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Abstract

The Spindle- and Kinetochore-Associated (SKA) complex, comprised of 
subunits SKA1, SKA2, and SKA3, serves an essential role in cell division through 
the stabilization of interactions between the kinetochore and microtubules and 
the timely onset of anaphase. Additionally, the SKA complex has also been 
implicated in the disease pathways of cancer and psychiatric disorders through 
mechanisms of genetic and epigenetic modulation complex subunit expression. 
This review focused on the structure and functions of SKA complex and each 
individual SKA family member to investigate the specific functions of each 
SKA family member and the potential abnormalities caused by the changes of 
expression levels of SKA family genes.
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Introduction
Human cell mitosis is a critical process for normal cell 

differentiation and is involved in the relocation of duplicated 
chromosomes into two newly forming daughter cells. Any mistake 
during this process can lead to cellular functional abnormalities, and 
therefore, can lead to diseases and even cancers. Previous studies 
demonstrated that the mitosis of human cells required a group of 
proteins called the Spindle- and Kinetochore-Associated (SKA) 
complex to separate and translocate duplicated chromosomes 
into daughter cells [1,2]. Movement of chromosomes, both their 
alignment at the metaphase plate and their subsequent separation 
and regression towards the poles of the cell, is a force-exerting process 
on Kinetochores (KT), as spindle Microtubules (MT) lengthen and 
shorten. The way in which KTs remain attached to the + -ends of the 
polymerizing MTs, despite the forces exerted on them, is through the 
actions of the SKA complexes, which act with other factors together 
to power the movement of chromosomes, utilizing energy obtained 
from depolymerizing MTs [3,4]. The SKA complex is known to be an 
essential component of mitotic cell division, required for the timely 
onset of anaphase. Recruitment of the SKA complex to the KT is 
mediated by the internal loop region of the Ndc80 complex, a large 
protein machine that accurately segregates chromosomes during cell 
division, which lies at the heart of the kinetochore, in addition to the 
conserved KNL-1/Mis12 complex/Ndc80 complex (KMN) network, 
which is essential for kinetochore-microtubule interactions in vivo, as 
well as Hec1of Ndc80/HEC1 complex [5,6]. Timely anaphase onset is 
achieved through promoting the proper segregation of chromosomes 
by stabilizing interactions between the KT and MTs, in addition to 
the silencing of the mitotic spindle checkpoint [2,7].

SKA Complex Structure and Function
The SKA complex shares many commonalities with the Dam1/

DASH complex, a yeast component that can couple the force 
generated by microtubule depolymerisation to direct chromosome 
movement in vivo, and is composed of two helical SKA1-SKA2 
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heterodimers, each coiled around a single arm of the helical SKA3 
homodimer; creating a W-shaped complex of coiled coils [8]. The 
MT binding sequence is comprised of residues 132-255, which make 
up the C-terminal domains of SKA1 and SKA3, protruding at each 
end of the homodimer and which are a variation of the winged-helix 
domain [3,8,9]. Additionally, four Aurora B phosphorylation sites are 
responsible for down regulating the SKA complex’s association with 
the KT through the reduction of SKA1 MT binding activity [9,10]. 
RNAi knockdown of SKA subunits produces dysfunctional MT 
attachment slows chromosomal alignment during metaphase, and 
delays silencing of the Spindle Alignment Checkpoint (SAC) [11-
15]. The internal loop region of the Ndc80 complex may also induce 
aneuploidy and tumorigenesis through sequestration of Ndc80 
binding associates such as the SKA complex, among others, when 
Ndc80 is overproduced through misregulation [16]. In studies of 
meiosis in mouse oocytes, SKA complex subunit depletion resulted in 
dysfunction of spindle movement and polar body enlargement, while 
depletion of the entire complex resulted in instability at the anaphase 
spindle and extrusion of the first polar body [7,9].

SKA1 Function in Normal and Abnormal 
Expression

After initial isolation through proteome analysis at the mitotic 
spindle [17], SKA1 was shown to facilitate spindle dynamics. The 
SKA complex must track the depolymerizing ends of the MT and 
does so through the action of SKA1, which in addition to directing 
Kinesin Heavy Chain Member 2A (Kif2a) to the minus-end of the 
MT to facilitate spindle dynamics, also assists the Ndc80 complex in 
doing the same, as the Ndc80 complex does not track depolymerizing 
MT ends on its own [9,18]. During the course of chromosomal 
segregation, it is important that the KT maintain stable attachment 
to MTs, in both their straight configurations, during polymerization, 
as well as their curved configurations, during depolymerization; after 
direction from DDA3, a MT-associated protein, the SKA complex 
provides stabilization for these dynamic configurations through the 
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action of the complex’s C-terminal winged-helix domain, specifically, 
at the multiple MT contact sites of SKA1 [18,19]. The onset of 
anaphase is promoted by the C-terminal domain of SKA1, through the 
enlistment of Protein Phosphatase 1 (PP1), which acts in opposition 
of the spindle checkpoint signaling kinases [1]. In contrast to the SKA 
complex’s larger role in mitosis, studies of meiosis in mouse oocytes 
demonstrate that the complex is only localized on spindle MT from 
the prophase stage to meiosis I to meiosis II, rather than localizing to 
the KT from prometaphase to mid-anaphase, as is the case in mitosis 
[7]. As the SKA complex is an essential component in cell division, 
consequently, the complex also has been associated with various 
cancers. Overexpression of SKA1 is known to promote tumorigenesis 
of the prostate, play an important role in the development of oral 
adenosquamous carcinoma, and demonstrate utility in the prediction 
of poor prognosis in papillary thyroid carcinoma [20-22].

