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Abstract

Important advances have been made in the last decade in the development 
of biologically active scaffolds for osteochondral repair, as can be seen from the 
exponentially growing number of research studies. Articular cartilage lesions are 
quite common and constitute a significant financial issue.

Multi-tissue regeneration, through the combination of biomimetic scaffold 
design, and localized active therapeutics delivery system and living cells, 
represents a promising strategy for the development of complex tissue such as 
the osteochondral unit.

 In this regard there is suitable expectation that such strategies could apply 
in the future to the repair of large defects or even resurfacing of a whole joint. 
Obviously, some new challenges will have to be faced, in particular in cell 
population needed and the controlled release of the active therapeutics.

properties of hyaline cartilage, and cannot protect the subchondral 
bone from further deterioration. Gaining functional repair is a big 
challenge, and the aim of cartilage repair is to restore the functional 
properties of the osteochondral unit [3].

Several surgical techniques are commonly used for the treatment 
of osteochondral lesions. We can cite joint debridement [4], micro 
fracture (alias chondroplasty) which is a marrow stimulation 
technique [5], and mosaicplasty (or osteochondral transplantation, 
or autologous osteochondral graft) which is a resurfacing technique 
[6]. Joint debridement only consists in eliminating lesion debris from 
the joint, to reduce pain. It is usually associated with either of the 
two other techniques. Bone marrow stimulation technique consists 
in penetrating the subchondral bone to release progenitor cells from 
the bone marrow into the defect. 

In mosaicplasty, one removes cylindrical plugs of sane cartilage 
with its subchondral bone, and implants them into the lesion like a 
mosaic pattern. These first generation treatments are aimed to relieve 
pain, recover function and inhibit cartilage lesion progress, but 
are not fully satisfactory, especially in the long term. Most of these 
surgical techniques mainly produce repair fibrocartilage, which will 
not last and does not resist compression and load demands as hyaline 
cartilage does. 

Articular cartilage viability depends on chondrocytes ability 
in synthesizing Extra Cellular Matrix (ECM) and restoring the 
different zones of hyaline cartilage. This is the aim of Autologous 
Chondrocyte Implantation (ACI) introduced more recently. ACI 
is a two-step procedure: first, collection by arthroscopy of a little 

Introduction
Articular cartilage lesions are quite common and constitute 

a significant financial issue. For example, on the basis of knee 
arthroscopy results, articular cartilage lesions represent 60 to 70% 
of pathologic cases, about half of these cartilage lesions resulting 
from trauma. According to various sources, up to 60% of these 
articular cartilage lesions are of grade 3 on the ICRS gradation 
system (International Cartilage Repair Society), which comprises 
5 grades, from 0 (normal cartilage) to 4 (abnormal cartilage, thick 
osteochondral lesion) [1].

Cartilage lesions are problematic due to the unique biomechanical 
properties of this tissue. Articular cartilage is relatively avascular, 
and has a very little ability to self-repair. Articular cartilage is 
composed of hyaline cartilage. Its function is to bear loads in various 
joint movements, while minimizing frictions on articular surfaces. 
The major component of cartilage is the extracellular matrix of 
chondrocytes, composed of type II collagen fibers which give this 
tissue its shape, strength and tensile force, and proteoglycans which 
are responsible for resistance to compression. Cartilage displays 
three main different specialized layers of differing fiber orientation 
and chondrocyte population, and each with particular load-bearing 
properties. These piled layers rest on top of subchondral bone (Figure 
1) [2].  

Asymptomatic lesions in cartilage can degenerate into painful 
symptomatic chondral disease like osteoarthritis. Osteochondral 
lesions, which involve both cartilage and subchondral bone, lead 
to fibrocartilage, which does not have the same biomechanical 
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piece of autologous cartilage, for chondrocyte culture; second, about 
one month later, surgical procedure of implantation of cultured 
chondrocytes. ACI has been the first cell engineering application in 
orthopedic surgery. The procedure was introduced by Peterson et al. 
in 1987 [7] and the first clinical use of this procedure was reported 
by Brittberg et al. in 1994 [8] and consisted in injecting autologous 
chondrocytes under a periosteal patch. ACI is indicated for large 
symptomatic lesions surrounded by non-osteoarthritic cartilage [9], 
whereas marrow-stimulating techniques or mosaicplasty are used 
for small lesions [3,10,11]. Good histological results on implantation 
sites after treatment were reported by various authors and lesion 
repair lasted several years [8,12-14]. An estimation of 10 000 patients 
worldwide having undergone an ACI was given by Brittberg in 2003 
[15].

In order to obtain new tissue formation from the implanted cells, 
there is a need for a suitable environment at the lesion site, which 
might not be the case if there is extensive cartilage loss. This is why the 
early Brittberg procedure has been abandoned in favor of implanting 
cells in biodegradable three dimensional matrices, like collagen 
membranes, as provisional supportive ECM-like scaffolds. Therefore, 
new techniques implying tissue engineering have been developing for 
the last ten years [16-18]. 

