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drawback, Gopinath et al. have designed Cytosine Deaminase-Uracil 
Phosphoribosyltransferase (CD-UPRT) bifunctional suicide gene 
construct in which Uracil Phosphoribosyltransferase (UPRT) acts 
upon product of CD i.e. 5-FU and converts it further into other toxic 
metabolites [7].

The therapeutic effect of suicide genes can be enhanced by 
combinatorial approaches. In combination therapy, two or more 
drugs with similar or different mode of action are employed to 
realize synergistic anticancer therapeutic potentials. Such synergistic 
anticancer potential of combination of radiation therapy and 5-FC/
CD plus UPRT gene therapy was demonstrated by Kambara et al. 
against malignant gliomas [8]. Apart from this, the combination 
therapy also provides scope for exploiting radio sensitizing properties 
of 5-FU and by stander effects during the course of treatment [9-
11]. Many research groups have reported the use of suicide gene 
in combination with chemotherapy and radiation to enhance the 
therapeutic effect and to overcome the drug resistance. Gopinath 
et al. were the first to report the applications of silver nanoparticles 
for synergizing the therapeutic effect of suicide gene [12]. They have 
also reported the synergistic therapeutic effect of suicide gene with 
anticancer drug curcumin. One of the major challenging tasks in 
suicide gene therapy is lack of suitable vectors for targeted delivery 
of suicide gene to cancer cells. The application of such DNA-
based therapeutics is largely limited due to poor cellular uptake, 
degradation by serum nucleases and rapid renal clearance following 
systemic administration. In addition to these, organ specific targeted 
DNA therapy has been a major challenge to overcome off-target 
gene therapy. In order to circumvent these limitations, numerous 
organ specific targeted nanocarriers have been developed recently for 
systemic administration.

With the advent of nanotechnology, numerous nanomaterials 
have found promising application in health care industry [13,14]. 
Such nanomaterials have revolutionized cancer diagnosis and therapy 
and tissue engineering etc. In the recent past, several researchers 
developed variety of nanomaterials with high gene transfection 
efficiency and low toxicity (Figure 1). These nanoparticles can be 
targeted to cancer by passive targeting and active targeting. Passive 
targeting can be achieved by using polymeric nanoparticles which are 
known to accumulate at tumor site due to Enhanced Permeation and 
Retention (EPR) effect, which results in passive accumulation in solid 
tumor tissues. Other major advantages of polymeric nanoparticles 
are biodegradability and biocompatibility, and prolonged circulation 
time in the bloodstream. Active targeting can be achieved by 
incorporating tumor specific antibodies or peptides.

Only few studies have been carried out till date for delivering 
suicide genes using nanoparticles. Aoi et al. transduced HSVtk 
gene in to cancer cells using nanobubbles and ultra sound [15]. 
Hattori and Maitani developed a folate-linked nanoparticle for 
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Cancer is one of the world’s most dreadful diseases and the battle 

against cancer continues till date [1]. Suicide gene therapy for cancer 
is one of the best approaches for annihilation of cancer [2]. In brief, 
suicide gene codes for an enzyme which converts a nontoxic prodrug 
into toxic metabolites and subsequently mediates death of host cells 
itself on account of which it is named “suicide” gene therapy [3]. 
These suicide gene when constitutively expressed by the cells not only 
mediates death of host cells but also inflicts strong bystander effects 
on neighboring cells by predisposing them to toxic downstream 
metabolites. Due to such advantages, they manifest minimal systemic 
toxicity and are also effective against many drug resistance cancer 
cells. Among all existing suicide genes, Cytosine Deaminase (CD) 
and Herpes Simplex Virus-thymidine kinase (HSVtk) have shown 
promising results initially and has been investigated extensively 
since long. The HSVtk enzyme initially phosphorylates the 
prodrug Ganciclovir (GCV) to its monophosphate form, which is 
subsequently phosphorylated again by endogenous cellular kinase 
to generate nucleotide analogs (di- and triphosphate forms of GVC). 
Triphosphate form of GCV is then readily incorporated into DNA 
during the course of DNA synthesis and acts as a chain terminator to 
prevent further DNA synthesis, which ultimately induces cell death 
[4].

