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Abstract

The existence of nanographene (GR) and GR-fullerene bud (GR-BUD) in 
cluster form is discussed in organic solvents. Theories are developed based 
on columnlet, bundlet and droplet models describing size-distribution functions. 
The phenomena present a unified explanation in columnlet model, in which free 
energy of GR involved in cluster comes from its volume, proportional to number 
of molecules n in cluster. Columnlet model enables describing distribution 
function of GR stacks by size. From purely geometrical considerations, columnlet 
(GR/GR-BUD), bundlet [single-wall carbon nanotube (SWNT) (CNT) (NT) and 
NT-fullerene bud (NT-BUD)] and droplet (fullerene) models predict dissimilar 
behaviours. Interaction-energy parameters of GR/GR-BUD are taken from C60. 
An NT-BUD behaviour or further is expected. Solubility decays with temperature 
result smaller for GR/GR-BUD than SWNT/NT-BUD than C60, in agreement with 
lesser numbers of units in clusters. Discrepancy between experimental data of 
the heat of solution of fullerenes, CNT/NT-BUDs and GR/GR-BUDs is ascribed 
to sharp concentration dependence of the heat of solution. Diffusion coefficient 
drops with temperature result greater for GR/GR-BUD than SWNT/NT-BUD 
than C60, corresponding to lesser number of units in clusters. Aggregates (C60)13, 
SWNT/NT-BUD7 and GR/GR-BUD3 are representative of droplet, bundlet and 
columnlet models.
Keywords: Solubility of graphene-fullerene bud; Columnlet cluster model; 
Bundlet cluster model; Droplet cluster model; Nanobud; Fullerene.

Cdiamond by alternating B/N provided BN-cubic [26]. BN-hexagonal 
(h) resembles Cgraphite since fused planar six-membered B3N3 rings; 
however, interlayer B–N exist. BN nanotubes were visualized 
[27–29]. BN-h was proposed [30]. BN nanocones were observed 
[31–33] /calculated [34–39]; most abundant ones present 240/300º 
disclinations. Junction BN/AlN [40] /BC2N nanotubes [41] were 
computed. Other layered materials are: WS2, etc. [42–46]. Pyrolytic 
nano-BxCyNz shows C/BN domains; compound provides materials 
useful as nanocomposites (NCs)/semiconductor devices enhanced 
towards oxidation [47–49]. CNTs are inert/difficult to integrate into 
NCs/electronics.

C-NanoBuds™ (NT-BUDs, fullerene-functionalized SWNTs) were 
synthesized [50]; all are semiconductors [51]. GR sparked potential 
to be ingredient of devices (e.g., single molecule gas sensors, ballistic 
transistors, spintronic) [52]. It was called mother of all graphitic forms 
because it can be wrapped into fullerenes, rolled into CNTs and 
stacked into graphite [53]. It consists of hexagonal arrangement of 
C-atoms in two-dimensional (2D) honeycomb crystals. It differs from 
most conventional 3D materials. Basic GR is semimetal/zero-gap 
semiconductor. Zigzag-edges nature imposes localization of electron 
density with maximum at the border C-atoms, leading to formation 
of flat conduction/valence bands near Fermi level. Localization states 
are spin polarized and in case of ordering electron spin along zigzag 
edges, GR is established in anti/ferromagnetic phase. The former 
breaks GR sublatice symmetry that changes its band structure and 
opens a gap. GR/CNTs show third-order nonlinerity. Electronic 
properties of semiconductor monolayers are better than the bulk, 