Research to improve cartilage repair is focused on tissue 
engineering combining three axes: the presence of cells, tridimensional 
scaffolds mimicking ECM and various environmental factors (growth 
factors etc.). Tuning these parameters is really the challenge in 
cartilage repair.

The first point of interest is the development of tridimensional 
matrices, natural or synthetic, biocompatible and biodegradable, 
which serve as filling material for the lesion itself, as scaffolds for 
new cellular growth, and as reservoirs for the release of chondrogenic 
factors.

Then, one needs to define which are the best cell candidates to 
concentrate on, either chondrocytes, which are the native cartilage cell 

types, or stem cells for example Mesenchymal Stem Cells (MSC) from 
bone marrow. This choice is concerned with cell source requirements, 
cell adhesion and proliferation and cell efficiency.

The third topic of interest concerns the identification and 
implementation of specific adequate growth factors or signaling 
molecules, enabling both chondrocyte cell differentiation and 
phenotype preservation.

Combinations of these three parameters, as well as optimal 
implementation conditions are currently under investigation for 
tissue regeneration in cartilage lesions, both in animal models and 
clinic studies.

Analysis and Interpretation
Materials used in osteoarticular tissue engineering

Cell adhesion, growth and resulting tissue regeneration 
will depend on the first place on the scaffold properties. To 
mimic extracellular matrix, the scaffold must be biodegradable, 
biocompatible, favor cell adhesion, regulate cell expression, and be a 
suitable reservoir for bioactive molecules such as growth factors [19]. 
There have been extensive studies on potential biomaterials, natural, 
synthetic, ceramics or composite.

Matrices of natural origin

A few natural matrices have been investigated to date, in vitro 
and in vivo, mainly of protein or carbohydrate origin: collagen, fibrin, 
agarose, alginate, Hyaluronic Acid (HA), chitosan, cellulose [20].

Early interest has focused on collagen: type I gels and sponges 
[21,22] and type II sponges [23]. In second generation ACI, a 
collagen membrane has been used (for example, Chondro-Gide®, 
from Geistlich, Switzerland) to replace perioste [24], to facilitate the 
second part of the treatment, which is the implantation of cultured 
autologous chondrocytes. In third generation ACI, the focus is made 
on the use of tridimensional scaffolds optimized for chondrocyte 
implantation, the so-called MACI (Matrix-assisted Autologous 

Figure 1: Cellular population and collagen orientation zones in the articular cartilage (reproduction from labrha.com). The articular cartilage is composed of different 
layers defined by the cell specificity: the superficial zone containing small and flat chondrocytes, the reserve zone containing spherical and bigger chondrocytes, 
the proliferation zone where chondrocytes are disposed in axial isogenic group and where they show an important mitotic activity, the mineralized hypertrophic 
zone containing hypertrophic chondrocytes, and the subchondral bone. The collagen fibers are parallel to the articular surface in the superficial zone, oblique in 
the reserve zone and perpendicular to the articular surface in the proliferation and hypertrophic zones. This specific orientation gives cartilage its resistance to the 
compression forces
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Chondrocyte Implantation) for example with Verigen (Leverkusen, 
Germany) or Genzyme (Boston, USA) [25].

The main drawback encountered with these materials concerns 
the type of repair tissue obtained: the best tissue obtained was hyaline-
like, but still not identical to articular hyaline cartilage in terms of 
morphology or histo-chemistry, and could only be obtained in some 
cases. Often, only fibrocartilage was formed [26,27].

After collagen membranes [28], research has focused on HA 
derivatives as potential scaffold [29], see for example Hyalograft® C 
(Fidia Advanced Biopolymers, Abano Terme, Italy), an esterified 
derivative of HA, which showed good results [30-32], namely 
cartilage function improvement among 91.5% of patients. This graft 
enables chondrocyte growth together with phenotype conservation 
[33] and resorbs without inflammatory reaction [34].

Films and sponges of chitosan, chitosan/HA and chitosan/
chondroitin sulfate were prepared by film deposition (films) or 
lyophilisation (sponges) and were shown to constitute good cell 
supports [35].

Hydrogels, such as alginate, also constitute a suitable scaffold for 
cell development and differentiation [36-38], however they display 
mechanical weaknesses. Agarose has been used as a matrix [39] and 
more recently in a layered manner, to produce depth-dependent 
inhomogeneity in the scaffold [40]. Some hybrid agarose-alginate 
gel, Cartipatch® (Lyon, France), has been used in vivo in an ACI 
case study on man. After two years, all patients showed clinical 
improvement and eight out of thirteen patients displayed hyaline 
cartilage restoration [41]. HA-based injectable hydrogels have been 
widely studied [42], often in combination with chitosan [43-45]. 
They enable chondrocyte survival and these retain their morphology 
[46]. New chitosan-based hydrogels have also been shown to enable 
chondrogenic differentiation of encapsulated MSCs [47]. GAG-
augmented polysaccharide hydrogels have also been reported as 
suitable supports for chondrogenesis, based on chondroitin-sulfate 
and chitosan, a GAG-analog [48]. Chitosan, which is a polycationic 
repeating monosaccharide of β-1,4-linked glucosamine monomers 
with randomly located N-acetyl glucosamine units, may be combined 
with the polyanionic CSA resulting in hydrogel formation by ionic 
cross-linking.

