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Abstract

Purpose: To ascertain the fidelity of predictive MRI-based delta-radiomics 
features in a moderately-sized cohort of pancreatic cancer patients.

Methods:  MRI setup images from 37 patients treated to 50 Gy in 5 
fractions on a 0.35T MR-Linac were subjected to radiomic analysis. Patients 
were classified as either responder (RS, n=17) or non-responder (NR, n=20) 
to treatment. The predictive power of radiomic and delta-radiomic features 
were examined using three feature selection algorithms, and logistic regression 
was used to build predictive models using the top 3, 2 and 1 feature for a total 
of 9 models. Patients were separated into a training set (n=25) and test set 
(n=12). The model building was repeated for expansions in the gross tumor 
volume (GTV) ranging from 0-10 pixels. Predictivity was measured via receiver 
operating characteristic Area Under Curve (AUC). The entire analysis was 
repeated, but replacing tumor response by a randomized outcome.

Results:  Delta-radiomics was most predictive using relative change of 
‘run-length nonuniformity’ feature at fraction 2. This was very consistent over 
the 9 models and most GTV expansions. A pronounced increase in predictivity 
using expansions of the GTV into the peritumoral region was noted. AUC in the 
training/test set was 0.85/0.75. Models built for the randomized outcome data 
appeared predictive for the training set but not in the test set (AUC = 0.69/0.50).

Conclusions:  A multi-algorithm approach, along with multiple expansions 
of the GTV, and utilization of test set separate from the training set, is very useful 
in ascertaining the fidelity of radiomic predictive models.

Keywords: Radiomics; Delta-radiomics; Pancreatic cancer; MRI

Research Article

On the Fidelity of Delta-Radiomic Models for  
Prediction of Pancreatic Tumor Response Following 
MRI-Guided SBRT

Hanson N, Dogan N, Simpson G, Spieler B, 
Jethanandani A, Mellon EA, Portelance L and 
Ford JC* 
Department of Radiation Oncology, Sylvester 
Comprehensive Cancer Center and University of Miami 
Miller School of Medicine, Miami, FL, USA

*Corresponding author: John Chetley Ford, Ph.D., 
Sylvester Comprehensive Cancer Center, University 
of Miami Miller School of Medicine, Department of 
Radiation Oncology, 1475 NW 12th Avenue, Suite C123, 
Miami, FL 33136, USA
Tel: 305-243-8895; 
Email: jcf137@miami.edu

Received: February 04, 2025; 
Accepted: February 21, 2025; 
Published: February 25, 2025

Introduction
Radiomics is the science of extracting quantitative features from 

medical images that may be subsequently exploited for prediction 
of patient outcome [1,2]. In the realm of oncology, with increasing 
attention toward personalized medicine [3], radiomics provides the 
potential to guide individualized medical management decisions. In 
the past decade, various researchers have utilized daily x-ray cone 
beam CT (CBCT) or magnetic resonance imaging (MRI) patient 

set-up images to examine changes in radiomic features during 
cancer treatment (delta-radiomics), resulting in promising models 
for predicting patient outcome [4-10]. However, a problem often 
encountered with radiomics analysis is overfitting; i.e., the high 
dimensionality of the potential radiomics feature space, which can 
number in the hundreds, is often large compared to the patient cohort 
number resulting in predictive features that are in fact only fitting 
to the statistical noise in the data rather than to any real underlying 
biological signal [11,12]. The aim of this paper is to ascertain the 
fidelity of predictive MRI-based delta-radiomics features in a 
moderately-sized cohort of pancreatic cancer patients.

