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Abstract

The toxic effects of cyanotoxins and minerals have been explored in differ-
ent species, but still there is lack of information regarding their combined toxico-
logical effects. The present investigation reports glycolytic-oxidative-nitrosative 
status induced by intraperitoneal exposure of Microcystin-LR (10 mg/kg bw) 
alone and in combination with oral exposure of sodium nitrate (50 mg/kg bw) 
for 14 days in mice. Microcystin-LR (MC–LR) exposure produced significant 
(p<0.005) elevation in Malondialdehyde (MDA), Lactate Dehydrogenase (LDH) 
and Nitric Oxide (NO) in heart, kidney and spleen of mice. Combined exposure 
to MC-LR and sodium nitrate produced severe effects with an appreciably more 
prominent elevation in extent of LPO, LDH and NO in the tissues of mice. The 
study clearly indicates that a cocktail of MC-LR and sodium nitrate induce a cas-
cade of reaction in the exposed animals, thereby augmenting the toxicological 
damage. Therefore, this is an indication that the interaction of these toxicants 
in nature could be responsible for aggravating their toxic potential in livestock.
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raises nitrogen concentrations in surface water that could contribute 
to cyanobacterial growth in surface water. Excessive nitrate could 
be a major threat to the environment and pose a potential health 
risk for humans and animals [14]. In fact large quantity of nitrates 
are known to accumulate in certain foodstuffs such as guinea corn, 
maize, potatoes, carrots, pumpkins, sunflower and cabbage even due 
to normal application of fertilizer at the rate of 150 kg/ha [11,15]. It 
is also used as a food preservative and antimicrobial agent [16]. The 
main source of nitrate intake in the human body is through food and 
water [17]. More than 70% of the nitrates are present in vegetables 
and drinking water and accounts up to 21% of total nitrates intake in 
a typical human diet [11,18]. Ingested nitrate is changed into nitrite, 
which binds to hemoglobin to form methemoglobin particularly in 
infants, who are susceptible to developing methemoglobinemia [19]. 
Nitrate is a precursor in the production of N-Nitroso Compounds 
(NOC), a class of genotoxic compounds, most of which are animal 
carcinogens [20]. Humans and animals are exposed simultaneously to 
more than one chemical in the environment. Such interactions may 
be harmful as both the kinetics and dynamics of the environmental 
chemicals can be modified by their co-occurrence [21].

The significance of our study is identification that the nitrite 
and MC-LR may have synergistic toxic effects as they co-occur in 
the environment. The combined effects of two or more toxins in 
living creatures can report a complex picture of synergistic, additive, 
synergistic or even antagonistic effects [22]. Clearly, given that these 
two toxins will co-occur in fresh water, it is important to assess the 
degree to which their interaction is concerned.

Here, we concentrate on a condition that may have serious 
impact on fresh waters [23], the concurrent effects of two main toxins 
that arise as end products of Microcystis blooms: dissolved nitrite, as 
a result of cellular degradation, and dissolved MC-LR released during 
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Introduction
Toxic cyanobacteria represent a serious public health and 

ecological problem in drinking and recreational waters worldwide 
[1]. Cyanobacteria produce a range of bioactive and toxic 
metabolites, among them microcystins are most widely studied [2]. 
Special attention has been drawn to MC-LR because of its ability 
to cause acute poisoning and having cancer promoting potential 
in humans exposed to low concentrations of MC-LR in drinking 
water. Therefore, the World Health Organization has set that the 
provisional guideline value of MC-LR and nitrate in drinking water 
as 1 µg/l and 10 mg/l respectively [3,4]. The concentration of MCs 
in many water bodies is far beyond that guideline, e.g., in Sagar lake 
water (India) MC-LR and nitrate was found to be 0.67 µg/ml and 560 
mg/L respectively [5,6]. Liver is the primary target organ of MC-LR 
toxicity as a result of Protein Phosphatase 1 (PP1) and 2A (PP2A) 
inhibition and recent evidence points to an alternative mechanism of 
toxicity involving oxidative damage. Several studies have found that 
Lipid Peroxidation (LPO) levels and Reactive Oxygen Species (ROS) 
increases with exposure to microcystins in different species [7-10].

