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Application of Deep Learning LSTM and ARIMA Models in 
Time Series Forecasting: A Methods Case Study analyzing 
Canadian and Swedish Indoor Air Pollution Data

Abstract

Time series analysis and forecast are vital to understand how a 
public health hazard evolves over time and what are its influencing 
factors; these also generate evidence for preventive actions to avoid 
the potential consequences. There have been a lot of traditional 
time series analysis methods used in research. The new generation 
deep learning LSTM (long Short-Term Memory) time series analy-
sis model is promising as it can prevent memory loss that vanishes 
and explodes the gradient in neural network, deal with enormous 
volume of data and produce more precise nonlinear forecasts from 
multivariate inputs whereas the traditional (S)ARIMA (seasonal au-
toregressive integrated moving average) models that can predict 
linearly from a single variable. As the health hazard from the soil 
gas radon is multifactorial and current measures are proved ineffec-
tive and death toll from the risk is increasing, we applied this new 
method to analyze pilot data gathered in Canada through the Evict 
radon research consortium and got comparable ones from Sweden 
through Radonova. We conducted both deep learning LSTM and 
traditional (S)ARIMA modeling using Python-Jupyter notebook and 
the econometric toolset of MATLAB 2020b. We identified the trends 
and seasonalities, filtered and trained data, and fitted into the LSTM 
and (S)ARIMA models; then, forecasted radon levels for the two 
countries till 2100 AD. We compared and contrasted two models to 
provide clear ideas to the emerging researchers about the benefits 
and constraints of both. This methods case study has implications 
for modelled prediction from big time series data, not limited to the 
public health risk from indoor air pollution.
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Highlights

• We applied the next generation deep learning LSTM model for 
time series forecasting of indoor radon health risk and compared 
its performance to the traditional ARIMA/SARIMA models.

• Presented the model codes and parameters along with the extra 
benefits of the cutting-edge deep learning LSTM model over the 
traditional ones. 

• Analytics skills in building and employing advanced models to 
forecast from big time series data can facilitate research, not lim-
ited to the health risk from indoor air pollution.Graphical Abstract
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Learning Outcomes

By the end of this methods case, student researchers should 
be able to

• Understand and describe the building, training and ap-
plication of deep neural networks (LSTM model) and 
ARIMA/SARIMA models to the time series data of any 
context for risk analysis and prediction.

• Compare and contrast the strengths and weaknesses of 
these two different analytic tools.

• Experiment and appraise the outcomes generated by 
these tools to be able to decide on their usage. 

Introduction

Time series is a sequence where one or multiple metrics are 
recorded as data point over regular periodic intervals. With the 
huge production of high dimensional data, the utility of and in-
terest in time series analysis is increasing day by day. Depending 
on the frequency, a time series can be annual (annual incidence 
of a disease, exposure to a risk factor), quarterly (patient turn-
over or expenses of a hospital), monthly (emergency caseloads, 
patient admission), weekly (number of deliveries, patient dis-
charges, daily (infectious covid-19 cases, recovery), hourly (visi-
tor’s traffic, outdoor consultation), minutes (inbound calls in 
emergency room) and even seconds wise (Twitter trends, web 
traffic). [1,6,9,15,16]. By analyzing such continued time series 
data, we can forecast what the future values of the series will 
be. Such time series forecasting such as number of health-re-
lated cases expected in the days, months or years to come has 
tremendous planning, management, and fiscal importance. In 
the health sector, such analyses drive the essential policy, pro-
gram development and implementation decisions. Any errors in 
the forecasts must be paid with the cost of lives and here is the 
importance of accurate forecasting.

Forecasting a time series can be broadly divided into two 
types. If we use only the previous values of the time series 
to predict its future values, it is called Univariate Time Series 
Forecasting. The traditional ARIMA (Auto Regressive Integrated 
Moving Average) modeling is a forecasting algorithm based on 
the idea that the information in the past values of the time se-
ries can alone be used to predict the future values. Whereas 
Multi Variate Time Series Forecasting, uses predictors other 
than the series (exogenous variables) to forecast. Deep neu-
ral networks like Long Short-Term Memory (LSTM) recurrent 
neural networks can almost seamlessly model problems with 
multiple input variables. This is a great benefit in time series 
forecasting, where classical linear methods can be difficult to 
adapt to multivariate or multiple input forecasting problems. 
This advanced tool can provide practical solutions to the rapidly 
growing universal time data with improved performance and 
computational efficacy [7]. We wanted to know how radon lev-
els evolved over time from 1945 till date and how this level can 
be predicted for risk prevention. In this methods case study, we 
examined the development and application of both (S)ARIMA 
and LSTM model for multivariate time series forecasting with 
the Keras deep learning library [3,9]. Although there is appli-
cation of (S)ARIMA model in health risk analysis, we could not 
find any prior study or experiment that applied LSTM model in 
the time series analysis of any public health risk, particularly 
the risk from exposure to indoor air radon. Therefore, our main 
contribution to this paper includes performance comparison 
between deep learning LSTM and (S)ARIMA models that valid-