Previous work by our group performed delta-radiomic analysis of 
the gross tumor volume (GTV) on 30 patients treated with low-field 
MRI-guided stereotactic body radiotherapy (SBRT) [10]. The analysis 
found two delta-radiomic features predictive of tumor response early 
during the treatment course with a receiver operating characteristic 
(ROC) area under curve (AUC) = 0.845, indicating a good predictor. 
However, due to the limited number of patients, only internal validation 
was feasible. We now have features extracted from 37 patients all 

Abbreviations
SBRT: Stereotactic Body Radiation Therapy; RS: Responder to 

chemoradiotherapy; NR: Non-Responder to Chemoradiotherapy; 
GTV: Gross Tumor Volume; ROC: Receiver Operating haracteristic; 
AUC: Area Under (the ROC) Curve; PDAC: Pancreatic Ductal 
Adeno Carcinoma; TRG-CAP: Tumor Response Grading with the 
College of American Pathologists; RF: Random Forest; LASSO:	
Least Absolute Shrinkage and Selection Operator; MRMR: inimum 
Redundancy Maximum Relevance; LOOCV: Leave-One-Out Cross 
Validation; AIC: Akaike Information Criterion; BED: Biological 
Equivalent Dose.
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treated with identical dose regimen and imaged identically and sought 
to repeat the delta-radiomic analysis with external validation, i.e., by 
splitting the cohort into training and test sets. We also sought to test the 
robustness of feature selection by utilizing multiple feature selection 
algorithms. Furthermore, we desired to understand the potential role 
of tumor contour variability, and whether expanding the volume of 
interest beyond the GTV would improve or affect the predictability. 
We also compared the tumor response prediction model to one where 
the outcome was a randomized binary outcome, to provide a baseline 
result in the absence of any real signal. Finally, we applied our model 
building tools to synthesized feature data, informed by our real data, 
to ascertain, in the presence of ground truth, how feature selection 
accuracy is affected by number of subjects.

Material and Methods
Patient Selection and Daily Setup MR Imaging

Patients in this study (N=37) had biopsy-confirmed pancreatic 
ductal adenocarcinoma (PDAC) and had completed chemotherapy 
prior to the MR-guided SBRT procedure on a 0.35T hybrid MRI/
radiotherapy unit (50 Gy in 5 fractions). A binary classification 
scheme identified patients as either responder (RS, n=17) or non-
responder (NR, n=20) to treatment. Treatment response for patients 
who had undergone curative-intent resection following SBRT utilized 
tumor response grading with the College of American Pathologists 
(TRG-CAP); TRG-CAP scores  were considered responders and 
a score = 3 as NR. Response for remaining patients was determined 
with follow up dynamic CT, MRI and/or PET imaging studies 
acquired within 1-3 months after SBRT according to modified 
response evaluation criteria in solid tumors (mRECIST 1.1) [13,14]. 
Daily setup images were acquired using the clinical pulse sequence 
with 1.5x1.5x3mm voxels and nearly identical TR/TE (3ms/1ms) and 
bandwidth (540-600 Hz/pixel). All patients provided their written 
informed consent to participate in this study under an approved 
University of Miami Institutional Review Board protocol.

Radiomic Feature Extraction

GTVs on daily MRI setup images were contoured by a radiation 
oncologist with expertise in PDAC. Prior to feature extraction from 
the images, the intensity range of each GTV was normalized and 
quantized [10], and voxels resampled to 1.5mm isotropic. Radiomic 
features in the GTVs were calculated using the Texture Feature 
Toolbox in Matlab (Mathworks, Natick, MA). Features utilized in 
this work are listed in Table 1, along with shorthand codes for ease of 
reference. To account for contour uncertainty, and more importantly 
to explore whether important radiomic information exists outside 
the GTV, features were also extracted from eleven 1.5mm isotropic 
expansions of each GTV. Delta-radiomic features were calculated for 
fractions 2-5 according to (fxn - fx1)/abs(fx1), where fxn is the feature 
value for the nth fraction.

Feature Selection Algorithms and Predictive Model 
Building

The predictive power of radiomic features from fractions 1-5, 
the mean of features over fractions 1-5, as well as the delta-radiomic 
features, were examined using three feature selection algorithms: 
Random forest (RF) [15], Least absolute shrinkage and selection 

Table 1: Radiomic features.