Despite their ability for cell adhesion, proliferation, differentiation 
and subsequent ECM production, these natural gel matrices have 
several disadvantages, such as potential immunogenicity, possible 
transmission of animal pathogens, difficulty of processing, mechanical 
weakness often needing chemical modification, like cross-linking for 
stabilization and improvement of mechanical properties [49-51]. 
However, these cross-linking agents, like glutaraldehyde, are often 
toxic and to avoid possible complications due to these components, 
various groups have developed composite hydrogels which combine 
the hydrogel compound and structural proteins. For example, the 
composite hydrogel matrices fibrin/HA and HA/collagen type I 
display improved mechanical properties, promote cell development 
and ECM production [38,52].

Another way of approaching cartilage structure is based on 
the electrospinning technique to produce collagen fibers [53-57], 
fibrinogen fibers [58], or other protein fibers like elastin which 

support the growth of MSCs [59], or gelatin [60]. Some authors 
combined collagen for the fibrous scaffold and chitosan gel to model 
ECM proteoglycans [61], or electrospan collagen together with 
HA [62] or with chitosan [63]. Kim et al. have reported on fibrous 
electrospun HA hydrogels that direct MSCs chondrogenesis through 
mechanical (cross-linking density) and adhesive (RGD motives 
density) characteristics [64].

To stabilize collagen based electrospun nanofibers, other groups 
have focused on the development of safer cross-linking processes, 
like photopolymerization based on the use of methacrylates [65,66] 
or rose Bengal [67]. These photo-cross-linked matrices successfully 
encapsulate chondrocytes or MSCs [68,69]. Another approach 
consisted in inserting some thermo sensitive elements, like poly 
(N-isopropylacrylamide) in the structure. Upon a certain temperature 
modified HA chains undergo conformational changes which lead to 
self-assembly and stabilization of the hydrogel [70]. Self-assembly 
processes are currently widely explored, with a variety of peptidic 
building blocks (see next chapter). Jiang et al. have recently reported 
on the electrospinning of collagen fibers from a non-toxic solvent 
(ethanol-water) and gentle cross-linking system (citric acid with 
glycerol) [57]. Native collagen conformation was retained after 
electrospinning and water stability was enhanced after the cross-
linking. Furthermore, cells showed better adhesion and growth than 
on glutaraldehyde cross-linked scaffolds.

Synthetic matrices

Synthetic materials have been widely used in tissue engineering 
due to their controllable properties. Various artificial biodegradable 
scaffolds are being investigated, based on Poly-Lactic Acid (PLA) 
[71], Poly-Glycolic Acid (PGA) [72], and their copolymers (PLGA), 
Polycaprolactone (PCL), nanocarbon, Dacron®, Teflon® fibers or 
polymer hydrogels [20].

Based on the characteristics of hydrogels (biocompatibility, 
hydration and bioactive molecules reservoir capacity), ECM-
mimicking matrices have been developed for example with designed 
peptides amphiphiles [73-75], elastin-like polymers [76,77]. A large 
number of studies are currently devoted to self-assembling peptides, 
for instance those developed by O’Leary et al., combining both 
high water content and structural robustness [78,79]. Amino-acid 
self-assembling β-sheet interaction has been used by Liu et al. to 
promote chondrocyte growth and hyaline cartilage formation [80], 
or chondrogenesis from bone marrow stem cells [81]. Some self-
assembled nanofibers of peptides amphiphiles have been shown to 
display a large number of binding domains for TGF-β1, allowing 
chondrogenic differentiation of MSCs and cartilage repair in a rabbit 
chondral defect [82]. Although biocompatible, these polymers do not 
enable cell adhesion on their own, and sites for cell adhesion have to 
be added. Moreover, they can induce some local pH lowering upon 
hydrolysis, with possible inflammatory reaction [19].

Hydrogels based on PEG (polyethylene glycol) have attracted 
much attention [83,84], and were shown to promote cell adhesion 
[85], and serve as reservoirs with possible multiphase composition 
for bioactive molecules, like chondroitin sulfate and specific peptides 
[86-88].
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Moutos et al. have reported on a tridimensional scaffold of specially 
woven microfibers of PGA impregnated with hydrogel (agarose 
or fibrin) containing chondrocytes, with tensile and compressive 
mechanical properties close to that of native cartilage [89]. This study 
was the first to use composite biomaterials to specifically target these 
biomechanical properties [90].

Bio seed® (Bio Tissue Technologies, Freiburg, Germany) based on 
PGA derived matrix, in combination with fibrin gel, used in MACI, 
has shown promising results [91].

