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Abstract

The balance between cell survival and death is a critical parameter in the 
regulation of cell and tissue homeostasis. Autophagy is an evolutionarily con-
served mechanism for the gross disposal and recycling of intracellular proteins 
in mammalian cells. Autophagy also kills cells under certain conditions, in a pro-
cess called autophagic cell death; this involves pathways and mediators differ-
ent from those of apoptosis. Therefore, three different mechanisms of cell death 
have been identified in mammalian cells; namely, apoptosis (type I), autophagic 
cell death (type II), and necrosis (type III). Whether and how these different 
processes of cell death interconnected each other has not been fully clarified. In 
this review we discuss the evidence supporting a mechanistic link especially fo-
cusing between apoptosis and autophagy associated cell death—including the 
possibility of cross–talk between the relevant signaling pathways—that could 
serve to maintain cellular homeostasis in mammals.
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vacuole in the cytoplasm. Necrosis (type III cell death) is most 
classical form of cell death with characteristic morphological feature 
of a gain of cell volume, swelling of organelles with plasma membrane 
rupture without blebbing. 

There is accumulating evidence for cross-talk in the regulation 
of apoptosis and induction of autophagy [8-12]. The present review 
examines how these three types of cell death interact in mammalian 
cells.

Three types of cell death in mammalian cells
Three different mechanisms of cell death are known to exist 

in mammalian cells, namely apoptosis (type I), autophagy (type 
II), and necrosis (type III) [6,7,13] (Table 1). Apoptosis, a form of 
programmed cell death [14], was originally distinguished from 
traumatic or necrotic cell death based on cytological features 
by electron microscopy. Research over the past two decades has 
elucidated the major molecules in apoptotic signaling pathways from 
the plasma membrane to the nucleus; it is known to be triggered 
by ligands such as Tumor Necrosis Factor (TNF) and Tnf-Related 
Apoptosis-Inducing Ligand (TRAIL) that activate cell death receptors 
such as Fas-Associated Protein with Death Domain (FADD) [15].

Autophagy is a conserved mechanism that functions in the 
degradation and recycling of proteins in mammalian cells [3-5]. 
It was originally characterized as a process by which cells recycle 
cytoplasmic contents and defective organelles during cellular stress 
conditions such as nutrient starvation in yeast. In autophagy (which 
refers to macroautophagy, in contrast to microautophagy and 
chaperone-mediated autophagy), cytosolic proteins and organelles 
such as mitochondria are sequestered within double-membrane 
vesicles to facilitate the formation of autophagosomes that fuse with 
the lysosome. ATG products function cooperatively in this process 
at multiple steps. To date, more than 30 mammalian orthologues 

Introduction
In recent decades, insight into the molecular regulation of 

autophagy in mammalian cells has come from the discovery and 
functional analysis of Autophagy-Related Gene (ATG). Autophagy 
is an evolutionally conserved homeostatic process for intracellular 
degradation by which intracellular proteins are sequestered in a 
double–membrane–bound autophagosome and delivered to the 
lysosome during stress conditions; this process facilitates both 
degradation and recycling of intracellular proteins in mammalian 
cells. The molecular machinery of autophagy co-ordinates diverse 
aspects of cellular and organismal responses to other dangerous 
stimuli such as infection [1,2]. Defective autophagy underlies a 
wide variety of human disease and physiology including cancer, 
neurodegeneration, and infectious diseases [3-5]. Mammalian 
orthologues of ATG family proteins have been identified and various 
functions of ATG proteins have been elucidated, including how 
these proteins control the formation of autophagosomes. Although 
autophagy was originally characterized as a cytoprotective process in 
yeast under starvation conditions, it is now thought to be a form of 
cell death [6,7] along with the two classical mechanisms of apoptosis 
and necrosis in mammalian cells. 