Encoding
Method

IBSI code/ 
aggregation 
code

Radiomic feature: IBSI Name Shorthand 
Code

GLCM LFYI/IAZD Energy 8ZQL F1
    Contrast ACUI F2
    Entropy TU9B F3
    Homogeneity IB1Z F4
    Correlation NI2N F5
    Sum Average ZGXS F6
    Variance UR99 F7
    Dissimilarity 8S9J F8
GLRLM TPOI/IAZD Short run emphasis 220V F9
    Long run emphasis W4KF F10
    Gray-level nonuniformity R5YN F11
    Run length nonuniformity W92Y F12
    Run percentage 9ZK5 F13

    Low gray-level run 
emphasis V3SW F14

    High gray-level run 
emphasis G3QZ F15

    Short run low gray-level 
emphasis HTZT F16

    Short run high gray-level 
emphasis GD3A F17

    Long run low gray-level 
emphasis IVPO F18

    Long run high gray-level 
emphasis 3KUM F19

    Gray-level variance 8CE5 F20
    Run length variance SXLW F21
GLSZM 9SAK/KOBO Small zone emphasis 5QRC F22
    Large zone emphasis 48P8 F23
    Gray-level nonuniformity BYLV F24
    Zone-size nonuniformity 4JP3 F25
    Zone percentage P30P F26

    Low gray-level zone 
emphasis XMSY F27

    High gray-level zone 
emphasis 5GN9 F28

    Small zone low  
gray-level emphasis 5RAI F29

    Small zone high  
gray-level emphasis HW1V F30

    Large zone low  
gray-level emphasis YH51 F31

    Large zone high  
gray-level emphasis J17V F32

    Gray-level variance BYLV F33
    Zone-size variance 3NSA F34
NGTDM IPET/KOBO Coarseness* - F35
    Contrast 65HE F36
    Busyness NQ30 F37
    Complexity HDEZ F38
    Strength* - F39

*as defined by Amadasun and King [25].

operator (LASSO) [16], and Minimum redundancy maximum 
relevance (MRMR) [17]. Patients were divided into a training set 
(11 RS/14 NR) and a test set (6 RS/6 NR). The three feature selection 
algorithms were applied to the training set to determine the top 3 
radiomic and delta-radiomic features for each of the eleven GTV 
expansions. Logistic regression was then used to create predictive 
models of patient response using the top 3, top 2, and top 1 most 
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predictive radiomic and delta-radiomic features from each algorithm 
for a total of 9 models for each GTV expansion, and AUC was 
calculated.

Model Comparison

Internal validation for each model was undertaken by performing 
leave-one-out cross validation (LOOCV). Another means of 
estimating the training set AUC and its uncertainty was undertaken 
by bootstrapping the data 1000 times performing logistic regression 
on 2/3 of the training set followed by application to the remaining 1/3, 
which afforded a mean AUC and 2.5 and 97.5 percentile confidence 
interval. The Akaike information criterion (AIC) [18], a widely used 
measure for predictive model comparison, was also calculated, as well 
as the accuracy for the training set. For external validation purposes, 
each logistic regression model was applied to the test set of patients, 
and AUC and accuracy of each model was calculated for the test set.

Further Analysis

The feature selection, model building, and model comparison 
described above was repeated but with patient outcome determined 
not by tumor response but classified randomly as positive or negative 

Table 2: Random forest, fraction 2 delta-radiomics for predicting tumor response.
Training Set Test Set

Expansion (pixels) Features chosen AUC-BS (CI) LOOCV AIC AUC Accuracy AUC Accuracy
0 F22, F26, F11 0.55 (0.53 - 0.58) 0.52 36.49 0.53 0.56 0.58 0.58
1 F3, F12, F11 0.75 (0.72 - 0.78) 0.76 28.59 0.79 0.8 0.67 0.67
2 F11, F12, F14 0.80 (0.77 - 0.84) 0.84 27.99 0.91 0.92 0.58 0.58
3 F12, F11, F1 0.75 (0.72 - 0.78) 0.76 25.01 0.80 0.80 0.67 0.67
4 F11, F12, F16 0.75 (0.72 - 0.78) 0.72 30.21 0.84 0.84 0.42 0.42
5 F12, F11, F18 0.75 (0.72 - 0.78) 0.68 28.57 0.79 0.80 0.58 0.58
6 F12, F11, F23 0.71 (0.68 - 0.74) 0.72 27.52 0.84 0.84 0.75 0.75
7 F12, F11, F24 0.83 (0.80 - 0.87) 0.84 16.94 0.91 0.92 0.67 0.67
8 F12, F11, F34 0.75 (0.72 - 0.78) 0.72 28.63 0.79 0.80 0.42 0.42
9 F12, F34, F11 0.70 (0.67 - 0.73) 0.64 29.60 0.76 0.76 0.58 0.58
10 F11, F12, F21 0.80 (0.77 - 0.84) 0.76 29.87 0.95 0.96 0.58 0.58