Synthetic electrospun nanofibers have also been studied for MACI: 
chondrocytes were associated with electrospun PLA nanofibers 
[92], or for example co-electrospun fibers of PCL (slow degrading 
polyester) and PEG (hydrosoluble polymer) forming an architecture 
with controlled porosity [93]. In general, chondrocytes as well as 
MSCs grow well on this type of nanofiber scaffold, and produce ECM 
components like collagen and proteoglycans, as shown for example 
by Li et al. with PCL scaffolds [94] in a mini-pig model [95] or 
Foroni et al. with electrospun PLA [96]. Recently, some authors have 
successfully developed specific zones in such nanofibrous scaffolds, 
based on different fiber organization, in a way to mimic the different 
cartilage layers [97]. Some others have introduced sacrificial polymer 
fibers in the scaffold to improve later cell colonization [98]. Wright et 
al. have developed scaffolds based on electrospun poly(D,L-lactide)/
poly(L-lactide) or poly (D,L-lactide)/polycaprolactone, with salt 
leached pores and embedded chitosan hydrogel [99] which enabled 
growth and ECM production by chondrocytes. The increase in the 
pore sizes to enhance cell infiltration has been investigated by Phipps 
et al. on a bone-mimetic electrospun scaffold of PCL, collagen I and 
hydroxyapatite, using three different techniques: limited protease 
digestion, decrease of fiber packing density during electrospinning, 
and inclusion of sacrificial fibers (water soluble PEO) [100]. The 
sacrificial fibers approach appeared to be the most effective. Schneider 
et al. have studied the influence of fiber orientation (random versus 
aligned) in electrospun synthetic polymer scaffolds (PDC, PPDO) 
on adhesion and differentiation of chondrocytes. SEM microscopy 
revealed a flattened chondrocyte shape on scaffolds with random 
fiber orientation and growth mainly restricted to the scaffold surface. 
On aligned fibers the chondrocytes exhibited a more spindle-shaped 
morphology with rougher cell surfaces but only a minority of the cells 
aligned according to the fibers [101].

Among ceramic materials, hydroxyapatite and tricalcium 
phosphate are known to induce the formation of a bony apatite 
layer when implanted. They have been widely investigated in the last 
decades in bone regeneration systems [102-105]. Bone and cartilage 
have very different properties and it is a real challenge to tune systems 
aiming at osteochondral lesion treatment. For subchondral bone we 
are looking for stiffness, porosity and vascularization, to promote cell 
growth and the production of a bone matrix rich in type I collagen and 
hydroxyapatite. On the other hand, the cartilage is not vascularized, 
presents mainly a type II collagen matrix with an embedded 
proteoglycan hydrogel, allowing altogether resistance and elasticity. 
Some attempts have been made to mimic more closely this complex 
multi zone architecture, but few show good results in vivo. For 
example, Im et al. have elaborated a multiphase scaffold combining 
HA and atelocollagen for chondral regeneration, and hydroxyapatite 

and tricalcium phosphate for the bone layer, and obtained good 
results in osteochondral regeneration upon implantation in the knee 
joint of a pig [106]. Promising results have been obtained with a 
ditopic combination of collagen and glycosaminoglycans on the one 
side, associated with calcium phosphate on the other side, with a soft 
interface between them. The physical properties achieved with this 
architecture are quite good, but further in vivo investigation is needed 
[107]. Jiang et al. have elaborated a multi-phase scaffold composed of 
agarose hydrogel and sintered microspheres of PLGA-bioactive glass, 
which successfully resulted in both osteoblasts and chondrocytes in the 
appropriate region of the scaffold, leading to the production of three 
tissues: cartilage, calcified cartilage and bone [108]. Stanishevsky et al. 
have studied the micro architecture of hydroxyapatite nanoparticle 
loaded collagen fiber composites [109]. Catledge et al. have elaborated 
an electrospun triphasic nanofibrous scaffold by electrospinning a 
mixture of PCL, type I collagen and hydroxyapatite nanoparticles 
[110]. Qu et al. have recently studied some composite bilayer scaffold 
of PVA/gelatin, nano-hydroxyapatite and polyamide-6, seeded with 
marrow MSCs, and have observed in rabbit neocartilage formation in 
the PVA layer, and subchondral bone regeneration within the HA-
PA6 layer [111].

Osteochondral differentiation factors

Many bioactive molecules intervene in the physiological process 
of maturation and differentiation of immature bone and cartilage 
cells. Most of these molecules are proteins (growth factors and 
cytokines). A major family is the Bone Morphogenetic Proteins 
(BMPs) [112,113], but there are other potential candidates for 
osteochondral induction. The differentiation factors tested in various 
in vitro or in vivo models are among various protein growth factor 
families: Epidermal Growth Factor (EGF), Fibroblast Growth Factor 
(FGF) [114], Transforming Growth Factor Beta (TGF-β) [115], 
Insulin-like Growth Factor (IGF), Vascular Endothelial Growth 
Factor (VEGF), and also among signaling and regulatory molecules 
such as Wnt ligands (wingless family) and Hh proteins (hedgehog 
family) [19,20]. The exploration of their use in MACI is expanding. 
Different ways are being explored for the controlled release of these 
growth factors. Limitations encountered concern problems of dose, 
factor efficiency and over-time delivery, and suitable spatial delivery.