Three possible mechanisms for cell death have been known to exist 
in mammalian cells, namely apoptosis (type I cell death), autophagic 
cell death (type II cell death), and necrosis (type III cell death). 
Apoptotic cell death (type I cell death) is characterized by rounding 
up of the cell and reduction of cell volume, chromatin condensation, 
nuclear fragmentation, no modification of cytoplasmic organelle, and 
plasma membrane blebbing without involvement of gene activity. 
Since autophagy is thought to be a pro-survival pathway, whether or 
not autophagy indeed induce cell death is still under debate. However, 
under certain circumstances, autophagy can induce cell death (type II 
cell death) which is characterized by presence of massive autophagic 
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of ATG family proteins have been identified, and their functions 
have been characterized primarily by gene targeting technology. 
Autophagy is essential for maintaining cellular homeostasis, and 
mutations in ATG or dysregulation of autophagy pathways underlie 
various pathological conditions [3-5].

Cell death associated with autophagy has been proposed in 
mammalian cells [6,11,16,17]. However, one fundamental question 
is how and whether excessive bulk digestion which is occurring at the 
lysosome can necessarily cause cell death [18].The molecular events 
associated with apoptosis—including caspase activation, chromatin 
condensation, DNA cleavage, or plasma membrane degeneration—
is well known [15]. Increasing lines of evidence indicate that these 
molecular mechanisms may be recruited by an alternative, caspase-
independent form of programmed cell death, named autophagic type 
II cell death [6,11,14,16,17]. Following growth factor withdrawal, 
Bax-/-Bak-/- cells activate autophagy, undergo progressive atrophy, and 
ultimately succumb to death. The observation supported the idea that 
growth factor signal transduction is required to direct the utilization 
of sufficient exogenous nutrients to maintain cell viability [11]. 
However, the molecular processes that occur between the lysosomal 
degradation of cytosolic components leading autophagic cell death 
are poorly characterized [19]. Moreover, it remains to be confirmed 
whether autophagy induces cell death in a physiological setting [10].

Necrosis is a cell death mechanism that does not require specific 
death receptor signaling [20]. It is often triggered by massive occlusion 
of the blood supply such as in cerebral or myocardial infarction, 
which leads to widespread but subsequent loss of intracellular 

content by lysis. Characteristic morphological changes in necrotic 
cells include a gain of cell volume, swelling of organelles with plasma 
membrane rupture without blebbing. It is also recognized that 
necrosis is considered as to be no gene activity are required. But 
necrosis is known to be taken place as a consequence of apoptosis 
[13]. Although necrosis is considered to be a passive process, in 
certain situations necroptosis can actively induce programmed cell 
death [21,22]. I need to emphasize that it is unclear whether any 
mechanistic interactions are occurring between the autophagic and 
necrotic pathways in mammalian cells.

Cross-talk between apoptosis and autophagy pathways 
Many recent studies have focused on potential cross-talk 

between the three cell death pathways [6,11,16,17,23] (Figure 1). 
In particular, interactions between autophagy and the other two 
mechanisms (apoptosis and necrosis) have been focused its attention 
in recent years [9,21,22]. Inhibition of macroautophagy is shown to 
trigger apoptosis [24]. Although autophagy is cytoprotective effect 
on starvation condition by lysosomal degradation of intracellular 
component, autophagy is normally a cell-survival pathway involving 
the degradation and recycling of obsolete, damaged, or harmful 
macromolecular assemblies. However in some experimental settings, 
autophagy is believed to induce, or more precisely, autophagy is 
associated with cell death, so called type II cell death [25,26].

If autophagy has solely cytoprotective function, and induction of 
apoptosis and induction of autophagy are taking place simultaneously, 
there are two possible phenotypic manifestations can be appeared 
depending on the relative strength of autophagy for cytoprotective vs 

Types of Cell Death
Characteristic

features

Apoptosis
(Type I)

Autophagy
(Type II)

Necrosis
(Type III)

Nucleus
Reduction of volume,

Chromatin condensation,
Nuclear fragmentation

Absence of chromatin condensation Swelling, Chromatin fragmented

Cytoplasm
Little/no modification of cytoplasmic 

organelles
Presence of apoptotic body

Presence of massive autophagic vacuole Swelling of organelles, Subsequent loss of 
content

Mitochondria Morphologically normal initially Possibly involved
with autophagic molecule Morphologically aberrant

Plasma Membrane Blebbing - Disrupted cell membrane

Cell volume Decreased - Increased

Caspases Activation Involved No involvement No involvement

Gene activation Required In some cases No involvement

Lysosome unaffected Active executer Abnormal

Inflammation No Possibly Marked

Table 1: Three types of cell death in mammalian cells.