Problem of nitrate has been given considerable attention in 
recent years due to intensive use of nitrates in agricultural fertilizers 
which reach to humans and animals by various routes [11,12]. 
Nitrate is found in soil, air, water, vegetables, food and is produced 
within the human body [13]. Nitrate, nitrite and MC-LR are linked 
environmentally through the excess of agricultural fertilizers that 
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cell lysis [24]. In animals and humans, concurrent exposure to MC-
LR and nitrate can lead to serious health problems and production 
of free radicals by these chemicals might be one of the contributing 
factors toward toxicity. Although, appropriate data are available on 
individual toxic effects of MC-LR and nitrate but there is a lack of 
information regarding their combined toxicological effects. The 
present research investigation was therefore conducted with the 
primary aim to explain the interactive effect of MC-LR and nitrate on 
lipid peroxidation, lactate dehydrogenase and nitric oxide in heart, 
kidney and spleen of mice.

Materials and Methods
Chemicals

MC-LR was purchased from Sigma-Aldrich Co., USA. 
Thiobarbituric acid, β-NADH (β-Nicotinamide Adeninedinucleotide, 
reduced), Tris, methanol, butanol, pyridine, Tris-Maleate, 
sodium pyruvate, sulfanilamide and naphthylethylene diamine 
dihydrochloride were obtained from Himedia, Mumbai, India. 
Pyridine and sodium nitrate were purchased from Central Drug 
House (P) Ltd, New Delhi. Phosphoric acid was purchased from 
Ranbaxy Laboratories Ltd, India. 

Sampling of cyanobacteria
The cyanobacterial material used in this experiment was collected 

from surface blooms (phytoplankton cells) of Sagar Lake, India 
during May and June, 2014. Microcystis aeruginosa was predominant 
in the water blooms (microscopic examination) and were lyophilized 
for extraction of toxins.

Extraction of toxin
Lyophilized algae cells were extracted three times with 75% (v/v) 

methanol. The methanol extract was centrifuged, and the supernatant 
was applied to a C18-reversed phase cartridge, which had been 
preconditioned by washing with methanol and then distilled water. 
The extract was analyzed for MC-LR content via a reverse-phase high-
performance liquid chromatography (HPLC, Waters 515, Waters 
Corporation, Milford, MA, USA). Crude extract concentrations were 
determined by comparing the peak areas of the test samples with 
those of the MC-LR standards. The MC-LR content in the extract was 
found to be 88.45 µg/ml. Microcystin extracts were finally suspended 
in salt solution (0.9% NaCl).

Animals
12-14 weeks old male Park mice weighing from 22 to 26 g, 

housed in the animal facility of Sagar Institute of Pharmaceutical 
Sciences, Sagar, India with a 12h:12h light–dark cycle were used for 
experiments. Mice were maintained at standard laboratory conditions 
with the supply of food and water ad libitum. This work was approved 
by Ethics Review Committee of Sagar Institute of Pharmaceutical 
Sciences, Sagar, India (ethics approval no. SIPS/EC/2015/64).

Experimental design 
The mice were randomly divided into 3 groups with 4 mice in each. 

The second group of mice was designated as MC-LR and they were 
treated with MC-LR (10 µg/kg bw/day, ip) for 14 days and the third 
group were designated as nitrate group and were co-administered 
with MC-LR (10 µg/kg bw/day, ip) and sodium nitrate (50 mg/kg bw/
day, orally) for 14 days. The normal control group was also treated 
simultaneously with the same volume of 0.9% saline solution. 

Preparation of samples for biochemical studies
For biochemical studies, 3-4 mice from each group were 

sacrificed; heart, kidney and spleen were dissected out, washed in ice 
cold physiological saline and stored at -70oC. The cell lysates were 
centrifuged at 20,000×g for 30 min and supernatant obtained were 
used for biochemical studies. Protein concentrations in the extracts 
were measured following the method of Lowry et al. [25]. 

Enzymatic analysis
LDH activity was measured spectrophotometrically following the 

method of Kornberg [26] and as described in our earlier report [27]. 
Briefly the reaction mixture (3 ml) consisted of 20 mM Tris-Cl (pH 
7.4), 6 mM NADH, suitably diluted tissue extract and 1 mM sodium 
pyruvate. The decrease in absorbance at 340 nm was recorded up 
to 10 min. The oxidation of 1 μmole of NADH per min at 25oC was 
defined as 1 unit of the enzyme and values were presented as unit/
mg protein.