Introduction
Nanoparticles interest arose from shape-dependent physical 

properties of nanoscale materials [1,2]. Single-wall C-nanocones 
(SWNCs) (CNCs) allowed curved-structures nucleation/growth 
suggesting pentagon role that, introduced into nanographene (GR) 
via extraction of a 60º sector, forms a cone leaf. Pentagons in SWNC 
apex are analogues of single-wall C-nanotube (SWNT) (CNT) tip 
topology. Classes of positive-curvature CNCs [3–5] /Clar theory 
[6–10] were analyzed. Ends of SWNTs predicted electronic states 
related to GR topological defects [11]. Resonant peaks in density of 
states appeared in SWNTs [12] /multiple-wall CNTs (MWNTs) [13]. 
SWNCs with discrete opening angles θ = 19º, 39º, 60º, 85º and 113º in 
pyrolytic C were explained by cone wall model of wrapped GR sheets, 
where geometrical requirement for seamless connection accounted 
for semi-discrete character [14]. Total disclinations are multiples 
of 60º for P ≥ 0 pentagons in SWNC apices. From symmetry/Euler 
theorem five SWNC types are obtained from continuous GR sheet 
for P = 1–5: sin(θ/2) = 1 – P/6, leading to flat discs and caped SWNTs 
matching to P = 0 and 6, respectively; most abundant SWNC (P = 5) 
is nanohorn (SWNH). Configurations exist for given cone angle 
depending on pentagon arrangement: isolated pentagon rule  led to 
isomers more stable than grouped ones [15]; others derived from 
ab initio  calculations [16]. Functionalization of SWNCs with NH4

+ 
improved solubility [17] that was achieved by skeleton [18–20]/ 
cone-end [21] functionalization and supramolecular π-π stackings 
[22–24] with pyrenes/porphyrins. An MNDO computation of BN 
substitutions in C60 showed analogous B30N30 [25]. Substitution in 
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spawning efforts to create functionalized monolayers of other bonded 
crystal structures. Higher carrier mobility is achieved via ultra-thin 
topologies but terminating monolayers with ligands for specific 
applications, ultra-thin materials are made more sensitive than the 
bulk for sensors. Solvent selection was analyzed [54–56]. Coronado 
group examined multifunctional hybrid nanocomposites based on 
CNTs/chemically modified GR [57–59]. Other 2D materials were 
analyzed [60–66]. Some GR-fullerene nanobuds (GR-BUDs) [67] are 
calculated magnetic [68].

In earlier publications SWNT [69–74] /(BC2N/BN-)SWNC 
[75–78] bundlet, GR columnlet  [79] cluster models, Sc/GR clusters 
polarizability and GR1/2–cation interactions [80] were presented. A 
class of phenomena accompanying solution behaviour is analyzed 
from a unique point of view taking into account cluster formation. 
Different structures with delocalized electrons in droplet/bundlet/
columnlet models are examined. Based on droplet/bundlet models, 
GR/GR-BUD columnlet is examined. The aim of the present report 
is to perform a comparative study of fullerene, SWNT/NT-BUD and 
GR/GR-BUD. The following section describes the computational 
method. The next two sections present/discuss results. Finally, the last 
section summarizes our conclusions.

Computational method
Aggregation changes thermodynamic parameters that displays 

phase equilibrium and changes solubility. Columnlet  is valid when 
GR sheet number in cluster n >> 1. In saturated solution, chemical 
potentials per sheet for dissolved substance, crystal and clusters 
match. Cluster free energy depends on its volume, proportional to 
cluster sheet number n  [81]. Our model assumes that clusters present 
columnlet shape. Gibbs energy Gn

 for n-sized cluster is:

Gn = G1n − G2

     
       
       (1)

where G1 and G2 are responsible for contribution to Gibbs 
energy of molecules placed inside volume and on surface of cluster, 
respectively, and correspond to formation energies An  and –B. The 
chemical potential µn of a cluster of size n  is:

µn = Gn + T ln Cn
     

      (2)

where T  is absolute temperature and Cn, concentration of n-sized 
cluster. With (1) it results:

µn = G1n − G2 + T ln Cn
    

      (3)

where G1 and G2 are expressed in temperature units. In saturated 
sheet solution, cluster-size distribution function is determined via  
equilibrium condition linking clusters of specified size with solid 
phase, which corresponds to equality between chemical potentials for 
sheets incorporated into clusters of any size and crystal, resulting in 
the expression for the distribution function in a saturated solution:

f n( ) = gn exp
−An + B

T
 
 