0 F22, F24 0.58 (0.56 - 0.61) 0.56 34.53 0.53 0.56 0.58 0.58
1 F3, F12 0.75 (0.72 - 0.78) 0.76 26.79 0.76 0.76 0.58 0.58
2 F11, F12 0.75 (0.72 - 0.78) 0.64 28.69 0.79 0.8 0.75 0.75
3 F12, F11 0.75 (0.72 - 0.78) 0.72 25.74 0.76 0.76 0.58 0.58
4 F11, F12 0.73 (0.70 - 0.76) 0.72 29.49 0.83 0.84 0.67 0.67
5 F12, F11 0.75 (0.72 - 0.78) 0.76 30.19 0.79 0.8 0.83 0.83
6 F12, F11 0.75 (0.72 - 0.78) 0.76 27.22 0.79 0.8 0.67 0.67
7 F12, F11 0.71 (0.68 - 0.74) 0.72 31.95 0.7 0.72 0.75 0.75
8 F12, F11 0.75 (0.72 - 0.78) 0.76 28.39 0.79 0.8 0.67 0.67
9 F12, F34 0.71 (0.68 - 0.74) 0.72 28.22 0.72 0.72 0.67 0.67
10 F11, F12 0.70 (0.67 - 0.73) 0.64 32.89 0.74 0.76 0.83 0.83

0 F22 0.62 (0.60 - 0.65) 0.6 32.79 0.62 0.64 0.58 0.58
1 F3 0.75 (0.72 - 0.78) 0.72 32.4 0.75 0.76 0.5 0.5
2 F11 0.80 (0.77 - 0.84) 0.8 30.48 0.83 0.84 0.83 0.83
3 F12 0.75 (0.72 - 0.78) 0.72 27.57 0.78 0.8 0.75 0.75
4 F11 0.75 (0.72 - 0.78) 0.8 30 0.83 0.84 0.67 0.67
5 F12 0.75 (0.72 - 0.78) 0.76 28.62 0.78 0.8 0.75 0.75
6 F12 0.75 (0.72 - 0.78) 0.72 28.48 0.83 0.84 0.75 0.75
7 F12 0.75 (0.72 - 0.78) 0.72 29.97 0.74 0.76 0.75 0.75
8 F12 0.75 (0.72 - 0.78) 0.72 29.54 0.78 0.8 0.75 0.75
9 F11 0.71 (0.68 - 0.74) 0.68 32.67 0.75 0.76 0.83 0.83
10 F11 0.71 (0.68 - 0.74) 0.72 30.98 0.74 0.76 0.83 0.83

AUC-BS (CI) – bootstrapped AUC with confidence interval, LOOCV – leave-one-out cross validation,
AIC – Akaike information criterion, AUC – Area under curve. outcome. Care was taken to have balanced RS and NR in each class. In 

this way, we produce a data set with no possibility of a real predictive 
signal, only noise, for comparison to our tumor response data set that 
is hypothesized to contain a predictive signal (feature). Furthermore, 
for both the tumor response data set and randomized outcome data 
set, the training and test sets were resampled five times to investigate 
any dependence on training set/test set selection, taking care to 
maintain RS/NR balance in each. Finally, the delta-radiomic features 
from fraction 2 (and fraction 1) and GTV expansion of 4 pixels, 
were ranked by predictability based on Student t-test of difference in 
means between RS and NR. Synthetic data sets with varying numbers 
of subjects were created based on sampling of normal distributions 
using the mean and standard deviation, for RS and NR, of the top 
six features. These features were, along with p-value: F12, 0.001; F11, 
0.002; F1, 0.069; F4, 0.098; F9, 0.113; F23, 0.118.  Another 31 features 
were synthesized based on normal distributions with zero mean and 
standard deviation of 0.2, for both RS and NR. Synthesized feature 
data sets were created with patient number ranging from 10 to 300 
and were subjected to feature selection by the three algorithms. 
This afforded the ability to test the accuracy of the feature selection 
algorithms in the presence of ground truth informed by our real 
patient data.
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Results 
We found overall the fraction 2 delta-radiomic features to be 