The most common way of delivering these factors consists in 
direct injection at the lesion site or in direct contact with the implant 
scaffold, however due to the short half-life of these active protein 
factors, these methods require high doses for therapeutic effect and 
do not permit a controlled-time delivery [51].

In many studies the growth factors are delivered via the 
scaffold itself, by mixing them with the scaffold components 
during fabrication. In these cases the matrix characteristics such as 
porosity or cross-linking degree will modulate the protein delivery 
by diffusion. For example; growth factors like BMP-2 have been 
incorporated into chitosan and hyaluronan hydrogels, and induced 
bone formation in the quadriceps muscle of rats [116]. Kopesky et 
al. have shown sustained delivery of TGF-β1 from self-assembling 
peptide hydrogels, which induced chondrogenesis by encapsulated 
bone marrow stromal cells [117].

In other studies reporting microsphere-based scaffolds, TGF-β1, 
BMP-2 or IGF-1 were loaded in the microspheres (of PLGA, or 
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PEG), resulting in good osteochondral regeneration [118-120]. These 
systems provide spatial controlled delivery of various growth factors 
[121], or even co-delivery of adipose derived stem cells and growth 
factors, as in the study of Sukarto et al. using loaded microspheres in 
RGD-grafted N-methacrylate glycol chitosan gels for focal chondral 
repair [122].

Simple Ionic bonding was used to load Insulin-like Growth Factor 
IGF-1 in a porous collagen-glycosaminoglycan scaffold and the 
adsorption and release characteristics were examined by the authors, 
which confirmed the bioactivity profile of the growth factor by the 
ECM component production from seeded chondrocytes [123]. Lee 
et al. exploited weak interactions to coat an electrospun poly(lactide-
co-glycolic acid) PLGA nanofiber scaffold with polydopamine 
by immersion of the fibers in a dopamine solution under weakly 
basic conditions, and further immobilized Bone-forming Peptide 1 
(BPF-1) derived from the immature region of Bone Morphogenetic 
Protein-7 (BMP-7) on the polydopamine-coated fibers, by similar 
immersion in the peptide solution [124]. These peptide-coated 
scaffolds acknowledged positive results in bone regeneration, and the 
same approach could be applied for cartilage tissue. Although this 
kind of material can control the spatial release of factor, the release 
in time cannot be controlled, leading to a massive release in the body.

Another way to improve the biodisponibility of the growth 
factor can be used. In another approach, growth factors have been 
successfully delivered through innovative nanoreservoirs based 
on the layer-by-layer technology, on electrospun PCL nanofibrous 
scaffolds or collagen membranes, resulting in efficient cell response 
for bone regeneration, process which may easily apply to cartilage 
tissue regeneration [125,126].

A recent study by Lim et al. [127] has described the development 
of a new bio-functionalized electrospun Poly (L-lactide) scaffold for 
cartilage differentiation: latent transforming growth factor LTGF-β1 
was anchored to the scaffold via surface chemical modification. Both 
random and orientated bio-functionalized scaffolds were tested 
in vitro and in vivo in rats, and proved chondrocyte differentiation 
and collagen II production. Jeong et al. have also performed some 
chemical modification to attach BMP-2 on a 3D PCL scaffold [128]. 

The authors found that these chemically conjugated BMP-2 PCL 
scaffolds promote significantly greater cartilage regeneration from 
seeded chondrocytes, in vitro and in vivo, compared to untreated 
scaffolds.

Recently magnetic scaffolds have been elaborated, based on 
biocompatible magnetic nanoparticles, which enable continuous 
and controlled loading of growth factors by the means of an external 
magnetic field [129-131]. 

Gene therapy is an alternative to the direct delivery of proteins, as 
the delivery of genes encoding for specific factors leads to the synthesis 
of these factors directly by the cells [132-135]. Among various vectors, 
the non-pathogenic human Adeno-associated Virus (AAV) is most 
promising, as recombinant AAV vectors allow the transduction of 
most relevant tissues and cells involved in cartilage repair, and it 
has been successfully tested in vivo in a rabbit osteochondral defect, 
using the FGF-2 gene sequence [133,136]. Moreover, although viral 
gene vectors are subject to safety considerations, rAAV has recently 
been recommended for clinical use in the treatment of pancreatitis. 
The group of Lu et al has recently described porous chitosan 
scaffolds with embedded HA/chitosan/plasmid-DNA nanoparticles 
encoding for TGF-β1 which induces DNA controlled release, 
transfect chondrocytes and promote cell proliferation [137]. Chen 
et al. have produced simultaneous regeneration of articular cartilage 
and subchondral bone in vivo using MSCs by the use of a spatially 
controlled gene delivery system in bilayered osteochondral scaffolds, 
consisting of plasmid TGF-β1-activated chitosan-gelatin scaffold for 
chondrogenic layer and plasmid BMP-2-activated hydroxyapatite/
chitosan-gelatin scaffold for osteogenic layer. The results showed that 
spatially controlled and localized gene delivery system in the bilayered 
integrated scaffolds could induce the mesenchymal stem cells in 
different layers to differentiate into chondrocytes and osteoblasts in 
vitro, respectively, and simultaneously support the articular cartilage 
and subchondral bone regeneration in the rabbit knee osteochondral 
defect model [138]. Some examples of scaffolds are presented on 
Figure 2.