SKA2 Function in Normal and Abnormal 
Expression

In vivo, SKA2 is stabilized through interaction with SKA1, 
with RNAi silencing experiments of either subunit resulting in the 
absence of either protein at the KT [14]. It is theorized that stress 
may be responsible for the activation of behaviorally destructive 
pathways involving SKA2, among others, with cellular apoptosis 
serving as the inductive event [23]. As stress is acquired from 
traumatic events, abnormalities result within the Hypothalamic 
Pituitary Adrenal (HPA) axis, thereby placing individuals at 
increased risk for Post-Traumatic Stress Disorder (PTSD), as well as 
suicidal behaviors. An epigenetic factor involved in this mechanism 
is the DNA-methylation of SKA2 3’-Untranslated Repeat (UTR), 
which is reported to hold a predictive validity for suicidal behavior 
of approximately 80% and suggests the role of SKA2 as a mediator 
of suicidal behavior through stress-induced epigenetic variation, 
which in turn contributes to dysregulation of the HPA axis [24]. A 
significantly reduced expression of SKA2 has been observed in the 
prefrontal cortex of suicide victims, including those who had been 
suffering from depression, schizophrenia, substance abuse, and/
or conduct disorders; a finding which suggests that the association 
between the reduction of SKA2 expression and the completion of 
suicide is not specific to any underlying psychological condition [25]. 
Increased levels of SKA2 methylation have been identified in the 
postmortem brain tissue samples taken from suicide decedents and 
in the blood samples taken from patients with suicidal ideations [26]. 
Additionally, increased SKA2 methylation has been associated with 
lower cortisol stress reactivity, with decreases in SKA2 methylation 
over time being associated with onset of PTSD symptoms, while 
traumatic stress exposure resulted in gradual increases in SKA2 
methylation over time [27]. In addition to the association of increased 
SKA2 methylation with suicidal behaviors and lower cortisol stress 
reactivity, such increases in SKA2 methylation have been shown to 
yield reductions in cortical thickness in the following regions of the 
brain: frontal pole, superior frontal gyrus, right orbitofrontal cortex, 
and right inferior frontal gyrus [28]. Along with the decreases in 
thickness identified in these regions of the brain, negatively correlated 
with SKA2 methylation, a positive correlation was observed between 
severity of PTSD symptoms and SKA2 methylation [28].

SKA3 Function in Normal and Abnormal 
Expression

SKA3, formerly C13orf3 or RAMA1, is a necessary component 
of cell division through maintaining centrosome integrity and 
in silencing the spindle checkpoint [13,29,30]. SKA3 is essential 
for full cooperative MT binding behavior in the SKA complex, as 
SKA1-SKA2, alone; do not display this behavior [15]. With regard 
to depletion of individual components of the SKA complex, SKA3 
depletion in mitotic cells has been shown to result in the arrest of 
cell division at metaphase [2]. Silencing of SKA3 via RNAi results 
in metaphase alignment without spindle checkpoint silencing or 
anaphase entry [11]. In addition to the consequences of SKA gene 
product depletion, structural abnormalities are also detrimental to 
dividing cells, as is the case with mutations affecting the coiled central 
coil or the dimerization of SKA1 and SKA3; both of which result in 
the failure of chromosomal congression and eventually lead to cell 
death [8]. Additionally, SKA3 is known to harbor Single Nucleotide 
Polymorphisms (SNPs) associated with aggressive tumorigenesis in 
prostate cancer patients .

Conclusion
The site of the KT in cell division remains an important subject 

of research,with discoveries elucidating not only the understanding 
of how chromosomes align and divide during cell division, but also 
the ways in which genetic and epigenetic forces undermine normal 
physiological function and contribute to the development of disease. 
Specifically, the SKA complex remains an important area of study, 
with much more research to be done in order to fully understand the 
mechanisms at work in the complex’s association with the KT, MTs, 
and various other active protein complexes. With regard to SKA2, the 
medical potential of the locus is enormous in its potential to change 
the way in which stress-related mental illnesses are understood, 
diagnosed, and ultimately treated.
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