 
 

    
      (4)

where A  is equilibrium difference between sheet interaction 

energies with its surroundings in solid phase and cluster volume, B, 
similarly on cluster surface and gn

, statistical weight of n-sized cluster. 
One neglects gn

(n,T) dependences in comparison with exponential 
(4), which normalization:

f n( )n
n=1

∞

∑ = C
     

       
      (5)

requires A > 0, and C  is solubility in relative units. As n >> 1, 
normalization (5) results:

C = g n n exp
−An + B

T
 
 

 
 dn

n =1

∞

∫ = C0 nexp
−An + B

T
 
 

 
 dn

n=1

∞

∫  
     (6)

where g n  is cluster statistical weight averaged over n  that makes 
major contribution to integral (6) and C0, sheet molar fraction. The 
A, B  and C0 were taken from C60 in hexane/toluene/CS2 (A = 320K, 
B  =  970K, C0  =  5·10–8). Correction takes into account packing 
efficiencies of C60/sheet:

      ( )( )cyl cyl

sph sph sph sph

( ) SWNT 7A BA andB sheet A AandB B
η η

η η η η
′ = ′ = ′′ = ′′ =

where ηsph = π/3(2)1/2 and ηcyl  =  π/2(3)1/2 are spheres (face-
centred cubic, FCC) and cylinder packing efficiencies, respectively. 
Distribution-function dependences on concentration/temperature 
lead to sheet thermodynamic/kinetic parameters. For unsaturated 
solution, distribution function is obtained by clusters equilibrium 
condition. From Eq. (4) distribution function vs. concentration is:

fn C( )= λn exp
−An + B

T
 
 

 
 

    
      (8)

where λ  depends on concentration and is determined by 
normalization condition:

C = C0 nλn exp
−An + B

T
 
 

 
 dn

n=1

∞

∫    
      (9)

where C0 defines absolute concentration: C0  =  10–4mol·L–1 is 
found requiring saturation in Eq. (9). The formation energy of n-sized 
cluster results:

En = n An − B( )     
      (10)

Using the distribution function one obtains the heat of solution 
per mole of dissolved sheet:    (11)

     

where NA is the Avogadro number and λ depends on solution total 
concentration by normalization condition (9). The solute diffusion 
coefficient results:

D = D0

nλn−1 exp −An + B( ) T[ ]dn
n=1

∞

∫
n2λn −1 exp −An + B( ) T[ ]dn

n=1

∞

∫

  
      (12)

where D0 is the diffusion coefficient of a unit that was taken equal 
to that of C60 in toluene D0 = 10–9m2·s–1; Eqs. (1)–(12) are modelled in 
a home-built program available from authors. A droplet  cluster model 

H =
En fn C( )

n=1

∞∑
nfn C( )

n=1

∞∑
NA =

n An − B( )λn exp −An + B( ) T[ ]n =1

∞∑
nλn exp −An + B( ) T[ ]n =1

∞∑
NA
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Calculation results
The equilibrium difference between the Gibbs free energies of 

interaction of an SWNT with its surroundings in solid phase, and 
cluster volume or on surface (cf. Figure. 1) shows that on going from 

of C60 is proposed following modified Eqs. (1’)–(12’):

Gn = G1n − G2n
2 3      

      (1’)

µn = G1n − G2n
2 3 + T ln Cn

    
      (3’)

f n( ) = gn exp
−An + Bn2 3

T
 
 
  

 

 

      (4’)

      (6’)

       
      (8’)

       
  (8’)

C = C0 nλn exp
−An + Bn2 3

T
 
 
  

 
dn

n=1

∞

∫
 (9’)

En = n An − Bn2 3( )     
      (10’)

      

      (11’)

       
      (12’)

A bundlet  cluster model of SWNT and NT-BUD is proposed 
following customized Eqs. (1’’)–(12’’):

  