Cell candidates for implantation

Figure 2: Examples of scaffolds potentially used for osteoarticular regeneration. 
(A) Solorio et al.[121] reported a polymeric 3-D nanofibrous microspheres scaffold used in cartilage engineering to improve the naturally round form of the 
chondrogenic cells.
(B) SEM micrograph of hydroxyapatite mineralized collagen-I synthetic scaffold, representing structure and composition close to extracellular bone matrix by 
Bernhardt et al.[104] for bone regeneration.
(C) SEM micrograph showing PCL electrospun nanofibers containing nanoreservoirs of BSA added by the layer-by-layer technology. This kind of nanofunctionalized 
scaffold can also contain osteogenic or chondrogenic growth factors for osteochondral repair (Eap et al).



Austin J Nanomed Nanotechnol 2(4): id1025 (2014)  - Page - 06

Nadia Benkirane-Jessel Austin Publishing Group

Submit your Manuscript | www.austinpublishinggroup.com

Two criteria will be determinant for the selection of good cell 
candidates for osteochondral repair: their easy access and their 
efficiency to produce specific matrix elements.

Regarding performance, chondrocytes are choice candidates, 
as they provide a high level of matrix synthesis, and are the only 
cell source currently approved for clinical use. Several ACI and 
MACI using chondrocytes have given promising results in clinical 
applications; however the use of cultured chondrocytes has some 
disadvantages, like the dedifferentiation of cultured chondrocytes, 
the need for large numbers of cells to fill large lesions, and the 
necessity of a two-step surgical procedure (cartilage harvesting and 
implantation) with the risk of donor site morbidity [139]. Some 
attempts are being made with allogeneic chondrocytes, as they have 
immunologic characteristics which limit immune reaction in the 
host. Thus, allogeneic juvenile chondrocytes have been tested for 
clinical use [140]. Allogeneic chondrocytes from adults are also under 
investigation [141,142]. Some examples of non-articular cartilage 
cell sources, such as ear or nose, can also be used to produce new 
cartilaginous tissue but its characteristics and potential for defect 
repair remain to be established [143].

Stem cells, in particular multi potent adult stem cells as 
Mesenchymal Stem Cells (MSCs), are expected to be good candidates 
for the treatment of osteochondral lesions, as they can differentiate 
into various lineages and present immunosuppressive properties 
[144]. The implementation of these cells requires isolation [145] 
and chondrogenic differentiation, typically by the means of TGF-β 
growth factor and dexamethasone [146-148]. Increasing numbers of 
studies are devoted to explore the in vitro and in vivo chondrogenesis 
process using MSCs and growth factors in grafts, as MSCs can be 
injected at a graft site or combined with graft components [149-151]. 
Few case studies have been made on ACI or MACI using stem cells 
as candidates for implantation on human cartilage lesion, but these 
reveal promising results [152-154]. However, progress has to be made 
on the production of hyaline cartilage. As the cell yield from bone 
marrow is quite low, other sources of stem cells are investigated, like 
adipose tissue [155], or the Synovial Membrane (SM) [156]. Stem 
cells from SM have great potential for chondrogenic differentiation: 
when cultured in monolayers they differentiate into fibroblasts, 
but when seeded in a 3D alginate medium, they readily turn into 
chondrocytes even in the absence of growth factors [157]. Sampat et 
al. have shown that seeding SM stem cells in a clinical grade agarose 
hydrogel scaffold in the presence of TGF-β3, resulted in new tissue 
with properties comparable to native cartilage [158]. Adipose tissue 
is another promising source for stem cells, abundant and accessible. 
Adipose tissue Stem Cells (ASCs) differentiate into different lineages, 
including bone and cartilage, and are more stable than MSCs for 
long-term culture [159-161]. ASCs are already widely used in 
osteochondral tissue regeneration studies, but some drawbacks 
remain today: chondrogenesis and osteogenesis are slower than 
adipogenesis with quite low yields despite the use of growth factors. 
These progenitor cells will gain in attractivity with the improvement 
of the differentiation performance [162-165]. Umbilical Cord Blood 
(UCB) is also a promising source for mesenchymal stem cells, and 
UCB stem cells have also been shown more chondrogenic potential 
than bone marrow MSCs: they can differentiate and produce 
cartilaginous ECM in two-three weeks [166,167]. Moreover, when 

seeded in different matrices, they can form cartilage and/or bone, as 
shown by Kogler et al. [168,169]: in calcium phosphate they produce 
bone after 12 weeks in a rat bone defect; they produce chondrocytes 
in gelatin after 3 weeks implantation in mice; in other PGA scaffolds 
they produce native cartilage after 12 weeks in the presence of TGF-β1.