ates the proposed models to be suitable for application in the 
area of risk analysis with minimum data pre-processing and fea-
ture sophistication.

Project Overview and Context

Radon gas is an established category one carcinogen for 
lung cancer [4] that releases from bedrock, enters residential 
buildings and can be accumulated beyond the hazardous level 
to human exposure (>100Bq/m3; [18]. The health hazards of 
radon came to the limelight over 70 years ago when a high in-
cidence of lung cancer in Uranium miners was identified in the 
USA [8]. Till date, very few countries have taken regulatory ac-
tions to tackle the issue. International Residential Code of 2010 
demands an active radon control system to be operational in all 
new buildings in radon prone areas. The Council of the Euro-
pean Union’s (2013) Basic Safety Standards Directive obligates 
the member states to control the health risk with preemptive 
policies. Many European and US states have implemented 
buildings codes incompliance to the international standards 
[10]. Canadian federal government adopted a model national 
building code (NBC) since 1941. This was revised every five to 
ten years with enhanced policy directions but has not imposed 
any legal requirements so far [11]. The NBC becomes acts only 
when adopted by the provincial and territorial governments 
[13]. Most Canadian provinces and territories revised their 
building codes by 2019that require builders to follow indoor ra-
don control measures during new constructions. However, no 
strict regulatory obligationis in place in Canada that can require 
radon testing and disclosure during property transaction. Such 
lenient policy allows residents’ exposure to the carcinogen and 
consequently, there is now 31.5% higher radon level detected 
in the newly built houses in Canada compared to the ones built 
before 1992 [14]. 

We applied LSTM deep learning and (S)ARIMA models for 
time series analysis of the pilot data collected on indoor radon 
gas to find out the historical trends, seasonalities and forecast-
ed level still the end of this century so that the impacting factors 
can be identified, and compelling evidence can be generated 
that stir policy to prevent radon induced lung cancer incidence. 
The objective of this methods case study includes exploring cut-
ting-edge research tools for conducting a time-series analysis 
that can be applied in health research beyond indoor air pollu-
tion by experimenting the robustness of two methods for pro-
ducing the outcomes with the highest degree of precision and 
lowest errors.

Research Design

Evict radon is an umbrella term attached to a range of in-
terrelated public health research project approved by the Re-
search Ethics Boards of the University of Calgary (REB approval 
17-2239) that is applies various investigative methods to under-
stand people’s exposure to indoor radon gas. Our study area 
spreads over the entire landscape of Canada and researchers 
across the universities from coast to coast comprising of experts 
from radiation biology, genomics, building science and architec-
ture, psychology, geology, public policy, communication to pub-
lic and population health (see www.evictradon.org for more 
details). The project leads are committed to the tri-council pol-
icy statement and ethics as well as the regional guidelines and 
regulations for research involving citizen science participants.

The project randomly targeted participants took informed 
consent and engaged with adult citizen scientists who volun-
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tarily purchase alpha track 90+ day radon test kits that is quality 
controlled by the investigators. We excluded participants hav-
ing lung cancer but tailored to collect a representative sample 
that entails all sex, gender, race, age, income groups. We con-
tinue collecting data through online survey questionnaire that is 
readily deidentified and collected in a format ready to analyze.

Research Practicalities

Data Collection: We collected Canadian data through Evict 
Radon, a consortium of researcher spread across Canada with 
active partnership with the citizens scientists. We used web and 
social media to contact study participants who purchased ra-
don test kits and completed a survey. The test kits were sent to 
the lab and test results forwarded to the investigator to com-
municate to the participants. We gathered Swedish radon data 
through our partner, Radonova in Sweden.  

Data Processing: AS the data came in large volume, collected 
over an extensive timeline, upon different numbers of obser-
vations and types of variables, we preprocessed and equalized 
by putting them into the same or similar scales and analyzed 
only the matching timeline variables to be able to compare the 
outcomes between the two countries.  As data collection is still 
in progress, we picked a sample from the pilot data from both 
Canada and Swedish radon testing cohorts and put years of 
houses built in a time series from 1946 to 2020; thus, got two 
simulated datetime series of extend over 74 years to analyze for 
this case study.