C = g n n exp
−An + Bn2 3

T
 
 
  

 
dn

n =1

∞
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T
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∞

∫
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Figure1: C60/SWNT/NT-BUD/GR/GR-BUD interaction energy with 
surroundings in cluster volume/surface

Figure 2: Temperature dependence of solubility of C60/SWNT/NT-BUD/GR/
GR-BUD

C60 (droplet) to SWNT (bundlet) the minimum is less marked (68% 
of C60), causing a lesser number of units in SWNT (nmin ≈ 2) than in 
C60 clusters (≈8) and a longer abscissa in C60 (nabs ≈ 28) than in SWNT 
(≈9). Thinner NT-BUD bundles (bundlet) result less stable while 
wider ones appear more stable than SWNT packages. The minimum 
of NT-BUD appears 55% of C60. The minimum of GR (columnlet, 
67%) is similar to SWNT but with fewer units (≈1) and shorter 
abscissa (nabs ≈ 3). Shorter GR-BUD stackings (columnlet) result less 
stable while longer ones appear more stable than GR columns. The 
minimum of GR-BUD (49% of C60) is alike NT-BUD.

The solubility of SWNT/NT-BUD and GR/GR-BUD vs. 
temperature (cf. Figure. 2) shows a solubility decay because of cluster 
formation. At T  ≈  260K, C60-FCC presents a phase transition to 
simple cubic (SC). The solubility drops with temperature result less 
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marked for SWNT/NT-BUD and even GR/GR-BUD, in agreement 
with lesser numbers of units in clusters (Figure. 1). At T  =  260K 
from C60 (droplet) to SWNT, NT-BUD (bundlet), GR and GR-BUD 
(columnlet) the solubility (Figure. 2) decreases to 3%, 2%, 0.3% and 
0.1% of C60, respectively.

The cluster distribution function by size in CS2, calculated for 
saturation concentration at solvent temperature T  =  298.15K (cf. 
Figure. 3), shows that on going from C60 (droplet) to SWNT (bundlet) 
the maximum aggregate size decays from nmax ≈ 8 to ≈2 and spreading 
is narrowed, in agreement with lesser number of units in clusters 
(Figure. 1). The dispersal of NT-BUDs (bundlet) is somewhat enlarged 
to wider bundles with respect to SWNT. The dissemination of GRs 
(columnlet) is strongly narrowed in concordance with the fewest units 
(nmax ≈ 1). The scattering of GR-BUDs (columnlet) is rather increased 
to longer stacks with regard to GR.

The concentration dependence for the heat of solution in toluene, 
benzene and CS2 calculated at solvent temperature T = 298.15K (cf. 
Figure. 4) shows that for C60 (droplet), on going from C  <  0.1% of 
saturated (<n> ≈ 1) to C = 15% (<n> ≈ 7) the heat of solution decays 
by 73%. In turn, for SWNT (bundlet) the heat of solution rises by 
54% in the same range in agreement with a lesser number of units 
in clusters (Figs. 1 and 3). Moreover, in NT-BUD (bundlet), GR and 
GR-BUD (columnlet) the heat of solution increases by 98%, 392% 
and 680%, respectively. The discrepancy between experimental data 
for the heat of solution of fullerenes, CNT/NT-BUDs and GR/GR-
BUDs is ascribed to the sharp concentration dependence for the heat 
of solution.

In the temperature dependence for the heat of solution in toluene, 
benzene and CS2 calculated for saturation concentration (cf. Figure. 
5) C60 results are plotted for T > 260K after FCC/SC transition. For 
C60 (droplet) on going from T = 260K to T = 400K the heat of solution 
rises 2.7kJ·mol–1. The heat of solution of SWNT (bundlet) increases 
10.4kJ·mol–1 in the same range and becomes endergonic. For NT-
BUD (bundlet) the heat of solution augments 11.3kJ·mol–1 similarly 
endergonic. Moreover, GR and GR-BUD (columnlet) heats of solution 
enlarge 82 and 76kJ·mol–1, respectively, likewise endergonic.