Pluripotent stem cells as Embryonic Stem Cells (ESCs) are being 
increasingly explored for chondrogenesis [170] in the literature but 
due to limitations brought by ethical and regulations considerations, 
it is unlikely that these would be of practical use in the clinic. Their 
interest is mainly in the fundamental understanding of biological 
processes. Finally, there is an increasing interest in Induced 
Pluripotent Stem Cells (IPSCs), which can be produced from the 
patient’s cells [171]. They have high differentiation potential and can 
induce chondrogenesis via a multi-stage process, involving micro-
mass culture [172]. Like for ESCs, further studies need to be done 
to evaluate their real efficiency, and to control their production and 
differentiation, and these will not be suitable for clinical application 
until long time.

Genetically modified cells, both chondrocytes and MSCs, are 
being considered as interesting vehicles to introduce in osteochondral 
implant scaffolds: on the one side they can proliferate and produce 
new ECM, and on the other side they can generate the secretion of 
over expressed protein to further stimulate cartilage repair [136,173]. 
Zhang et al. have used a mixed co-culture of MSCs and transgenic 
chondrocytes in alginate hydrogel for cartilage engineering [174]. 
Chondrocytes, pre-transduced with adenoviral vectors carrying the 
transforming growth factor TGF-β3 gene, were selected and co-
cultured side-by-side with MSCs in a 3D environment to provide 
chondrogenic growth factors in situ. In vitro and in vivo results 
showed that the growth factor was successfully released from the 
transgenic chondrocytes, and not only induced MSCs differentiation, 
but also preserved the chondrocyte phenotype.

Finally, some groups reported some interesting in vitro cell 
culture modification to improve the colonization of biomedical 
scaffolds. For instance, Nerurkar et al. investigated the effect of 
dynamic cell culture on stem cell infiltration and behaviour in an 
aligned electrospun nanofibrous scaffold [175]. After seeding and 
pre-culture of MSCs in an electrospun PCL scaffold, dynamic culture 
was initiated by incubating the construct on an orbital shaker. This 
dramatically improved cell infiltration into the scaffold and uniform 
production of collagen.

Clinically used Scaffolds and Clinical 
Reports

Some scaffolds are available for clinical use, but there still is a 
general lack in technical reports and full clinical trials on arthroscopic 
ACI and MACI compared to the exponential development of research 
studies [176-178].

For the moment, the most common scaffolds clinically used 
are based on collagen I/III (Chondrogide®) or HA (Hyaff®-11) 
[49,179]. Recent clinical studies on ACI-MACI can be found for 
type I/III collagen matrices like ACI-Maix [180], atelocollagen gel 
[181], Type I collagen scaffold Neocart® [182], esterified hyaluronan 
Hyalograft-C® [183-186]. Table 1 presents a summary of products 
commercially available or in clinical trial. Clinical data for many 
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other combinations or synthetic polymer-based scaffolds are scarce 
and not yet satisfactory [187,188], the various MACI present 
comparable results. We can cite for example clinical data for the 
mixed gel-polymer scaffold BioSeed-C® [189,190] or the composite 
type I collagen- hydroxyapatite scaffold [191].

In a review of clinical trials on cell-based therapies for chondral 
lesions, from 1994 to 2009, Nakamura et al. found no difference 
between those and other interventions [192]. Later on, Benthien et 
al. have provided a systematic review of clinical trials from 2002 to 
2007 on the treatment of chondral defects in the knee [193], and 
compared the results for micro fracturing, Osteochondral Autograft 
Transplantation System (OATS), ACI and MACI (altogether 133 
relevant studies, with an average of 32 patients per study, and 24 
months follow-up). The conclusion was that no evidence based 
results could be clearly defined and no technique of choice could be 
pinpointed. Comparison is very problematic due to the variety of 
clinical scores applied. From a few studies comparing costs, Derrett et 
al. concluded that ACI costs were lower than for mosaicplasty [194] 
but this result needed more prospective studies to be confirmed. On 
the other hand, MACI still have a poor data base. More randomized 

prospective trials are needed.

Interestingly, some clinical studies realized on groups of juvenile 
patients [195] have shown significantly positive results of these ACI 
(with Geistlich collagen membrane) and MACI (Genzyme collagen), 
on pain reduction and functional motricity recovery, which leads 
the authors to believe that these techniques are particularly suitable 
for this type of patients, a major population for this kind of lesions, 
as osteochondral lesions are more common in adolescents than in 
adults.

The biggest problem when considering the transfer of a new 
chondral or osteochondral implant from the laboratory to the clinic 
concerns the regulatory aspects. This is both a time consuming and 
expensive process. Indeed, the functionalized scaffolds that we are 
discussing have to be considered as combinations of scaffolds, which 
are devices, and bioactive agents (like growth factors) which are 
biological material and fall in the drug definition. Both feasibility 
and safety has to be tested for each component individually and in 
combination, in early phase of clinical trial, and only later on, the 
efficiency of the implant in comparison with reference implantation 
techniques such as mosaicplasty. 