most predictive; therefore, all the results shown in this paper are 
for fraction 2 delta-radiomics. (For delta-radiomic results from all 
fractions, see the spreadsheet in the Supplemental Data) Shown in 
Table 2 are the results for Random Forest feature selection and tumor 
response prediction using the top 3, top 2, and top 1 features, for all 
eleven GTV expansions. F11 and F12 (Table 1 for shorthand codes) 
are consistently chosen for all models and expansions beyond two 
pixels. In the training set, bootstrapped estimation of AUC, LOOCV, 
conventional AUC, Accuracy, and AIC track with one another rather 
well and are consistent over the expansions beyond two pixels. (For 
AIC, lower value indicates more predictive, and differences of less 
than 2 are generally regarded as not significant.) AUC and accuracy 
in the test set show similar behavior, but with somewhat lower values 
compared to the training set.

Shown in Table 3 are the results for Random Forest results, same 
as Table 2, but for randomized outcome prediction. Unlike the tumor 
response result, Table 3 shows no consistent feature selection over all 
Table 3: Random forest, fraction 2 delta-radiomics for predicting randomized outcome.

Training Set Test Set
Expansion (pixels) Features chosen AUC-BS (CI) LOOCV AIC AUC Accuracy AUC Accuracy
0 F30, F20, F14 0.58 (0.56 - 0.61) 0.52 34.70 0.64 0.64 0.75 0.75
1 F37, F27, F34 0.58 (0.56 - 0.61) 0.52 36.21 0.64 0.64 0.50 0.50
2 F19, F11, F26 0.70 (0.67 - 0.73) 0.64 30.98 0.68 0.68 0.83 0.83
3 F7, F19, F38 0.58 (0.56 - 0.61) 0.44 37.82 0.72 0.72 0.58 0.58
4 F1, F7, F26 0.58 (0.56 - 0.61) 0.56 38.23 0.60 0.60 0.67 0.67
5 F26, F6, F1 0.65 (0.62 - 0.68) 0.64 35.58 0.72 0.72 0.50 0.50
6 F19, F7, F21 0.62 (0.60 - 0.65) 0.56 33.35 0.72 0.72 0.33 0.33
7 F32, F34, F29 0.62 (0.60 - 0.65) 0.56 36.84 0.76 0.76 0.75 0.75
8 F22, F38, F20 0.65 (0.62 - 0.68) 0.56 36.02 0.76 0.76 0.58 0.58
9 F36, F35, F4 0.50 (0.48 - 0.52) 0.48 39.11 0.68 0.68 0.50 0.50
10 F36, F21, F35 0.58 (0.56 - 0.61) 0.60 33.47 0.64 0.64 0.67 0.67

0 F30, F20 0.62 (0.60 - 0.65) 0.64 34.10 0.64 0.64 0.67 0.67
1 F37, F27 0.58 (0.56 - 0.61) 0.52 36.04 0.64 0.64 0.50 0.50
2 F19, F11 0.60 (0.57 - 0.63) 0.64 36.87 0.64 0.64 0.58 0.58
3 F7, F19 0.58 (0.56 - 0.61) 0.52 38.03 0.56 0.56 0.33 0.33
4 F1, F7 0.62 (0.60 - 0.65) 0.64 36.66 0.68 0.68 0.58 0.58
5 F26, F6 0.67 (0.64 - 0.70) 0.64 34.76 0.72 0.72 0.67 0.67
6 F19, F7 0.70 (0.67 - 0.73) 0.60 31.35 0.72 0.72 0.33 0.33
7 F32, F34 0.62 (0.60 - 0.65) 0.64 36.57 0.68 0.68 0.67 0.67
8 F22, F38 0.67 (0.64 - 0.70) 0.60 34.27 0.68 0.68 0.67 0.67
9 F36, F35 0.58 (0.56 - 0.61) 0.64 37.11 0.68 0.68 0.50 0.50
10 F36, F21 0.62 (0.60 - 0.65) 0.60 31.67 0.64 0.64 0.67 0.67

