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Evaluating the Efficacy of T-GAN and W-GAN Augmented 
Data in Machine Learning Models

Abstract

This paper presents a comparative analysis of the performance 
of Time-GAN (T-GAN) and Wasserstein-GAN (W-GAN) augmented 
data using various machine learning models, including Extra Trees, 
XGBoost, CatBoost, and Light GBM. Utilizing multiple metrics such 
as Mean Absolute Error (MAE), Mean Squared Error (MSE), Root 
Mean Squared Error (RMSE), R2, Root Mean Squared Logarithmic 
Error (RMSLE), and Mean Absolute Percentage Error (MAPE), the 
study aims to determine which GAN technique produces the most 
effective synthetic data for enhancing model performance. The re-
sults indicate that T-GAN augmented data generally achieves better 
performance metrics, particularly when used with the Extra Trees 
model.
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Introduction

The advent of machine learning and its application across 
various domains has necessitated the development of robust 
methods to generate and utilize synthetic data effectively. GANs 
have emerged as a prominent solution for data augmentation, 
particularly in areas plagued by data scarcity or privacy con-
cerns. This paper focuses on two sophisticated GAN variants, 
T-GAN) and W-GAN, which have been tailored to enhance the 
realism and utility of synthetic data in predictive modeling. By 
leveraging these technologies, our study aims to evaluate and 
compare their efficacy in generating data that not only mirrors 
real-world distributions but also effectively enhances the per-
formance of machine learning models. Recent studies like [1,2] 
provide foundational support, showcasing the advancements 
in GAN architectures and their application in complex datasets.

The use of T-GAN and W-GAN in this context is particularly 
relevant due to their distinct approaches to handling the inher-
ent challenges of data generation, such as maintaining temporal 
coherence in time-series data and addressing the mode collapse 
problem in training GANs. Through a detailed analysis using var-
ious metrics and machine learning models, this study seeks to 
identify which GAN methodology better supports data-driven 
decision-making in predictive analytics. Insights from recent 
articles [3-5] contribute to the understanding of how synthetic 
data influences model accuracy and training efficiency, guid-
ing this paper’s exploration of GAN utility in sports analytics.

Related Work

The application of GANs for synthetic data generation has 
been extensively documented across multiple fields, including 
healthcare, finance, and sports analytics. Researchers have in-
creasingly turned to these networks to address issues of data 
limitation and improve model training under constrained con-
ditions. Pioneering works by Goodfellow et al. introduced the 
foundational GAN framework, which has since been adapted 
and refined through numerous studies. The integration of GANs 
into complex applications, such as those discussed by [6,7], has 
further established their critical role in data augmentation prac-
tices across industries.

Further advancing the discussion, [8] explored the practical 
applications of GANs in engineering, providing critical insights 
into their potential to replicate and extend real-world data sce-
narios accurately. These studies collectively underscore the ver-
satility and adaptability of GANs, setting a precedent for their 
use in enhancing datasets for predictive modeling. Additionally, 
recent publications by [9,10] highlight innovative uses of GANs 
in creating realistic synthetic datasets for training algorithms 
under resource constraints, emphasizing their importance in 
contemporary data science. This paper builds upon these in-
sights by focusing specifically on T-GAN and W-GAN, analyz-
ing their unique contributions and effectiveness in generating 
high-quality synthetic data. Through a comparative analysis, 
this work contributes to the ongoing dialogue about the best 
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practices for employing GANs in complex, multi-indexed data 
environments such as athlete performance metrics.

Proposed Framework

This section, outlines the systematic approach taken to en-
hance the quality and quantity of the dataset used for build-
ing predictive models. It comprehensively details the method-
ologies for preprocessing raw, multi-source data into a clean, 
normalized, and reliable format. Moreover, it introduces the in-
novative use of Time-GAN and W-GAN for data augmentation, 
aiming to enrich the dataset with realistic, synthetic samples. 
These efforts are critical for overcoming limitations associated 
with small datasets and ensuring robust model training. Finally, 
the section discusses the evaluation of the augmented data 
using advanced machine learning algorithms like Extra Trees, 
XGBoost, CatBoost, and LightGBM to assess the efficacy of the 
data augmentation techniques employed, ensuring the models 
are both accurate and scalable.