Methods

Descriptive and time-series analyses we conducted using 
both traditional Python-Jupyter Notebook, Keras deep learning 
library, and time series analysis and forecasting (TSAF) toolsets 
in MATLAB2020b using the TSFA econometric platform. Descrip-
tive statistics of the concentrations of indoor radon (222Rn) test 
results, time-series trends and seasonality analyzed, filtered to 
remove trends and seasonalities, thus, random fluctuations 
generated, and appropriate models trained to forecast and 
compare radon levels in houses for desired number of years in 
the future both for Canada and Sweden. 

ARIMA/SARIMA Model

As for the timeseries prediction, historic data should be sta-
tionary where the covariance of the variable of importance is 
a function of lag, not of time. We found both Canadian and 
Swedish datasets we non-stationary through descriptive and 
inferential statistical Adfuller (Table 2) tests that means both 
datasets had trends and seasonalities (Figure 2). As per rules, 
we duly removed these trends and seasonalities through dif-
ferential filtering and decomposition to get the stationary data 
with random fluctuations of radon levels suitable to assign to 
an ARIMA (Auto-Regressive Integrated Moving Average) model 
that predicted the future trends (Figure 3). Besides, we identi-
fied seasonalities in our data and that why we Deseasoned it 
and add an additional term to take it a step further that is then, 
called SARIMA [3,12]. Details of methods’ particularities with 
formulas and parameters are described below; the minutiae of 
codes and calculations are available on demand.

Deep Neural Networks LSTM Model

The long short-term memory (LSTM) recurrent neural net-
works are a super powerful deep learning model that can seam-
lessly model problems with multiple input variables of time se-
ries data. It has extra benefit of in time series forecasting, where 
classical linear methods face difficulties in adapting to multivar-
iate or multiple input forecasting cases. LSTM has much ben-
efits over RNN as it can handle the memory loss and thereby 
prevent fading up and early disappearing of gradient descend 
of the neural networks. Besides, for time series forecasting, it 
can learn automatically from time dependent data and the can 
automatically handle temporal phenomena such as trends and 
seasonality [9].

Methods’ Particularities

Stationary in Time Series and its Types

Theatrically, a time series dataset should be stationarity to be 
able to forecast. Stationarity means the covariance of the vari-
able of importance is not a function of time rather than a func-
tion of lag. The statistical time series methods and even modern 
machine learning methods benefit from the clearer signal in the 
data. We turned to the deep learning methods as the classical 
methods failed when the input data volume is very large and 
better precision is crucial. Till date, we did not know how to best 
model unknown nonlinear relationships in time series data and 
when some methods can return better performance even with 
non-stationary observations or when the features of stationar-
ity and non-stationarity are coexisted. We experimented both 
with the traditional time series stationary data as well as data 
with mixed properties taking advantage of the extra analytics 
power of deep learning LSTM algorithms.

Examining Stationarity

We employed all the available methods to examine whether 
our time series data were stationary or not. These ranges from 
direct observations, descriptive and inferential statistical texts, 
residuals etc. Firstly, we reviewed the time series plots of both 
Canadian (left) and Swedish (right) radon data as shown below 
and visually checked if there we any obvious trends or seasonal-
ity.

Then, we split our time series data into three partitions, ran 
the summary statistics for each part and compared the mean 
and variance of each group. They did differ and the differences 
were statistically significant. As shown below the descriptive 
statistics of pilot sample, histograms and time series line plot 
logs of both Canadian and Swedish radon data showing obvious 
presence of deviation from normality, variances, skewness and 
kurtosis.
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Table 1: Descriptive statistics of Radon concentrations in pilot Canadian and Swedish data.

Descriptive Statistics

N Range Minimum Maximum Mean Std. Deviation Variance Skewness Kurtosis

Statistic Statistic Statistic Statistic Statistic Std. Error Statistic Statistic Statistic Std. Error Statistic Std. Error

Radon_Canada 74 79 56 135 99.86 1.913 16.454 270.749 0.302 0.279 0.441 0.552

Radon_Sweden 74 105 20 125 69.31 4.016 34.551 1193.779 0.71 0.279 -1.628 0.552

Valid N (listwise) 74

We plot the histogram of both observations to see if the 
data conforms to a Gaussian or normal distribution. We clearly 
saw the bell curve-like shape of the Gaussian distribution, with 
asymmetrical right-left tails. These show that indeed the distri-
bution of radon levels did not look like a perfect Gaussian dis-
tribution, that was an indicator of non-stationary time series.