0 F30 0.60 (0.57 - 0.63) 0.52 35.82 0.64 0.64 0.75 0.75
1 F37 0.67 (0.64 - 0.70) 0.64 34.95 0.72 0.72 0.50 0.50
2 F19 0.62 (0.60 - 0.65) 0.64 36.38 0.67 0.68 0.67 0.67
3 F7 0.50 (0.48 - 0.52) 0.16 38.18 0.76 0.76 0.58 0.58
4 F1 0.58 (0.56 - 0.61) 0.56 35.48 0.55 0.56 0.67 0.67
5 F26 0.62 (0.60 - 0.65) 0.60 33.95 0.60 0.60 0.75 0.75
6 F19 0.62 (0.60 - 0.65) 0.60 33.09 0.60 0.60 0.42 0.42
7 F32 0.62 (0.60 - 0.65) 0.64 35.93 0.68 0.68 0.42 0.42
8 F22 0.67 (0.64 - 0.70) 0.68 34.37 0.72 0.72 0.75 0.75
9 F36 0.62 (0.60 - 0.65) 0.64 35.49 0.72 0.72 0.58 0.58
10 F36 0.65 (0.62 - 0.68) 0.64 34.83 0.72 0.72 0.67 0.67

AUC-BS (CI) – bootstrapped AUC with confidence interval, LOOCV – leave-one-out cross validation,
AIC – Akaike information criterion, AUC – Area under curve.

models and GTV expansions. All else is similar to Table 2, but with 
generally lower predictability metrics especially in the test set.

Table 4 summarizes the model results. It shows the top feature 
count (number of times a given feature is selected as the top predictor) 
and the mean AUC over all GTV expansions in the training set and 
test set for tumor response data as well as randomized outcome data, 
for all 9 models. For the tumor response data, it is seen that all nine 
models consistently choose F12 or F11 as the top feature. We also 
note that the best models according to the training set utilize 2 or 
3 features, whereas according to the test set the three models using 
a single feature are more predictive. For the randomized outcome 
data, there is no consistency in top feature selection. AUCs in the 
training set are lower than for the tumor response data, but are still 
significantly positive (i.e., above 0.5), whereas the AUCs in the test set 
hover around 0.5 (not predictive).

Figure 1 shows the behavior of the AUC averaged over all 9 
models versus GTV expansion for the training set and test set for 
both the tumor response and randomized outcome data. AUC in the 
training set is substantially higher than for the test set, for both tumor 
response and randomized outcome data. Tumor response AUCs are 
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Figure 1 Mean AUC over all 9 models versus GTV expansion in training set 
and test set, for tumor response and randomized outcome. Error bars are 
standard error. Red lines at AUC=0.5 indicate no predictivity.

significantly higher for expansions above 1 or 2 pixels as compared 
to no expansion, for both training and test sets. To test whether this 
behavior is a statistical coincidence, we re-plotted the AUC versus 
expansion for the tumor response data using 5 different assignments 
of patients to training and test sets. The behavior was consistent using 
all the patient reassignments. The randomized outcome data does not 
show this behavior. In Figure 1, test set AUCs appear to be predictive 
for the tumor response data, but not for the randomized outcome data. 
The test set AUCs for the randomized data appear to have a positive 
bias in Figure 1. To test this, we re-plotted the AUC versus expansion 
for the randomized data using 5 different assignments of patients to 
training and test sets. The mean test set AUC over all models and 
patient assignments was 0.50, demonstrating there is no AUC positive 
bias in the test set of the randomized outcome data.

Finally, Figure 2 shows the number of correctly selected predictive 
features for the three selection algorithms applied to the synthesized 
data. Random forest appears to be the best feature selector overall. It is 
seen that for > 100 subjects, all three algorithms choose at least 5 out 
of 6 predictive features. For 20 subjects, all three selection algorithms 
select at least the top 2 features. 