Data Preprocessing

To address the challenge of multiple-source data collec-
tion, which often results in non-uniform datasets, we propose 
a comprehensive preprocessing model. This model is designed 
to transform raw, disparate data into a consistent and reliable 
format suitable for subsequent analysis, as shown in Figure 1. 
The preprocessing steps include:

•	 Data Cleaning: This involves the removal of duplicate re-
cords and irrelevant features, thereby reducing computa-
tional and storage demands. Such cleaning not only en-
hances the efficiency of the model but also improves the 
accuracy of the predictions by focusing on pertinent data.

•	 Handling Missing Values: To tackle the issue of missing 
data, our model utilizes zero filling and K-Nearest Neigh-
bors (KNN) imputation methods. These techniques help in 
maintaining the integrity of the dataset without compro-
mising the quality of the data.

•	 Data Aggregation: Given the temporal nature of our data, 
specifically concerning athlete performance metrics col-
lected over an 11-day period (from June 10, 2021, to June 
20, 2021), aggregation is performed to consolidate daily 
measures into a single, coherent dataset.

•	 Normalization: To ensure that the attribute values are on 
a comparable scale, Min-Max normalization is applied, 
transforming the data into a uniform range of [1]. This 
step is crucial for models that are sensitive to the scale of 
input features.

Data Augmentation

To augment the limited dataset and generate a more robust 
training set, we employ two Generative Adversarial Networks 
(GANs):

•	 Time-GAN: This method is particularly suited for extend-
ing multi-indexed datasets, such as the time-series data 
of athletes. Time-GAN respects the temporal correlations 
within the data, thereby producing synthetic instances 
that are realistic and time-consistent.

•	 Wasserstein GAN (W-GAN): Known for its stability and ef-
fectiveness in generating high-quality samples, W-GAN is 
used to create additional data points that adhere to the 
original data distribution. This model addresses the mode 

collapse issue often encountered in traditional GANs, en-
suring diversity in the synthetic data produced.

Figure 2 provides a detailed visual comparison between real 
and synthetic data across various feature outcomes, reflecting 
the effectiveness of the data augmentation techniques imple-
mented. Each plot illustrates the performance of specific out-
comes, such as controller response metrics and safety indices, 
highlighting the discrepancies and alignments between the real 
and synthetic datasets. Notably, synthetic data shows consid-
erable fluctuations across different outcomes, demonstrating 
variability that is typical of generative models like Time-GAN 
and W-GAN. 

However, in the case of the “strong safety index”, the over-
lap between real and synthetic values is much closer, suggesting 
that the augmentation methods are particularly effective in rep-
licating complex, real-world scenarios where safety is a critical 
measure. This comparative analysis is essential for understand-
ing the strengths and limitations of synthetic data in mimicking 
real operational conditions.

Model Evaluation

For the evaluation of the performance and reliability of the 
augmented data produced by CT-GAN and W-GAN, we deploy 
several advanced machine learning algorithms:

•	 Extra Trees: This ensemble method, known for its high 
accuracy and ability to run efficiently on large datasets, 
serves as one of our primary evaluators.

•	 XGBoost: As a highly efficient and scalable end-to-end 
boosting system, XGBoost is utilized to assess the perfor-
mance gains from our augmented datasets.

•	 CatBoost: Recognized for its handling of categorical data 
and robustness against overfitting, CatBoost provides in-
sights into the effectiveness of our data augmentation in 
varied scenarios.

•	 LightGBM: This gradient boosting framework is particu-
larly advantageous for its speed and efficiency, making it 
an ideal candidate for evaluating large augmented data-
sets.