Three types of cell death are known to be present in mammalian cells. Although three types of cell death are not necessarily classified by their morphological character, 
these three types of cell death have morphologically distinct features to some extent [6,7,13].
Morphologic features of Apoptotic cell death (type I cell death) is characterized by rounding up of the cell and reduction of cell volume, chromatin condensation, 
nuclear fragmentation, no modification of cytoplasmic organelle, plasma membrane blebbing. In addition functionally apoptotic cell death does not involve lysosome 
degradation, but requires specific gene activity.
In contrast to apoptotic cell death autophagic cell death (type II cell death) is characterized not necessarily by its morphological features. Since autophagy is thought 
to be a pro-survival pathway, whether or not autophagy indeed induce cell death is still under debate. However, it is generally accepted that in certain circumstances, 
autophagy occasionally induce cell death which can be “Death with autophagy”. Autophagic cell death is characterized by presence of massive autophagic vacuole in 
the cytoplasm, by the absence of chromatin condensation and lacking of caspase activation. 
Necrosis (type III cell death) is the most classical form of cell death. Necrosis is occasionally associated with impairment of blood supply and therefore massive cellular 
infarction, hence subsequent loss of intracellular content by lysis. Characteristic morphological feature of necrosis includes a gain of cell volume, swelling of organelles 
with plasma membrane rupture, but no signs of blebbing. In striking contrast to apoptosis, no specific gene activity is required in necrosis. It is of note that necrosis is 
also known to be taken place as a consequence of apoptosis [13].
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induction of cell death through apoptosis. Depending on the relative 
strength of autophagy vs apoptosis, for example, if the autophagy 
could not fully prevent apoptosis-induced cell death, the possible 
apparent manifestation of cell death can be autophagic cell death 
or possibly apoptosis based on the relative dominance of distinct 
morphological changes.

Cells undergoing autophagic cell death do not exhibit chromatin 
condensation as in apoptotic cells, but show massive vacuolization 
of the cytoplasm and accumulation of double-membrane 
autophagosomes, with little or no uptake by phagocytic cells; these 
features allow the two processes to be distinguished morphologically 
[6,7,13]. 

However, an open question is whether autophagy is cell survival 
mechanism or indeed functioning as an actively killing mechanism in 
mammalian cells [10,27,28]. 

Technical limitations that preclude the unambiguous 
identification of morphological features present a challenge in the 
study of autophagic cell death [29-32]. In experimental systems, 
autophagic cells are typically identified by visualizing microtubule-
associated protein 1 Light Chain (LC) 3 puncta by microscopy, or by 
assessing the levels of LC3 II/I (which reflects the phosphatidylserine 
conversion of LC3 at the lysosomal membrane [32,33]) or p62 
(which is a marker of autophagic degradation) by western blotting 
[34,35]. However, these approaches are based solely on the process 
of lysosomal degradation during autophagy; markers for other steps 
in the pathway would be useful, for instance those that are specific to 
the process of cell death induced by autophagy. In contrast, methods 
for evaluating the various steps of apoptosis are well established, 
including annexin V staining to detect plasma membrane damage, 
the detection of cleaved caspase levels to assess caspase activation, and 
terminal deoxynucleotided UTP nick end labeling to examine DNA 
damage. Thus, technical limitations remain a hindrance in the clear 
distinction between autophagic and apoptotic cell death [29,31,32].