Discussion
Previous delta-radiomics work by our group [10] utilized low-

field MRI setup images in 30 PDAC patients treated to 30-60 Gy in 
3-5 fractions. The non-uniformity of fractional dose led that study 
to perform delta-radiomics binned not by fraction, but by biological 
equivalent dose (BED). We found that the best predictor of tumor 
response was at 20 Gy BED, corresponding to either fraction 2 or 3 
(normalized to fraction 1) delta-radiomics, with an AUC = 0.845.  
That previous work used internal validation only, and the predictive 
features were F6 and F37 (see shorthand codes in Table 1). 

The current work differs from the previous study in that we utilized 
multiple feature selection algorithms, multiple regions of interest by 
expansions of the GTV, and external validation by separating the 
37 patients into a training set and test set. In agreement with our 
previous work, the current study finds the best overall predictors of 
tumor response are observed early during treatment, using fraction 2 
delta-radiomics. However, neither F6 nor F37, found predictive in the 

earlier work, are selected by any of the selection algorithms for any 
of the GTV expansions. This discrepancy highlights the uncertainty 
inherent in radiomic studies with limited patient cohort size and was 
the impetus for our desire to answer the question: Is there truly any 
information in the low-field MR setup images that may be predictive 
of pancreatic tumor response?

Part of the answer to this question may be addressed by noting 
the consistency of selected features over the 9 models and 11 GTV 
expansions (Table 2 and Table 4). Except for the 0-pixel and 1-pixel 
GTV expansions, all models/expansions chose F12 or F11 among 
the top predictive features. Other groups have explored the value 
of utilizing and comparing multiple radiomic models in predicting 
cerebral hemorrhage expansion [19] and for predicting tumor 
budding in rectal cancer [20]. Zhang, et al., demonstrated the utility 
of CT-based radiomics combined with multiple machine learning 
models to discriminate PDAC from pancreatic neuroendocrine 
tumor, and specifically recommended that future studies consider 
multi-algorithm modeling rather than a single algorithm [21]. The 
consistency of selected features from multiple algorithms in the 
current work lends credence to the multi-algorithm approach and 
lends some confidence that the features are predictive of tumor 
response.

Our initial motivation for performing delta-radiomics using 
expansions of the GTV was to account for contour uncertainty. 
Zhang, et al. [22], examined the effect of volume of interest (VOI) 
delineation on MRI-based radiomics to predict metastasis in 
nasopharyngeal carcinoma and sentinel lymph node metastasis 
in breast cancer, and found that smoothing the VOI or dilating by 
several pixels could improve radiomic analyses. Other researchers 
have reported on the importance of peritumoral radiomics since 
the region immediately surrounding the tumor parenchyma may be 
involved in immune infiltration, blood and lymphatic vasculature, 
and stromal inflammation ([23] and references therein). Takada, et 
al. [24], studied the ability of MRI-based radiomics to predict tumor 
control after radiotherapy in uterine cervical cancer, and found 
that an expansion of 4-8mm of the tumor VOI improved the AUC 
significantly. Hence, an additional motivation for performing delta-
radiomics using expansions of the GTV in the current work was to 
determine whether there is radiomic information outside the GTV 
that would potentially improve prediction of tumor response.

Indeed, this study demonstrated (Figure 1) that tumor response 
predictivity improved by expanding the GTV by 1 or more pixels 
(>1.5mm), and this behavior was shown not to be a mere statistical 
coincidence of that particular sampling of patients into training and 
test set. This finding warrants further investigation, as discussed 
below. An additional benefit of performing radiomics in the GTV 
expansions is that it provides a degree of confidence in the robustness 
of the results. With limited patient cohort size, one is often uncertain 
whether an apparent positive radiomic result (i.e., a feature appears 
to be predictive of outcome) is merely overfitting to the noise in 
the patient feature data. GTV expansions provide multiple different 
noise sets. If a feature is found to be consistently predictive for the 
expansions, then this indicates there is real radiomic signal in the 
tumor and/or peritumoral region and is not due to overfitting to noise 
in a particular data set. 
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Table 4: AUC (mean ± SD) over all GTV expansions for the 9 predictive models.