These models help quantify the improvements in predictive 
accuracy and model robustness afforded by the augmented 
data, thereby validating the effectiveness of our proposed data 
augmentation techniques. Table 1 presents the performance 
metrics of above models when trained using two different 
augmented data using: T-GAN and W-GAN. The model’s per-
formance is measured using six metrics: MAE, MSE, RMSE, R2, 
RMSLE, and MAPE.

For the T-GAN augmented data, the Extra Trees model 
achieves the best performance across almost all metrics, with 
an MAE of 0.0067, MSE of 0.0008, RMSE of 0.0206, R2 of 
0.9913, RMSLE of 0.0078, and MAPE of 0.0044. This indicates 
that Extra Trees are highly effective when used with T-GAN data, 
providing the most accurate and reliable predictions. The other 
models, such as XGBoost, CatBoost, and Light GBM, also per-
form well but not as consistently across all metrics compared 
to Extra Trees. 

When considering the W-GAN augmented data, CatBoost 
shows the most favorable results with an MAE of 0.0135, MSE 
of 0.0009, RMSE of 0.0297, R2 of 0.9759, RMSLE of 0.021, and 
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a higher MAPE of 0.1589. While CatBoost outperforms other 
models on several metrics, it has a significantly higher MAPE, 
indicating larger errors in percentage terms compared to other 
models. Extra Trees and Light GBM also show competitive per-
formance but with slightly higher errors across some metrics.

In conclusion, T-GAN appears to be the better data augmen-
tation technique, particularly when paired with the Extra Trees 
model, as it consistently achieves lower errors and higher R2 
values, indicating better accuracy and fit. W-GAN also shows 
promise, especially with CatBoost, but the higher MAPE sug-
gests it might not be as reliable for minimizing percentage er-
rors. Therefore, T-GAN with Extra Trees would be the recom-
mended combination for optimal model performance.

In addition, Figure shows a R2 score comparison of the im-
plemented regression models for predicting strong index. The 
R2 score of Extra Trees Regressor is 0.9913, which indicate that 
the model significantly performed well compared to the regres-
sion models implemented using W-GAN data. In contrast, Light 
GBM produced a low R2 score of 0.8991.

Figure 1: The process of converting initial raw data into machine 
readable format.

 
 
Figure 2: Comparative Analysis of Real and Synthetic Samples.

 
 
Figure 3: R2 Score Analysis of Regression Models using T-GAN and 
W-GAN for Predicting Strong Index.

Table 1: Comparative Analysis of Regression Models Performance us-
ing Time GAN and W-GAN Data for Strong Index Prediction.

AUG Model MAE MSE RMSE R2 RMSLE MAPE

T-GAN

Extra Trees 0.0067 0.0008 0.0206 0.9913 0.0078 0.0044

XGBoost 0.0104 0.0022 0.0351 0.9749 0.0133 0.0066

CatBoost 0.0135 0.0027 0.0393 0.9702 0.0154 0.0096

Light GBM 0.0344 0.0085 0.0796 0.8991 0.0309 0.0235

W-GAN

CatBoost 0.0135 0.0009 0.0297 0.9759 0.021 0.1589

Light GBM 0.0152 0.0012 0.0346 0.9675 0.0242 0.1453

XGBoost 0.0147 0.0013 0.0349 0.966 0.0245 0.1165

Extra Trees 0.014 0.0013 0.0356 0.9654 0.0248 0.0737

Conclusion

The analysis clearly demonstrates that T-GAN augmented 
data, particularly when analyzed using the Extra Trees model, 
consistently outperforms W-GAN across most performance 
metrics. While W-GAN also shows promise, particularly with 
the CatBoost model, its higher MAPE values suggest it may not 
always provide the most reliable error minimization. Conse-
quently, T-GAN paired with Extra Trees emerges as the optimal 
choice for enhancing predictive model performance using syn-
thetic data. This study not only underscores the importance of 
selecting suitable GAN techniques for data augmentation but 
also highlights the need for targeted model selection to fully 
capitalize on the enhanced data quality.
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