Autophagy was originally described in yeast cells as a mechanism 
for cell survival [18,36] that can counter cell death, which implies 
an interaction between autophagic, apoptotic, and necrotic 
signaling pathways. In yeast, autophagy is solely a mechanism 
for cell survival through amino acid recycling [37]. It is recently 
revealed that apoptosis in yeast is functioning to induce cell death 
[38]. In contrast, autophagy in mammalian cells, which has been 
characterized in past decades, appears to be much more complex. In 
mammalian cells, primary function of autophagy is thought to be cell 
survival mechanism. However, autophagy can induce cell death or 
alternatively, mammalian cells are dying associated with autophagy 
in certain conditions [6,11,16,17,25,26]. 

Autophagy may enhance cell death caused by apoptosis; 
alternatively, it may induce cell death independently of apoptosis or 
necrosis. In contrast to autophagy, the defined molecular regulation 
for cell death cascade from the death receptor and its downstream 
signal is well characterized in the apoptotic pathways —starting from 
the activation of the death receptor, which is followed by a downstream 
signaling cascade including the involvement of mitochondria, 
subsequent caspase activation, and DNA cleavage [39]. However, 
pro-apoptotic signals such as TRAIL [40], TNF [41], and FADD [42] 
are also known to induce autophagy. Pro-apoptotic signals, which is 
promoting or causing apoptosis, participate in a cascade that lead to 
culminate in cleavage of a set of proteins, resulting in disassembly of 
the cell for apoptosis [43]. Moreover, UVRAG human homolog of 
yeast Vps38, has been shown to inhibit BAX to regulate apoptosis 
[44]. Ectopic expression of Beclin-1(ATG6) suppresses cell death 
while reduction of Beclin-1 levels by siRNA sensitizes cells to TRAIL-
induced cell death [45].

Figure 1: Relationship between apoptotic and autophagy related cell death 
in mammalian cells.
Three types of cell death are generally believed to be present in mammalian 
cells namely apoptosis, autophagic cell death and necrosis. In particular, 
interactions between autophagy and apoptosis have been focused its 
attention in recent years [9,21,22]. Autophagy may enhance cell death 
caused by apoptosis; alternatively, it may induce cell death independently of 
apoptosis or necrosis.  Whether and how these types of induction cross talk 
each other in physiological settings in vivo remain to be solved. 
Assuming both autophagy and apoptosis (and/or necrotic) induce cell death, 
it is possible that these mechanisms of cell death operate independently of 
each other (A). In this scenario, depending on the strength of the cell death-
inducing signal, the phenotype of cell death can be apoptotic or autophagic; 
however, if they occur simultaneously then the manifestation of each 
mechanism will be less obvious. In this situation, autophagy interacts with 
apoptotic pathways to coordinately induce cell death. The second possibility 
is that autophagy and apoptotic signals cooperatively functions to induce 
cell death (B). Under this circumstance, if the relative strength of death 
inducing signal of autophagy is weaker than the cell death inducing signal by 
apoptosis, the cell will exhibit a phenotype that is either purely apoptotic or 
mixed apoptotic and autophagic. The third possibility is that even if autophagy 
has cytoprotective roles, depending on the relative strength of induction of 
apoptosis  for death execution vs. autophagy for cell survivals, the phenotype 
can be either autophagic, apoptotic or a combination of them depending on 
the relative strength of cell death induced by apoptosis or cytoprotective 
effect by autophagy (C).
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If it is assumed that autophagy in mammalian cells functions 
primarily to promote cell survival (cytoprotective), then depending on 
the relative strength of cell death-inducing signals acting on the cell, 
the processes of apoptosis or necrosis may prevail over the protective 
effects by autophagy and the fate of the cell could be interpreted as 
incomplete apoptosis with an autophagic phenotype; however, these 
processes may nonetheless kill the cell [10,46]. 

Mitochondria as a point of intersection for autophagic and 
apoptotic cell death

Mitochondria are shown to be playing an important role in 
the induction of apoptosis through the cytochrome c release via 
the disruption of mitochondrial outer membrane potential [47]. 
Mitochondrial Transmembrane Potential (MTP) plays a key role 
in the regulation of apoptotic cell death machinery and that AKT 
regulates this process [6,48-50]. 