Figure 3: Cluster distribution saturated in CS2 at 298.15K of C60/SWNT/NT-
BUD/GR/GR-BUD

Figure 4: Heat of solution vs. concentration of C60/SWNT/NT-BUD/GR/GR-
BUD in toluene/benzene/CS2 at 298.15K

Figure 5: Heat of solution vs. temperature of C60/SWNT/NT-BUD/GR/GR-
BUD in toluene/benzene/CS2 for saturation

Figure 6: Diffusion coefficient vs. concentration of C60/SWNT/NT-BUD/GR/
GR-BUD in toluene at 298.15K
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The diffusion coefficient vs. concentration in toluene at 
T  =  298.15K (cf. Figure. 6) shows that cluster formation, close to 
saturation, decreases the diffusion coefficients by 56%, 69%, 73%, 
95% and 97% for C60 (droplet), SWNT, NT-BUD (bundlet), GR and 
GR-BUD (columnlet), respectively, compared with (C60)1. Diffusion 
coefficients of SWNT, NT-BUD, GR and GR-BUD decay by 29%, 37%, 
88% and 93% contrasted with (C60)n in agreement with lesser number 
of units in clusters.

Discussion
For a long time and, because of the fact that some theoretical works 

established that the long-range crystalline order was impossible in a 
strictly 2D material, GR was considered as only a reference structure 
that is found in the origin of other type of stable structures with which 
one is more familiarized, e.g., CNTs, fullerenes or simply Cgraphite itself 
[82]. Not by the fact that it was considered as a hypothetical material, it 
left of being in the mind of some researchers. The first and practically 
unique intentions of obtaining GR were based on chemical exfoliation 
where Cgraphite, adequately intercalated, could present considerably 
separated GR sheets. The compound so formed resulted, however, of 
scarce interest.

From purely geometrical considerations the columnlet  (GR/GR-
BUD), bundlet  (SWNT/NT-BUD) and droplet (fullerene) cluster 
models predict different behaviours. (1) Spheres (droplet) pack in 
three dimensions (3D), while cylinders (bundlet) do equivalently to 
circles in 2D and sheets (columnlet) stack against 1D. The C60 clusters 
can be greater than SWNT/NT-BUD bundles than GR/GR-BUD 
stacks, because of C60 > SWNT/NT-BUD > GR/GR-BUD additional 
curvatures and dimensions. (2) The co-ordination numbers are: 
CNspheres = 12, CNcylinders = 6 and CNsheets = 2. As surface affects energy 
[Eqs. (10), (10’) and (10’’)] on changing the number of atoms the 
clusters should present discontinuities in areas and stabilities, especially 
about the corresponding co-ordination numbers. Consequently a 
discontinuity is expected between closed  (C60)13 and open  (C60)14 
(droplet); the same happens between stopped up SWNT/NT-BUD7 
and ajar SWNT/NT-BUD8 (bundlet), and connecting congested GR/
GR-BUD3 and unlocked GR/GR-BUD4 (columnlet), which different 
sizes are in concordance with C60 > SWNT/NT-BUD > GR/GR-BUD 
extra curvatures and dimensions. (3) Smaller clusters are of the least 
consideration in columnlet, bundlet and droplet models because all 
three approaches are valid when n >> 1 unit. (4) It has not escaped 
our notice that aggregates near (C60)13, SWNT/NT-BUD7 and GR/GR-
BUD3 could be representative of the droplet, bundlet and columnlet 
models, respectively, with different sizes in agreement with C60 > 
SWNT/NT-BUD > GR/GR-BUD added curvatures and dimensions. 
However, all our calculations were performed with the whole size 
distribution. (5) Because spherical (2D-curved) C60 is more reactive 
than cylindrical (1D-bended) SWNTs than sheet (straight) GR, a 
greater dispersion in the results of C60 cluster size (n ≠ 13) is expected, 
with regard to lesser reactive SWNTs that are waited more uniform 
in SWNTn (n ~ 7) and least reactive GRs that are anticipated more 
consistent in GRn (n ≈ 3). In addition C60 is more soluble than SWNTs 
than GR in organic solvents. (6) The GR is strongly influenced by 
the materials it comes into contact with, whether solid, liquid or gas. 
(7) Strictly 2D (single layer) GR is rarely pristine since it contains a 
number of impurities, C or foreign ad-atoms, vacancies, etc., and the 