Reviewing the plot of the time series again, we could see 
that there was an obvious seasonality component, and it looked 
like the seasonality component was growing. This suggested an 
exponential growth from season to season. A log transform was 
used to flatten out exponential change back to a linear relation-
ship. Below is the same histogram with a log transform of the 
time series. Running the example, we could not yet see the fa-
miliar Gaussian-like distribution of values.

We also create a line plot of the log transformed data and can see 
the exponential growth seems diminished, but we still have a trend 
and seasonal elements. We could then calculate the mean and stan-
dard deviation of the values of the log transformed dataset. 

Descriptive Statistics

N Range Minimum Maximum Mean Std. Deviation Variance Skewness Kurtosis

Statistic Statistic Statistic Statistic Statistic Std. Error Statistic Statistic Statistic Std. Error Statistic Std. Error

Radon_Canada 74 79 56 135 99.86 1.913 16.454 270.749 0.302 0.279 0.441 0.552

Radon_Sweden 74 105 20 125 69.31 4.016 34.551 1193.779 0.71 0.279 -1.628 0.552

Valid N (listwise) 74

Running the examples shows mean and standard deviation 
values for each group that we again similar, but not identical. 
Perhaps, from these numbers alone, we would say the time se-
ries is stationary, but we strongly believed this to not be the 
case from reviewing the line plot. 

Line Plot Log of Canadian Radon data

Augmented Dickey-Fuller test

This test also called unit root test informs the degree to 
which a null hypothesis can be rejected or failed to be reject. 
The result determines how strongly a time series is defined by a 
trend. Among a number of unit root tests, Augmented Dickey-
Fuller is one of the more widely used. It uses an autoregressive 
model and optimizes an information criterion across multiple 
different lag values.

The null hypothesis (H0) of the test is that the time series 
can be represented by a unit root, that it is not stationary (has 
some time-dependent structure). The alternate hypothesis (H1) 
rejects the null hypothesis, suggests the time series does not 

This is quick method could be misguiding; so, in the next 
step, we conducted inferential statistical tests to see if the ex-
pectations of stationarity were met or violated.  The test was 
designed to explicitly comment on whether a univariate time 
series was stationary.

Line Plot Log of Swedish Radon data



Submit your Manuscript | www.austinpublishinggroup.com

Austin Publishing Group

Austin Journal of Medical Oncology 9(1): id1073 (2022) - Page - 05

have a unit root, meaning it is stationary. It does not have time-
dependent structure. We interpret this result using the p-value 
from the test. A p-value below a threshold (such as 5% or 1%) 
suggests we reject the null hypothesis (stationary), otherwise a 
p-value above the threshold suggests we fail to reject the null 
hypothesis (non-stationary).p-value > 0.05: Fail to reject the null 
hypothesis (H0), the data has a unit root and is non-stationary. 
p-value <= 0.05: Reject the null hypothesis (H0), the data does 
not have a unit root and is stationary. The stats models library 
provides the adfuller () function that implements the test. We 
ran this test for both Canadian and Swedish Radon datasets.

Table 2: Result of Dickey-Fuller Test.

Canadian Data Swedish Data

Test Statistic 0.335431 -0.961080

p-value 0.978913 0.767194

#lag Used 2.000000 6.000000

number of observations used 74.000000 74.000000

Critical Value (1%) -3.526005 -3.531955

Critical Value (5%) -2.903200 -2.905755

Critical Value (10%) -2.588995 -2.590357

NB: Null hypothesis in ADF test is that Data is not stationary. 
Here we can evaluate the test statistics for both Canadian and 
Swedish Data which are greater than the critical value (at 5%) 
and the p-value is higher than the significant value 0.05%. Thus, 
we failed to reject the null hypothesis and considering the data 
as non-stationary. Therefore, we made the data stationary by 
differencing and decomposing. 

Thus, we determined that our radon data showed no sta-
tionary rather demonstrated different clear up and downward 
trends and seasonality over the shifting of time. Therefore, we 
modelled these components, and removed them from the ob-
servations, then trained models on the residuals. When we fit-
ted the stationary model to our data, we assumed that our data 
we a realization of a stationary process. 