Accumulating evidences have shown that mitochondria as an 
intersection of autophagy and apoptosis (Figure 2). Mitochondria-
associated proteins may also be responsible for interactions between 
the autophagic and apoptotic pathways [8]. Calpain mediated 
cleavage of ATG5 can modulate the Bcl-2/Beclin1 protein complex, 
a key regulator for apoptosis at mitochondria [51]. Bcl-2 and Beclin1 
physically interacted each other at the mitochondrial outer membrane 
[52]. The lack of ATG12-ATG3 complex formation produces an 
expansion in mitochondrial mass and inhibits cell death mediated by 
mitochondrial pathways [53]. 

DAP-kinase (death associated protein kinase) is a mediator 
of endoplasmic reticulum stress-induced caspase activation and 
simultaneously involved in the regulation of autophagic cell death 
[54]. Bim, another member of anti-apoptotic Bcl-2 family proteins 
colocalized at mitochondria and also shown to inhibit autophagy via 
Beclin1 [55-57]. Consistent with the notion that phosphorylation 
of autophagy–related proteins is an additional aspect of autophagy 
regulation [58], phosphorylation of Beclin1 on T119 by DAP-kinase 
also reduces the Bcl-2-Beclin1 interaction and activates autophagy 
[57]. 

At the outer membrane of mitochondria AKT can phosphorylate 
BAD [59], which then release activated forms of Bcl-2 to prevent the 
subsequent cytochrome c release for downstream caspase activation 
[60]. Involvement of AKT in the regulation of autophagy was 
suggested by the fact that AKT directly phosphorylate wide varieties 
of autophagy and apoptotic regulatory molecules localized at either 
mitochondria or autophagosome including ULK1 (Unc-51 like 
autophagy activating kinase 1, ATG1), ATG6 (Beclin1), BAD, TSC2 
(Tuberous sclerosis complex 2) [23,61]. Cross talk between apoptosis 
and autophagy by caspase-mediated cleavage of Beclin1, a substrate 
of AKT [62,63]. The autophagy protein ATG12 associates with 
anti-apoptotic Bcl-2 family members to promote mitochondrial-
mediated apoptosis [64]. Alternatively, activated caspase8, which is 
associated with p62, is known to be proteolyzed via lysosome [65]. 
Further, lysosomal membrane permeabilization induces cell death 
in a mitochondrion-dependent fashion [66]. It is noteworthy that 
mitochondria itself also targeted by lysosomal degradation called 
mitophagy [67]. 

It is possible that AKT and its phosphorylated substrates are 
playing important roles in the cross talk of autophagy and apoptotic 

cell death at the mitochondria and vesicle nucleation stage of 
autophagy induction [23,52]. Beclin1 (ATG6) and ULK1 (ATG1) 
are both involved in autophagosome formation and are direct 
substrates of AKT [63,68]. AKT is also known to phosphorylate B 
cell lymphoma (Bcl)-Associated Death promoter (BAD) and triggers 
the mitochondrial activation of Bcl-2, thereby preventing the release 
of cytochrome c from mitochondria. Bcl-2 is an anti-apoptotic 
protein that acts as a major effector of AKT signaling and maintains 
mitochondrial outer membrane potential to modulate the cell survival, 
in part by inhibiting Beclin1-dependent autophagy [56]. Consistently, 