Measurement of lipid peroxidation
The level of lipid peroxidation was determined by measuring 

the amount of Malondialdehyde (MDA), the product of lipid 
peroxidation, following the method described in an earlier report 
[28]. Briefly, 0.5 ml of the extract was incubated with 1 ml of 0.2 
M Tris-Maleate buffer (pH 5.9) in a water bath at 37oC for 30 min. 
After adding 1.5 ml of Thiobarbituric Acid (TBA), the mixture was 
incubated in boiling water bath for 10 min using tight condensers. 
After the mixture was cooled down, 3 ml pyridine: n-butanol mix 
(3:1 v/v) and 1 ml of 1 N NaOH was added and allowed to stand for 
10 min. The absorbance at 548 nm was noted and the levels of lipid 
peroxidation were expressed as nmol MDA/mg protein.

Determination of nitric oxide
Direct measurement of nitric oxide is difficult because of its 

short half-life (3-5 s) and the Griess reaction is one of the most 
widely used indirect methods of nitric oxide detection which relies 
on a diazotization reaction originally described by Griess [29]. This 
detects nitrite (NO2

–), one of the stable and non volatile breakdown 
products of NO. Griess reagent system uses sulfanilamide and 
N-1-Napthylethylenediamine Dihydrochloride (NED) under 
acidic (phosphoric acid) conditions. Briefly, 100 µl of cell lysate 
were incubated with an equal volume of Griess reagent (one 
part of 1% sulphanilamide in 2.5% H3PO4 plus one part of 0.1% 
naphthylethelenediamine dihydrochloride) in distilled water at room 
temperature for 10 min and OD was recorded at 550 nm. Nitrite 
concentration was determined by using a standard plot constructed 
against sodium nitrite.

Statistical analysis
Experimental data were expressed as mean ± SD and Student’s 

t test was applied for determining the level of significance between 
the control and the experimental groups and p<0.05 was considered 
significant.

Results
Nitrate enhances the increase of MC-LR induced lipid 
peroxidation

The effects of repeated administration of MC-LR and co-
administration of MC-LR and nitrate on MDA level of heart, kidney 
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and spleen are depicted in Figure 1a, 1b and 1c. MC-LR exposure 
produced significant rise in the extent of lipid peroxidation with 
maximum increase of ~1-2 folds in all tissues. However, maximum 
increase of ~3-4 folds in MDA level was observed in all tissues of MC-
LR and sodium nitrate co-exposure group (p<0.01).

Nitrate enhances the MC-LR induced nitrosative damage 
in heart, kidney and spleen

Over expression of iNOS and constitutive NOS (eNOS & nNOS) 
is associated with increased NO production leading to protein 
nitration and apoptosis. Treatment with MC-LR caused significant 
increase in the production of NO in heart, kidney and spleen (Figure 
2a, 2b and 2c; p<0.05). Co-treatment of mice with MC-LR and nitrate 
led to a significant increase in the NO production (p<0.05).

Nitrate increases LDH activity of heart, kidney and spleen 
induced by MC-LR

Treatment of normal mice with MC-LR (10 µg/kg bw/day, ip) 
for 14 days caused a significant increase in LDH activity of heart, 
kidney and spleen (~0.5-1.7 folds) as compared to control (p<0.01) 
indicating tissue injury. As illustrated in Figure 3a, 3b and 3c, the level 
of LDH increased significantly in MC-LR mice treated with nitrate 
(50 mg/kg bw/day, orally) for 14 days (~2-3.2 folds, p<0.01).

Discussion
Oxidative stress occurs due to imbalance between pro-oxidant 

and antioxidant equilibrium, leading to characteristic changes in all 
biomolecules ultimately resulting in tissue damage [30]. Previous 
studies had documented the induction of oxidative stress with MC-
LR [31] in mice or nitrate [32] in rat. However, studies contributing 
to the effects of MC-LR and nitrate in combination have not been 
documented. A significant increase (p<0.05) in LPO was observed 
in all tissues of MC-LR treated mice while co-exposure of nitrate 
and MC-LR displayed the highest level of LPO (Figure 1a, 1b and 

1c). Increased levels of Malondialdehyde (MDA), reflects the level 
to which free radicals attacks cellular lipids [33]. Elevated levels of 
MDA in all tissues of mice could be due to formation of free radicals 
induced by MC-LR, sodium nitrate and their co exposure. Greater 
extent of lipid peroxidation in co-exposed group indicates a higher 
degree of free radical damage to the cellular membranes possibly due 
to a synergistic or additive effect of the two toxins on reactive oxygen 
species. Our results are in agreement with Dubey et al., who reported 
that co-administration of deltamethrin and fluoride in rats causes 
oxidative stress as evident by elevated level of MDA in liver [21].