We used the AC (autocorrelation) and PAC (partial autocor-
relation) to set the preliminary idea whether our data are au-
toregressive or not. As a rule of thumb, if AC tails off gradually 
and PAC cuts of after p lags, it is an AR(p) model, whereas if 
AC cuts off after q lags and PAC tails off gradually, the model is 
MA(q); and if both AC and PAC tails off gradually then, the mod-
el should be ARMA (p. q). In both our Canadian and Swedish 
samples, AC and PAC tailed off gradually and that is why we in-
tegrated both AR and MA models into ARIMA model (Figure 4).

ARIMA Models

ARIMA is a combination of models that describes a given 
time series based on its own values. These values are lags and 
lagged forecast errors generated from the dataset through 
mathematical equation that forecast future values. Hence, any 
processed time series data that displays patterns and have no 
random white noise can be fitted to ARIMA model to forecast 
future events. An ARIMA model is described with 3 terms: p, d, 
q; where, p is the order of the AR term, q is the order of the MA 
term, and d is the number of differencing required to make the 
time series stationary. If a time series, has seasonal patterns, 
then we add an extra seasonal term and call it SARIMA that is 
short for Seasonal ARIMA [3,12].

Detrending

To remove trend, we used tools such as Fourier Transfor-
mation function that provides spikes in the frequency domain 
corresponding to the number of harmonics and we used that 
least common multiple of harmonics to multiply the signal that 
removes seasonality underlying the trends. Second, we looked 
for autocorrelations that intuitively signals whether the samples 
are related to each other or not. Where as partial autocorre-
lations denote almost the same thing, but they remove linear 
dependence on the previous samples before finding the auto 
correlations. 

Seasonal decomposing and building SARIMA model.
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Our model had seasonalities, as the seasonal spikes were 
clearly visible after applying usual differencing (lag 1). so, we 
kept seasonal term and built a SARIMA model on for both the 
Canadian and Swedish using pmdarima’s auto_arima (). Thus, 
we set seasonal=True, set the frequency m=12 for month wise 
series and enforced d=1. The model has estimated the AIC 
(Akaike information criterion is an estimate of a constant plus 
the relative distance between the unknown true likelihood 
function of the data and the fitted likelihood function of the 
model, so a lower AIC of a model is considered to be closer to 
the truth, [17]. The P values of the coefficients also were sig-
nificant. We also checked the residual diagnostics plot. The best 
model SARIMAX (3, 0, 0) x (0, 1, 1, 12) has an acceptable lower 
AIC and the P Values were significant. Then, we proceeded to 
forecast radon values for the desired future years.

Final Forecasts: Our model captured the expected seasonal 
demand patterns. Then we used that as a template (TASF) and 
plug-inset of variables into the code. The seasonal index acted 
as an exogenous variable because it repeated every frequency 
cycle, one year in this case. So, we would always know what 
values the seasonal index would hold for the future forecasts. 
Therefore, we have the model with the exogenous term. Con-
sidering all these, we can forecast radon levels till a desired 
number of years along with historical display of preferred years 
for both Canada and Sweden (Appendix 1: ARIMA TSAF Coding 
Details).

Deep Neural Networks LSTM Model

Deep learning methods opens wide scopes for time series 
forecasting that includes automatic learning of temporal depen-
dence and automatic handling of temporal phenomena such as 
trends and seasonality. In LSTM model, we can define either 
a simple univariate or complex multivariate problem as a se-
quence of integers, fit the model on the defined sequence and 
train it to predict the subsequent values of the series in future. 
Thus, the frame the model with three-dimensional inputs as 
[sample, time steps, features] and reshape it using the Encoder-
Decoder pattern. We processed and created time series sam-
ples of radon test results as evictradon.csv and swedishradon.
csv datasets; conducted in residential properties of Canada and 
Sweden built since 1946 till 2020; thus, we got 74 input time 
steps. We defined the 6 input features as input shape argument 
on the first hidden layer. These are R-value, Depth_Roof_Insula-
tion, building age, SQF-BS, SQF_GMF, number_stories - the most 
important predictors got from factor analysis. Then, we defined 
an LSTM encoder to read and encode the input sequences of 
74-time steps. The encoded sequence was repeated 250 to 500 
times by the model to train and produce the most accurate 10 
more output time steps using repeat vector layer. These were 
fed to a decoder LSTM layer before using a Dense output layer 
wrapped in a time distributed layer that was able to produce 
one output for each step in the sequence. The model used the 
efficient Adam version of stochastic gradient descent and opti-
mized the Mean Squared Errors (MSE) loss function. Thus, once 
our model was defined and training data fitted to it, the model 
was ready to predict. Likewise, to forecast the values of multiple 
time steps in the future, we used the predict and update state 
function to predict time steps one at a time and update the net-
work state at each prediction [5,9]. Thus, we can sue the trained 
LSTM model to display history and forecasted radon levels for 
the next desired number of years. (Appendix 2: Deep Learning 
LSTM Neural Network Model coding details).