Figure 2: Autophagic and apoptotic pathways converge in mitochondria.
Mitochondria would provide an ideal molecular platform of counter regulation 
of autophagic cell death vs. apoptotic cell death. In this regard, mitochondria-
associated proteins may also be responsible for interactions between the 
autophagic and apoptotic pathways [8]. Numbers of ATG families such as 
ATG5, ATG3/12 have influence on mitochondrial function. Calpain mediated 
cleavage of ATG5 can modulate the Bcl-2/Beclin1 protein complex, a key 
regulator for apoptosis at mitochondria [51]. Bcl-2 and Beclin1 physically 
interact each other at the mitochondrial outer membrane [52]. The lack of 
ATG12-ATG3 complex formation produces an expansion in mitochondrial 
mass and inhibits cell death mediated by mitochondrial pathways [53]. 
The autophagy protein ATG12 associates with anti-apoptotic Bcl-2 family 
members to promote mitochondrial-mediated apoptosis [64]. Anti-apoptotic 
protein Bcl-2 is shown to inhibit Beclin 1-dependent autophagy [56]. Beclin1 
(ATG6) and ULK1 (ATG1) are both involved in autophagosome formation and 
are direct substrates of AKT [63,68]. Fork head transcription factor FoxO3, 
a substrate of AKT, is shown to activate autophagy related genes including 
LC3 and Bnip3 [79]. Moreover, Beclin1 or Bim, which influence on autophagic 
process are shown to be localized at the mitochondrial membrane. More 
precisely, these molecules are shown to be involved in the regulation of 
vesicle formation of stage of autophagosomal formation. Further, mTORC1, 
a crucial autophagy regulator, is shown to directly phosphorylate ULK1 
(ATG1) and ATG13 [75]. AKT and TSC (tuberous sclerosis complex) are 
also localized at lysosome [61,71]. These observations are consistent that 
induction of autophagy and apoptosis can be cross talked at the intersection 
of mitochondrial and vesicle nucleation stage of autophagosome formation of 
autophagy at ER-mitochondria contact site [83].



Austin J Mol & Cell Biol 2(1): id1004 (2015)  - Page - 05

Masayuki Noguchi Austin Publishing Group

Submit your Manuscript | www.austinpublishinggroup.com

autophagy induced by suberoyanilidehydroxamic acid inhibited AKT 
and up regulated Beclin1 [69]. The combined inhibition of PI3K 
and mTOR, activates autophagy without activating AKT (primarily 
in PTEN [phosphatase and tensin homolog] mutant cells) [70]. 
The autophagy protein ATG12 associates with anti-apoptotic Bcl-2 
family members to promote mitochondrial-mediated apoptosis [64]. 
Anti-apoptotic protein Bcl-2 is shown to inhibit Beclin 1-dependent 
autophagy [56].

Involvement of AKT in the regulation of autophagy was further 
supported by the fact lysosomal accumulation of the AKT-Phafin2 
complex is dependent on phosphotidylinositol 3-phosphate and leads 
to the induction of autophagy [71]. By yeast two-hybrid screening, 
Phafin2 (EAPF or PLEKHF2), a lysosomal protein with a unique 
structure of N-terminal PH domain and C-terminal FYVE (Fab 1, 
YOTB, Vac 1, and EEA1) domain was found to interact with AKT 
[71]. These conserved motifs place Phafin2 in a family of proteins 
known to induce caspase-independent apoptosis via the lysosomal-
mitochondrial pathway [72]. AKT translocates with Phafin2 to the 
lysosome in a PtdIns (3)P-dependent manner after induction of 
autophagy. Lysosomal accumulation of the AKT-Phafin2 complex 
and subsequent induction of autophagy are lysosomal PtdIns (3)
P-dependent events, and the formation of this complex at lysosome 
is a critical step in induction of autophagy via interaction with 
PtdIns (3)P [71]. These observations also suggest that the regulation 
of lysosomal localization of AKT, a core anti-apoptotic effector, 
affects autophagy induction. Therefore, mTORC1 (via TRAF6-
p62-mediated ubiquitination) [73] and AKT (via Phafin2-induced 
autophagy) potentially act as molecular links between autophagy and 
apoptosis [23].

Additionally, inhibition of mTORC1 (mammalian target of 
rapamycin complex 1), an effector in the AKT pathway, is known 
to induce autophagy, the regulation of cell growth, and tumor 
transformation. mTORC1, a key regulator for autophagy induction 
consisting of mTOR, Raptor, and mLST8 (mTOR associated protein, 
LST8 homolog), is shown to be ubiquitinated by the p62-TRAF6 
(TNF receptor-associated factor 6) complex at the lysosome The 
Raptor-mTORC1 is ubiquitinated by the p62- TRAF6 complex to 
inhibit autophagy presumably at the lysosome [73,74]. mTORC1 is 
also shown to directly phosphorylate ULK1 (ATG1) and ATG13 [75]. 
Sch9 kinase (serine/threonine protein kinase 9), the yeast orthologue 
of mammalian AKT and possibly of ribosomal S6 kinase 1, has been 
implicated in the regulation of autophagy [76,77]. AKT and TSC 
(tuberous sclerosis complex) are also localized at lysosome [61,71], 
suggesting the possibility that they are involved in the regulation of 
autophagy.