Product Company Composition Website

BST-CarGel Biosyntech Inc., Laval, QC, 
Canada Chitosan-Beta glycerolphosphate-based medical device www.biosyntech.com

ChonDux Biomet Inc., Warsaw, IN, USA Hydrogel made of polyethylene glycol and a bioadhesive to keep the hydrogel 
in place after injection

www.biomet.com

Gelrin C Regentis, Haifa, Israel

Cellular implant made of polyethyleneglycol diacrylate 
(PEG-DA) covalently conjugated with a structural backbone of denatured 
fibrinogen chains. The 
device comes in a liquid form, injected into the lesion site and polymerizes in 
situ into a stable hydrogel solid matrix.

www.regentis.co.il

Salucartilage SaluMedica, Smyrna, GA, USA Cylindrical implant based on polyvinyl-alcohol  hydrogel www.salumedia.com

Chondromimetic TiGenix NV (Leuven, Belgium) Bi-layer Collagen-based implant (upper layer: collagen/GAG; bottom layer: 
collagen/GAG/calcium phosphate

www.tigenix.com

TrueFit Plug OsteoBiologics/Smith & 
Newphew, Andover, MA, USA Synthetic mosaicplasty plugs www.smith-nephew.com

OrthoGlide Advanced Biosurfaces, 
Minnetonka, MN, USA

Interposition arthroplasty for the knee:  comprises a dished, disc-shaped cobalt 
chrome component which is inserted into the medial compartment of the knee 
in a minimally invasive fashion. The device has a lip which locks over the 
posterior aspect of the tibial plateau.

www.advbiosurf.com

Carticel, MACI Genzyme Inc, Cambridge, MA, 
USA Autologous cultured chondrocytes on bovine collagen membrane www.genzyme.com

ChondroGide Geistlich Biomaterials, 
Wolhausen, Switzerland Bilayer collagen membrane www.geistlich.ch

CaReS Arthro Kinetics, Esslingen, 
Germany Autologous chondrocytes embedded in a collagen matrix www.arthro-kinetics.com

Hyalograft-C Fidia Advanced Biopolymers, 
Abano Terma, Italy Autologous chondrocytes seeded on a hyaluronan-based scaffold www.fidiapharma.com

NeoCart, VeriCart Histogenics, Waltham, MA, USA

NeoCart™ : autologous chondrocytes embedded in proprietary type I collagen 
scaffold
VeriCart™ :a single-step, cell-free collagen scaffold uniquely designed to be 
used in conjunction with the patient’s own stem cells to repair small cartilage 
defects

www.histogenics.com

ACT 3D/ARTROcell 
3D

Co.don AG/OrmedGmbH, 
Teltow, Germany

Autologous chondrocytes transplantation using chondrospheres (tissue 
engineered chondrocytes without matrix, 3D culture)

www.codon.de

Chondrotissue

Bioseed-C

BioTissue Technologies, 
Freiburg, Germany

BioTissue Technologies, 
Freiburg, Germany

1-step, cell-free implant used to treat traumatic or degenerative cartilage 
defects in combination with marrow stimulating techniques. Patented 3D matrix 
of synthetic polymer (PGLA) and a hyaluronic acid.

Autologous 3D chondrocyte graft based on polymer matrix and fibrin

www.biotissue.de

Novocart 3D TETEC AG/B.Braun-Aescalap, 
Tuttlingen, Germany

A combination of autologous cartilage cells in a biphasic, three-dimensional 
collagen-based matrix

www.tetec-ag.de

Table 1: Products which are commercially available or in clinical trialsin cartilage engineering [196].

http://www.biosyntech.com
http://www.biomet.com
http://www.salumedia.com
http://www.tigenix.com
http://www.smith-nephew.com
http://www.genzyme.com
http://www.geistlich.ch
http://www.arthro-kinetics.com
http://www.histogenics.com
http://www.codon.de
http://www.biotissue.de
http://www.tetec-ag.de
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Conclusion
Important advances have been made in the last decade in the 

development of biologically active scaffolds for osteochondral repair, 
as can be seen from the exponentially growing number of research 
studies.

Multi-tissue regeneration, through the combination of 
biomimetic and multi-phasic scaffold design, spatially controlled 
and localized bioactive molecules delivery system and even multi-
lineage differentiation of a single stem cell population, represents a 
promising strategy for facilitating the development of complex tissue 
such as the osteochondral unit.

However, the main drawback in this field of research is the lack 
of reference conditions, for the purpose of reliable comparison. Little 
progress is being made in the establishment of standard screening 
conditions, like in pharmaceutical industry [197]. Furthermore, there 
is no consensus in the choice of animal model for the in vivo studies, 
whether rabbit, mini-pig, dog, sheep, goat or horse [198-200]. There 
is no consensus either, whether to study chondral or osteochondral 
lesions, and whether to implant mature matrices or to leave it mature 
in the defect.

Primarily aimed at the repair of small defects, all the above 
discussed technologies are more and more focused on the 
improvement of the functional biomechanical requirements of the 
osteochondral tissue. In this respect there is good hope that such 
techniques could apply in the future to the repair of large defects or 
even resurfacing of a whole joint, for example in the treatment of 
osteoarthritis. Of course, some new challenges will have to be faced, 
in particular in cell population, a large number of cells being required, 
and in the handling of particular conditions related to this pathology, 
namely an inflammatory environment [201].
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