Model

Tumor Response Randomized Outcome
Top Feature Count

Training AUC
Test
AUC

Top Feature 
Count

Training AUC
Test
AUCF12 F11 Other F12 F11 Other

RF 3 6 3 2 0.81 ± 0.11 0.59 ± 0.10 0 0 11 0.69 ± 0.05 0.61 ± 0.15
RF 2 6 3 2 0.75 ± 0.08 0.69 ± 0.09 0 0 11 0.66 ± 0.05 0.56 ± 0.13
RF 1 5 4 2 0.77 ± 0.06 0.73 ± 0.11 0 0 11 0.67 ± 0.07 0.61 ± 0.12
LASSO 3 9 1 1 0.85 ± 0.07 0.52 ± 0.08 0 0 11 0.69 ± 0.08 0.59 ± 0.17
LASSO 2 9 1 1 0.83 ± 0.07 0.59 ± 0.08 0 0 11 0.68 ± 0.05 0.58 ± 0.18
LASSO 1 9 1 1 0.74 ± 0.07 0.72 ± 0.08 0 0 11 0.66 ± 0.04 0.57 ± 0.13
MRMR 3 11 0 0 0.81 ± 0.07 0.57 ± 0.09 0 0 11 0.68 ± 0.06 0.48 ± 0.09
MRMR 2 11 0 0 0.82 ± 0.07 0.58 ± 0.08 0 0 11 0.67 ± 0.04 0.51 ± 0.13
MRMR 1 11 0 0 0.75 ± 0.06 0.73 ± 0.08 0 0 11 0.67 ± 0.04 0.52 ± 0.10

Highlights indicate best performing models.

The AUC results shown in Table 4 and illustrated in Figure 
1 highlight the importance of external validation. AUCs of the 
best performing models in the tumor response training set are 
approximately 0.85, consistent with our previous work. However, 
AUCs in the randomized outcome training set also appear to be 
predictive, when there is of course no real predictive radiomic 
signal in this case. Only by utilizing a separate test set do we see 
the AUC for the randomized outcome data go to approximately 0.5 
(non-predictive) and see in the tumor response data the features are 
predictive (AUC = 0.73). Figure 1 also highlights the importance in 
this study of performing delta-radiomics in the GTV expansions. If 
we had only analyzed the GTV (expansion = 0) in our tumor response 
data, we would conclude that while the training set appeared to be 
predictive (AUC > 0.6), the test set indicated no predictivity of tumor 
response (AUC = 0.5); likewise, the randomly assigned data AUCs 
would indicate predictivity for both training and test sets (AUCs > 
0.65 for GTV only). Finally, Figure 2 provides an indication of how 
patient cohort size affects the ability of the feature selection algorithms 
to find the top predictive delta-radiomic features, ranked by t-test 
discrimination of RS and NR, in our tumor response data. We cannot 
necessarily draw any strong conclusions about the relative utility of 
one selection algorithm versus another, as this is synthesized data 
informed by only one pancreatic tumor response data set; however, 

this sort of analysis may be beneficial in estimating numbers of 
subjects needed in future radiomic studies.

Conclusion
This study provides strong evidence of at least one MRI-based 

delta-radiomic feature able to predict tumor response in PDAC. 
The top predictive feature (in our shorthand denoted F12) is run-
length nonuniformity from the gray-level run-length matrix. The 
relative change in F12 measured in low-field MRI setup images 
between fraction 2 (following only one SBRT fraction) and fraction 
1 (a pre-radiotherapy scan) predicts tumor response in a test set of 
patients, independent of the training set, with an AUC ≥ 0.75 using an 
expansion of at least 1.5mm of the GTV. This finding should motivate 
accrual of a separate patient data set for validation. The current work 
used only linear regression for model building but given confidence 
in the delta-radiomics results from this study and a future validation 
cohort, we may find that a different classification algorithm may 
improve the delta-radiomic feature’s predictive power. Additionally, 
this study’s finding that the radiomic signal appears to arise from the 
peritumoral area should motivate implementation of a technique to 
provide a map of predictive radiomic features throughout the GTV 
and surrounding tissue, to determine precisely from where the signal 
originates. This information could potentially allow not only MR 
imaging modifications to maximize the radiomic signal, but also, 
along with radiomics studies in pre-clinical models, give insight as 
to the pathophysiologic changes underpinning the delta-radiomics of 
pancreatic cancer. 
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