Further support the involvement of AKT as a key molecule for 
both anti-apoptosis and autophagy regulation, FoxO3, member of 
the fork head family of transcription factors, is an AKT substrate that 
regulates the cell death machinery [78]. FoxO3 coordinately activates 
protein degradation by the autophagic/lysosomal and proteasomal 
pathways in atrophying muscle cells [79]. Under starvation conditions, 
FoxO3 activity is shown to be required for a gene expression that 
induces autophagy in order to mitigate the energy crisis and promote 
cell survival [80].

Given that mitochondria play an important role in the regulation 

of apoptosis [6,48-50], these findings support the notion that 
mitochondria is likely to be an intersection between autophagic cell 
death and apoptosis [8,81,82]. The observation is also supported by 
the demonstration by Yoshimori and co-workers that the ER-resident 
SNARE protein syntaxin 17 (STX17) binds ATG14 and recruits it 
to the ER-mitochondria contact site, so that the ER-mitochondria 
contact site is important in autophagosome formation [83].

Conclusion
Autophagy sequesters cytosolic proteins or defective organelles 

for gross disposal systems of in double or multimembraneautophagic 
vesicles for degradation and recycling during stress situations such 
as nutrient starvation in mammalian cells [1,23]. Attention has 
turned to cross-talk regulation between anti-apoptotic pathways and 
the induction of autophagy in mammalian cells [6,11,16,17]. Pro-
apoptotic signals such as TRAIL [40], TNF [41], and FADD [42] are 
also known to induce autophagy. Conversely, anti-apoptotic signaling 
pathways such as the class I PI3K/AKT/mTOR signaling pathway, 
suppress autophagy [8]. It was suggested that autophagy may be 
cytoprotective, at least under conditions of nutrient depletion, and 
point to an important cross talk between apoptosis and autophagic 
cell death pathways [24]. Although necrosis is known to be taken 
place as a consequence of apoptosis [13], it is unclear whether any 
mechanistic interactions are occurring between the autophagic and 
necrotic pathways in mammalian cells. It remains to be determined 
molecular regulatory mechanisms underneath lysosomal degradation 
of autophagic pathway. In this regard it would be appropriate that 
autophagic cell death can be defined by which cells are dying with 
autophagy or cell death associated with autophagy. Thus, in certain 
scenarios, cell death is associated with autophagy in mammalian 
cells. Evasion of apoptosis underlies as a pathogenesis of cancer or 
neoplastic diseases [18,36,84], in which mitochondria is shown to play 
an important role through cytochrome c release via the disruption of 
mitochondrial outer membrane potential [6,13].

To further support the potential role of mitochondria as a 
molecular platform of cross talk between autophagy and apoptosis, 
numbers of autophagy regulated gene are shown to be controlled 
by anti-apoptotic molecules such as Bcl-2-BAD-Beclin1 through 
AKT mediated phosphorylation at the mitochondria [58,63,85,86,]. 
Indeed, the observation is also supported by the demonstration  
that autophagosomes form at the ER-mitochondria contact site in 
mammalian cells [83].

Given the roles of autophagy and apoptosis as underlying 
mechanisms for cancer [18,35,63,87], the observations support the 
notion that mitochondria would be the potential molecular platform 
for counter regulation of autophagic cell death vs. apoptotic cell 
death. 

Further studies are required to precisely clarify the molecular 
regulation of crosstalk between cell death and survival which maintain 
the cellular homeostasis in vivo. Autophagic cell death is taking place 
during the anticancer treatment; therefore, clarification of cross talk 
between apoptosis and autophagic cell death may provide a platform 
for developing new cancer treatment modality.
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