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Abstract

Synaptic plasticity is regarded as the cellular mechanism underlying the 
refinement of neural connections during development and learning/memory 
functions in adults. Alterations in dendritic spine morphology (elongation or 
shrinkage) and/or spine density occur with synaptic plasticity. This structural 
modification has been proposed to enable persistent, long-term change in 
synapses. Here we review spine modifications associated with synaptic plasticity 
and discuss their contributions to synaptic plasticity and brain diseases.
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and morphology are altered, and these changes may partially account 
for alterations in brain functions associated with these diseases. 
Thus a better understanding of spine pathology may provide better 
therapeutic intervention.

Spine plasticity
Changes in spine density reflect an altered connection density 

between presynaptic and postsynaptic neurons, and this type of 
plasticity is most commonly observed during development (increase 
and decrease/pruning) and aging/degeneration (decrease). Changes 
in spine morphology, especially of the spine head have been 
documented using various methods, and is believed to be associated 
with changes in the strength of synapses.

Due to the heterogeneity of spine morphology, the most 
convincing way of demonstrating altered spine morphology is 
provided by comparing the same set of spines before and after synaptic 
plasticity-inducing stimuli in brain slices or learning in vivo. Many 
studies have examined how spines are altered with the induction of 
Long-Term Potentiation (LTP) and Long-Term Depression (LTD).
These two forms of synaptic plasticity are generally regarded as the 
cellular basis of synaptic modifications [9].

Spine modifications associated with LTP
In general, spines can undergo bi-directional changes, just as 

synaptic alterations. Enlargement of spine heads was seen with LTP 
and shrinkage of spines with LTD [10-12]. The same spines can 
undergo enlargement and shrinkage with consecutive induction of 
LTP and LTD [13], indicating that morphological modifications can 
occur in a bi-directional manner and that these changes are driven 
by synaptic modifications. The uncaging of caged glutamate onto 
a single spine [13,14] and electrical stimulation of a population of 
synapses/spines [15,16] supported the above conclusion.

There is generally a strong correlation between the strength of 
a given synapse and the size of spine. For example, Takumi et al. 
found that AMPAR density was linearly related to the diameter of 
Post-Synaptic Density (PSD) [17,18]. Matsuzaki et al. reported a 
large range of AMPAR numbers in spines; AMPARs were enriched 
in mushroom spines but were sparsely distributed on thin spines 
and filopodia, revealing a strong correlation between the number of 
AMPAR and the volume of spine head [18].

Abbreviations
LTP: Long-Term Potentiation; LTD: Long-Term Depression; 

PSD: Post Synaptic Density; AMPAR: α-Amino-3-hydroxy-5-
Methyl-4-isoxazole Propionic Acid Receptor; NMDAR: N-Methyl-
D-Aspartate Receptor; PKA: Protein Kinase A; CaMKII: Ca2+/
calmodulin-dependent protein Kinase II; PP2A: Protein Phosphatase 
2; Rac1: Ras-related C3 botulinum toxin substrate 1

Introduction
Dendritic spines are small postsynaptic structures protruding 

from dendrites and the primary site of excitatory input. About 90% of 
excitatory synapses occur on spines on the excitatory neurons in the 
adult cortex [1]. Spines are usually divided into three types based on 
the size, spine head shape, and spine neck length. Mushroom spines 
have large heads and constricted narrow necks, thin spines have small 
heads and slender necks, while stubby spines have no distinct heads 
and necks [2,3]. This categorization is to provide an easy classification 
while the actual distribution of spine shapes is of a continuum.

The recent development of two-photon imaging allows spine 
morphology and dynamics to be studied in great detail using time-
lapse and repetitive imaging, and has enabled the study of spine 
alterations in response to physiological or pathological events 
[4,5]. For example, dendritic spines are dynamic in genesis and 
elimination, especially during brain development. In adolescence, 
spines show much higher elimination than formation which results 
in net spine loss or pruning. However in the adult, the rate of spine 
genesis and elimination is much reduced and roughly equivalent, 
which maintains the stability of spine density [6,7].