Nitrates and nitrites are ready source of nitric oxide and induce 
free-radical generation in vivo which overcomes the host antioxidant 
defense system [34]. In the present investigation, nitric oxide level 
increased in all tissues of MC-LR treated mice, thus revealing that 
NO is induced soon after MC-LR treatment due to the action of 
organelle-specific NOSs isoforms [35,36]. In the present study, ~2-3 
fold increase of nitric oxide in heart, spleen and kidney of nitrate and 
MC-LR co-treated treated mice (Figure 2a, 2b and 2c) might be due 
to conversion of nitrate and nitrite into nitric oxide and also can be 
speculated to be due to the excessive synthesis of NO from L- arginine 
which reacts with superoxide to form peroxynitrite ultimately causing 
oxidative stress [37]. Nitrates have been reported in the formation 
of methemoglobin and carcinogenic nitrosamine in human [38,39]. 
Information available shows that nitrates are ready sources of NO, 
that may increase Lipid Peroxidation (LPO) which can be harmful 
to different organs including kidney [32,40]. Our results are in 
agreement with Anwar et al., which showed that administration of 
sodium nitrate in drinking water resulted in significant increase in 
TBARS of renal tissue of rat as compared to the control [41]. Previous 
reports have shown that fenvalerate and sodium nitrate exposure 
produced significant rise in LPO level with maximum increase of 
46.1% and 43.1% respectively as compared to control, however, 
maximum increase of 69.6% in LPO was observed in fenvalerate and 

Figure 1: Effect of MC-LR and nitrate treatment on the level of MDA in heart (a), kidney (b) and spleen (c) of mice. The values represent mean ± SD where n=3. 
#p<0.05 (normal control versus MC-LR treated group), *p<0.05 (MC-LR treated group versus nitrate treated group).
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sodium nitrate co-exposure in blood of Bubalus bubalis [42].

In animals and humans, simultaneous exposure to MC-LR 
and nitrate can lead to organ damage which can be evaluated by 
measuring levels of various biochemical enzymes. LDH has been used 
as an indicator for cellular damage and cytotoxicity of toxic agents 
[43]. In the present investigation, LDH activity was measured to 
evaluate heart, kidney and spleen function. LDH activity increased in 
all tissues of MC-LR treated mice, which was further elevated when 
MC-LR treated mice were co-administered nitrate (~2-3 folds, Figure 
3a, 3b and 3c). This was probably due to increase in the activity as the 
result of de novo synthesis or due to anaerobic metabolism needed 
to encounter the metabolic demands of the tissue [44]. High level of 

LDH observed in heart, kidney and spleen of mice co-administered 
with MC-LR and nitrate, is speculated to be due to inhibition of 
complexes I–III and cytochrome C-oxidase of the mitochondrial 
electron transport chain by NO, inhibiting cellular respiration and 
ATP production [45]. It has been reported that co-administration of 
fenvalerate and nitrate in Bubalus bubalis led to a significant increase 
of LDH in serum as compared to individual exposure [42].

Conclusion
Exposure to MC-LR and sodium nitrate alone and in 

combination, causes damage to heart, kidney and spleen in mice by 
producing significant changes in lipid peroxidation, LDH and NO 
in mice indicating their ability to alter antioxidant defence in mice. 

Figure 2: Effect of MC-LR and nitrate treatment on the level of NO in heart (a), kidney (b) and spleen (c) of mice. The values represent mean ± SD where n=3. 
#p<0.05 (normal control versus MC-LR treated group), *p<0.05 (MC-LR treated group versus nitrate treated group).

Figure 3: Effect of MC-LR and nitrate treatment on the level of LDH in heart (a), kidney (b) and spleen (c) of mice. The values represent mean ± SD where n=3. 
#p<0.05 (normal control versus MC-LR treated group), *p<0.05 (MC-LR treated group versus nitrate treated group).
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Co-exposure to both the toxicants produced comparatively higher 
degree of oxidative injury as compared to their individual exposures. 
The study clearly indicates that a cocktail of MC-LR and sodium 
nitrate induces a cascade of reaction in the exposed animals, thereby 
augmenting the toxicological damage. Therefore, this is a sign that 
the interaction of these toxicants in nature could be responsible for 
aggravating their toxic potential in livestock.
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