a.) Y2Ti2O7 containing two octahedral interstitials where Y and Ti are oriented in the same direction, b.) two octahedral interstitials where Y and Ti are 
oriented in opposite directions and c.) three octahedral helium interstitials, red, blue, tan and black atoms represent Y, Ti, O and He respectively.
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Results
Migration from octahedral to octahedral interstitial 
locations

In order to determine the migration barrier and the migration 
path of the helium interstitial between two of the most stable sites 
(i.e. octahedral to octahedral), the CI-NEB method has been used. 
Nine intermediate images define a straight-line path between the two 
locations and each image is fully relaxed to its lowest energy state 
defining the migration path. The un-relaxed and relaxed migration 
paths are shown in Figure 3.

Upon full relaxation of the migration path, the helium interstitial 
is found to travel from one octahedral location to the neighboring 
octahedral location via the tetrahedral location. The migration barrier 
for this path is shown in Figure 4. The barrier from the octahedral 
location to the tetrahedral location was found to be 1.336 eV where 
the majority of the energetic barrier appears to be attributed to the 
proximal location of the neighboring oxygen atom. Once the helium 
atom reaches the vacancy, it can then continue its path to the adjacent 
octahedral location upon overcoming the migration barrier of 0.802 
eV.

Bulk modulus of Y2Ti2O7 containing helium interstitials
In order to determine the effect of the most energetically 

preferable helium interstitials on the mechanical properties of the 
oxide, the bulk modulus has been calculated. The bulk modulus of 
pure Y2Ti2O7 has been calculated and confirmed with existing DFT 
calculations [42] as 183.031 GPa, the energy volume-data is shown 
in Figure 5.

In the case of pure Y2Ti2O7, it is obvious that there is no internal 
displacement of the constituent atoms from their equilibrium lattice 
sites. In this case, all bonds are at equilibrium and no internal strain 
exists. This is no longer true upon introduction of helium interstitials. 
Figure 6 shows the difference in the internal structure for the fully 
relaxed interstitial configurations tested. Similarly, Table 1 shows the 
calculated net displacement of the constituent atoms for the relaxed 
structure at 0% volumetric strain. The net displacement of atoms has 
been calculated by taking the sum of the displacement of each type of 
atom from its equilibrium position in pure Y2Ti2O7. It can be noted 
that there is an increasing amount of displacement of atoms from 
their equilibrium sites with the addition of each helium atom. While 
Figure 6b and Figure 6c both have two helium interstitials the net 
displacement of oxygen atoms is less than in Figure 6c.

In calculating the bulk modulus for the different octahedral 
configurations, care has been taken to ensure that only volumetric 
strains in the elastic region are accounted for. The bulk modulus and 
the displacement of the constituent atoms are shown in Table 1 for 
each octahedral configuration. The bulk modulus decreases with the 
addition of each interstitial indicating that the addition of helium 
interstitials makes the oxide softer.

Discussion
The migration path of helium from one octahedral site to an 

adjacent octahedral site has been found to travel through the vacancy 
lying on the tetrahedral interstitial location. The tetrahedral interstitial 
has a higher solution energy than the octahedral interstitial site, as 
found by previous DFT studies [36,37,41]. The vacant site located on 
the tetrahedral location however provides a large amount of volume 
for the helium interstitial to travel through. Both energetic barriers 
are considerably higher than the migration barrier of helium in BCC 

a.)                b.)  
Figure 3: a.) Unrelaxed and b.) relaxed migration paths from octahedral to octahedral location red, blue, tan and black spheres represent Y, Ti, O and He 
respectively.

Figure 4: Migration barrier from one octahedral interstitial location to an 
adjacent octahedral location in Y2Ti2O7.

Figure 5: Energy-volume curve for pure Y2Ti2O7.
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iron (0.07 eV). Likewise, it is apparent that a helium interstitial that 
is occupying a tetrahedral interstitial site is more likely to travel to an 
octahedral site than the opposite due to the lower migration barrier. 
The trapping of helium at NCs in NFAs is often attributed to the 
interaction between the oxygen atoms and the helium atoms [43]. The 
majority of the migration barrier was noted to arise from the need to 
displace the oxygen atom in order for the helium interstitial to pass 
making this idea credible.

The bulk modulus was found to decrease with increasing helium 
concentration indicating that the oxides become softer as the helium 
content increases. It should be noted that Figure 6a-d shows each of 
the interstitial configurations tested in order of lowest to highest net 
oxygen displacement. The increasingly strained bonds affect the bulk 
modulus in that the more internal strain that exists, the less stress 
that can be applied to the structure before significant deformation 
occurs. The decrease in the bulk modulus may shed some light on 
the trapping mechanisms of the oxides. If we make the assumption 
that some single helium interstitials are contained within the oxide 
lattice, we can assume that the bulk modulus has decreased. Now a 
bubble that has formed (and is growing) at the oxide-iron interface 
will increasingly be able to deform the oxide. Considering the helium 
bubble to be pressurized, this deformation of the oxide lattice would 
ultimately decrease the pressure of the helium bubble increasing the 
stability.

Conclusion
The migration of a helium interstitial between two of the most 

energetically preferential sites in the Y2Ti2O7 lattice was investigated 
using the nudged elastic band. The migration path was found to 
travel from octahedral to tetrahedral to octahedral location. The 
barrier from the octahedral to tetrahedral location is 1.336 eV and 
the barrier from the tetrahedral to octahedral location is 0.802 eV 
where the majority of the energetic barrier arises from displacing 
an oxygen atom in order for the helium interstitial to pass by. The 
bulk modulus of Y2Ti2O7 was investigated containing increasing 
concentrations of helium up to three helium interstitials occupying 
octahedral interstitial sites. The bulk modulus was found to decrease 

a.)  b.)  c.)  d.)  
 

Figure 6: Fully relaxed internal structure for a.) single octahedral interstitial, b.) two octahedral interstitials (2HeOctI), c.) two octahedral interstitials (2HeOctII) and 
d.) three octahedral interstitials where, red, blue, tan and black atoms are Y, Ti, O and He atoms respectively. 

with increasing helium concentration indicating a softening of the 
oxides when helium is present.
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