finite crystalline size and support-related effects, e.g., conformality, 
wrinkles, etc. For a group of potential applications the presence of those 
defects provides interesting properties related to the spin phenomena, 
for advanced nanoelectronics and to make possible the attachment 
of specific molecules. (8) In the investigation at the atomic scale of 
the impact that atomic defects have on the structural, electronic and 
magnetic properties of GR layers grown on different materials the pure 
bidimensionality of GR gives to these defects a critical role. (9) The 
study of the coupling of GR with its local environment is absolutely 
critical to be able to integrate it in tomorrow’s electronic devices. (10) 
The atomically thin single-crystal membranes offer ample scope for 
fundamental research and new technologies, whereas the observed 
corrugations in the third dimension may provide subtle reasons for 
the stability of 2D crystals.

The microscopic dimensional considerations above present 
macroscopic effects. In a linear chain, for a linear model the square 
fluctuation is proportional to the distance because the amplitude of 
the fluctuation rises with the squared remoteness. It is because of this 
circumstance that one should attribute the origin of the qualitative 
distinction that exists between the solid and liquid states. In a liquid, 
the coherence is conserved at only long distances while naturally the 
neighbouring atoms preferably form the arrangements of minimal 
energy. In the 1D case, the difference between solid and liquid will be 
only quantitative and instead of a well-determined fusion point there 
will be a continuum passing.

Conclusions
From the discussion of the present results the following 

conclusions can be drawn.

1. The nanoworld structural diversity is a consequence of its 
quantum nature. Several criteria reduced the analysis to a 
manageable number of magnitudes, viz. closeness, curvature, 
dimension and efficiency. Our non-computationally 
intensive approach, i.e., object clustering plus property 
prediction, assessed reliability. Type, dimensions and 
producer selection of fullerenes, nanotubes and graphenes 
must be chosen to ensure the transfer of methods developed 
between laboratories. Our interaction energy parameters for 
nanobuds are taken from C60. For nanotube bud an C60/tube 
intermediate behaviour was expected. However, nanotube-
bud properties result closer to tubes. Thinner nanotube-bud 
bundles appear less stable but wider ones are more stable 
than tube packages.

2. Association energy parameters of nanographene are obtained 
from C60. A nanotube-bud behaviour or further was expected. 
For Cgraphene nanobud an C60/Cgraphene in-between behaviour 
was anticipated. Notwithstanding, nanobud features appear 
closer to Cgraphene. Shorter nanobud stacks result less stable 
but longer ones appear more stable than Cgraphene columns. 
The solubility decays with temperature result smaller for 
Cgraphene/bud than nanotube/bud than C60, in agreement with 
lesser numbers of units in clusters. The discrepancy between 
experimental data for the heat of solution of fullerenes, 
nanotubes, graphenes and their buds is ascribed to the sharp 
concentration dependence for the heat of solution. The 
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diffusion coefficient drops with temperature result greater 
for Cgraphene/bud than nanotube/bud than C60, corresponding 
to lesser number of units in aggregates.

3. Some systems are dominated by the isolated pentagon 
rule, some others are not. Further work will explore 
similar nanostructures nature: generalization to systems 
more complex; e.g., a way of bypassing weak homonuclear 
bonding exists in closed BxNx (involving replacement of 
5-membered by 4-ring B2N2 with heteroatom alternation), 
BN/AlN tubes/heterojunctions, silicene, germanene and 
carbine. The C-nanostructures are more controllable while 
heterostructures present richer behaviour, especially for 
transtition-metal compounds, showing lubricant and 
electronic uses.
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