Minor details: When training networks for deep learning, it is 
useful to monitor the training progress by plotting various met-
rics during training. Thereby, we can determine whether and 
how rapidly the network accuracy is improving, and whether 
the network is starting to over fit the training data.

When we specify 'training-progress' as the 'Plots' value 
in training Options and start network training, train Net-
work creates a figure and displays training metrics at every 
iteration. Each iteration is an estimation of the gradient and 
an update of the network parameters. If we specify validation 
data in training Options, then the figure shows validation met-
rics each time train Network validates the network. The figure 
plots the following: a) Training accuracy: Classification accuracy 
on each individual mini batch. B) Smoothed training accuracy: 
Smoothed training accuracy, obtained by applying a smoothing 
algorithm to the training accuracy. It is less noisy than the un-
smoothed accuracy, making it easier to spot trends. c) Valida-
tion accuracy: Classification accuracy on the entire validation 
set (specified using training Options). d) Training loss, smoothed 
training loss, and validation loss: The loss on each mini batch, its 
smoothed version, and the loss on the validation set, respect-
ively. If the final layer of your network is a classification Layer, 
then the loss function is the cross-entropy loss. For regression 
networks as ours, the figure plots the root mean square er-
ror (RMSE) instead of the accuracy. Our Canadian and Swed-
ish model had the lowest RMSE of 5.92 and 6.72, respectively 
(Figures 3 & 4). The figure marks each training Epoch using a 
shaded background. An epoch is a full pass through the entire 
data set. We got the best training outcomes with 500 and 250 
epochs for Canadian and Swedish model (Figures 3 & 4). Once 
training is complete, train Network returns the trained network. 
We can view the Results showing the final validation and the 
reason that training finished. The final validation metrics are 
labeled Final in the plots and the forecasts are shown in obvious 
non-linear pattern compared to linear form of (S)ARIMA model. 
In the figure 3 and 4 we can see the information about the train-
ing time and settings.

Analyses Outcomes

Figure 1: ARIMA/SARIMA model outputs; Canada.
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Figure 2: ARIMA/SARIMA model outputs: Sweden.

 
Figure 3: Deep learning LSTM Model: Canada.

Figure 4: Deep learning LSTM Model: Sweden

Interpretations

The overall trend of indoor radon level in Western Canada 
remained upwards whereas it gradually goes downwards in 
Sweden. Although both the predicted models have forecasted 
radon to be in rise in Canada and Sweden with wide margins of 
confidence, these scenarios can be averted by takings appro-
priate policy and public health measures through the objective 
based building codes and awareness campaigns and incentives 
to testing and mitigation efforts. To be noted, the theoretical 
zero radon level in the prediction model is not practical as radon 
continues to emit from the ground as well as from other build-
ing materials and the level never reaches to zero rather stays 
above 10 Bq/m3 at the ambient air.

Results

The pilot data the two countries have different patterns of 
radon (222Rn) concentrations that varied over the bicentenary. 
Overall, the mean annual indoor level was higher in Canada 
than that in Sweden. We calculated the mean and moving aver-
age radon levels for the entire dataset, identified trends and 
seasonality from 1946 to 2020. Thus, prepared the model to 
project radon levels from 2020 onwards to any reasonable 
number of future years. This exercise also enabled us to com-
pare and contrast the features for Canada and Sweden. We look 
forward to the complete data collection and final analysis.

Conclusion

In this article, we presented the features of time series and 
stationary data, methods to verify whether a time series is sta-
tionary using basic summary statistics and python codes; run-
ning and interpretation of statistical significance tests to check 
if a time series is stationary. More specifically, we became famil-
iar with the methods and importance of converting time series 
data from non-stationary to stationary for use with statistical 
and deep learning modeling methods. We came to know about 
the power of deep learning LSTM model in dealing with mul-
tiple variables when forecasting in a non-linear model that can 
also deal with large volume of data and overcome the limita-
tions of ARIMA model.

Declaration of Conflict of Interest: This information will be 
provided after the blinded review.
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