The therapeutic efficacy of HSVtk suicide gene therapy is often 
limited by cell-to-cell contact which is a prerequisite for transport 
of downstream metabolic byproducts of ganciclovir to neighboring 
cells so as to attain bystander-killing effect. As an outcome of 
such drawbacks, HSVtk suicide gene does not seem to be effective 
against different cell types [5]. In contrary to this, Cytosine 
Deaminase (CD) efficiently converts prodrug 5-Fluorocytosine (5-
FC) into therapeutically active anticancer agent 5-Fluorouracil (5-
FU), which subsequently permeates across the cell membrane to 
mediate bystander killing effects on adjacent neighboring cells [6]. 
Thus, 5-FC/CD system attains suicide gene therapy much more 
efficiently as compared to other counterparts. Although 5-FC/CD 
system attains better therapeutic outcomes, it is ineffective against 
5-FC resistant cancer cells and thus its anticancer potential could 
not be generalized for all cancer types. In order to overcome such 
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targeted delivery of HSVtk gene in to human prostate cancer and 
nasopharyngeal cancer cells for in vitro and in vivo suicide gene 
therapy [16]. Yu et al. developed poly(ethylene-glycol)-poly(γ-
benzyl-L-glutamate) (PEG-PBLG) based nanocarrier for delivering 
HSVtk gene to Oral Squamous Cell Carcinoma (OSCC) cells and 
studied the therapeutic effect both in vitro and in vivo [17]. Recently, 
Yuan et al. used magnetic nanoparticles for the targeted delivery of 
suicide genes to cancer cells [18]. They have combined suicide gene 
therapy and magnetic hyperthermia methodology to treat cancer. 
Multifunctional nanoparticles hold great promise for suicide gene 
therapy as it can deliver suicide gene along with imaging probe for 
simultaneous diagnosis and therapy of cancer. Nanoparticles with 
such dual functions are named as theranostic nanoparticles. Sanpui 
et al. synthesized chitosan stabilized ZnS: Mn2+ QDs as a nanocarrier 
for delivery of CD-UPRT suicide gene which could be a promising 
approach for real-time monitoring of gene delivery [19]. Jaiswal 
et al. synthesized folic acid conjugated chitosan based theranostic 
nanocarriers for simultaneous delivery of ZnS QDs and CD-UPRT 
suicide gene for imaging and therapy, respectively [20]. Sahoo et al. 
synthesised multicolor fluorescent emitting gold nanoclusters for 
CD-UPRT suicide gene delivery [21]. As these metal nanoparticles are 
often associated with cytotoxicity, their long term application is very 
limited. Recently, Chen et al. transfected HSVtk gene in to prostate 
cancer cells using generation 5 poly (amidoamine) dendrimers as a 
polymeric nanocarrier [22]. The use of biofriendly polymeric nano 
carriers for targeted delivery of suicide gene and imaging agents could 
also be a promising approach for suicide gene therapy. Development 
of such nanomaterials has enormous potential applications and 
implications in cancer theranostics (diagnosis and therapy). 

Serum albumin has become a promising carrier for diverse 
therapeutic molecules due to its biocompatibility and low 
immunogenicity [23,24]. In this quest, cationized albumin has been 
used as non-viral vector for gene delivery. The presence of cations 
over albumin enables stable polyplex formation with plasmid DNA 
by spontaneous self-assembly process and which subsequently 
attains efficient transfection when supplemented with chloroquine 
mediated endosomal escape [25]. Similarly, Faneca et al. reported use 

of albumin associated cationic liposomes for delivery of HSVtk/GCV 
suicide gene and consequently reported their synergistic antitumoral 
effect with vinblastine [26]. As an alternative approach, Orson et al. 
have synthesized PEI-albumin conjugates for improved gene delivery 
[27]. In the recent past, apart from PEI, dendrimer with similar 
functional groups is also been sought as carriers for gene delivery [28]. 
The Generation 5 Poly (Amidoamine) Dendrimers (G5-PAMAM-D) 
was observed to double the efficiency of suicide gene therapy (HSVtk 
/GCV fused with Cx43) against human prostate cancer cells both in 
vitro and in vivo [29].

Apart from these carriers, polymeric scaffolds like electrospun 
nanofibers and gels are also explored for controlled and sustained 
gene therapy [30-34]. Although nanofibers versatility for gene therapy 
has been studied since long, their role in suicide gene delivery was not 
explored until recently [35]. In pursuit of this, Sukumar et al. have 
fabricated core-shell bPEI-PEO nanofibers for efficient transfection of 
suicide gene (Cytosine Deaminase-Uracil Phosphoribosyltransferase 
(CD::UPRT)) and also manifested subsequent time resolved delivery 
of prodrug(5-Fluorocytosine (5-FC)) [36]. Such composite scaffold 
for simultaneous delivery for suicide gene and prodrug could 
efficiently manifest by-stander effects of suicide gene and attained 
improved anticancer therapeutic potential. As an outcome of 
rapid development of such diverse nano-carriers for gene delivery, 
anticancer efficacy of suicide gene therapy has improved drastically.
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