Spines are considered a unique calcium compartment [8]. Spine 
plasticity is demonstrated by their capacity to undergo both rapid 
(seconds) and persistent (months to years) alterations in response 
to either physiological or pathological events. Large spines may be 
the storage site of stable long-term memory [1], while filopodia are 
considered as the immature form of spine which can be transformed 
into mature spines or eliminated. Spine plasticity is exhibited in 
two forms: changes in spine morphology/size and changes in spine 
density. Both changes reflect altered synaptic connections and 
strength. In neurodegenerative and psychiatric diseases, spine density 
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Since both an increase of synaptic strength which is mediated 
by increased phosphorylation and/or insertion of AMPARs into 
the potentiated synapses and enlargement of spine occur with LTP, 
a question arises as to whether functional changes are casually 
related to changes in morphology/structure. Are these two processes 
driven by the same upstream processes? Does the occurrence or 
persistence of one process require the other? It is well established 
that both processes require a Ca2+ influx through the synaptic 
NMDARs during LTP induction, and elevated intracellular Ca2+ 
concentration drives AMPAR phosphorylation and/or insertion [9] 
and polymerization of action filaments inside spines [12]. The initial 
increase in synaptic response and spine volume occurs very rapidly 
(< 1 min) [13,16]. Dendritic spine heads accumulate F-actin during 
this rapid expansion phase, and can persist for weeks together with 
an increase in synaptic function [19]. Potentiation of single synapse/
spine with glutamate uncaging led to a significant expansion of the 
spine head and a shortening and widening of the spine neck [20,21]. 
F-actin concentration inside the spine head rises, together with the 
entrance of actin-severing, actin-depolymerizing/–polymerizing, 
actin-capping proteins while actin-stabilizing proteins leave the spines 
[20,22-26]. Cofilin, an actin-depolymerizing agent, is highly elevated 
in spines during this initial process [25]. Interestingly, unlike LTP 
this initial spine expansion did not require postsynaptic exocytosis or 
PKA signaling [16], suggesting the involvement of different signaling 
pathways than those supporting LTP. After initial rapid expansion, 
the next phase of events lasts up to 1 hour, with spine head volume 
declining from the initial increase, yet remaining larger than the pre-
LTP baseline [25].

There is some evidence that AMPARs are not delivered directly 
into the PSDs inside spines, but are instead delivered to regions 
outside synapses (i.e., the perisynaptic regions) [28] or onto dendritic 
shaft [27,29]. These newly inserted AMPARs then move laterally into 
spines or PSDs. Yang et al. found that the stability of the perisynaptic 
AMPARs depends on the persistence of spine enlargement, that 
reversal of spine expansion led to the removal of perisynaptic 
AMPARs and absence of LTP. It is unclear as whether spine 
enlargement is required for the movement of these new AMPARs to 
PSD, or for retaining them at the PSD. Yang et al. also demonstrated 
that the converse is true that moving of the newly inserted AMPARs 
to the synapse is required for persistent spine enlargement [28]. Thus, 
an insurance mechanism is in place for coordinated modifications 
in synaptic function and spine morphology, i.e., matched changes 
in physiology and structure. Furthermore, if one process does not 
occur, the other process will be aborted even in progress. This double-
proof mechanism is essential to ensure that only appropriate changes 
(i.e., coordinated changes) are allowed to become persistent. This 
mechanism may be especially important in face of the highly dynamic 
nature of synaptic modifications, such as those occurring during early 
brain development [29]. About 1 hour after LTP induction, PSD 
scaffolds are recruited to spines to stabilize the newly added synaptic 
AMPARs [25]. This process requires protein synthesis [30].

Another mechanism to alter connections between neurons is 
to change synapse density. In that context, it has been shown that 
new spines emerged with the induction of LTP, and some of the new 
spines contribute to the increase in synaptic connection [31,32]. These 
new spines first appear in an immature form resembling filopodia, 

they later become mature (mushroom like spines), or are eliminated. 
A good indication that the new spines will be maintained is if they 
process synapses [32,33]. Stabilization of these newly generated 
spines requires the activation of NMDARs and CaMK II signaling 
[33]. In addition to the de novo genesis of new spines, splitting of 
potentiated spines also occur with LTP [12,34]. Note that LTP also 
induces alterations in axonal morphology and actin cytoskeleton 
leading to genesis of new axonal varicosities and new puncta [35,36].

Spine modifications associated with LTD
LTD is associated with spine shrinkage, opposing spine 

enlargement [22,37]. In the initial stage, a Ca2+ influx through the 
activated NMDARs is required for both LTD and spine shrinkage 
[15,37]. Similar to LTP/spine enlargement, some signaling events 
(NMDAR activation, elevation of calcineurin activity and postsynaptic 
depolymerization) are shared by both processes, while others are 
differentially required for either LTD expression (elevated PP-2A 
activity) or spine shrinkage (elevated cofilin activity) [15,22,37,38]. 
In support of this conclusion, Sdrulla and Linden demonstrated a 
double dissociation between LTD expression and spine changes in 
cerebellar Purkinje cells [39]. Interestingly, Wang et al. revealed that 
activity-independent constitute trafficking of AMPARs to and away 
from PSDs was not associated with changes in spine size, but the 
significance of this observation remains unclear [15].

Sustained reduction in synaptic strength may eventually lead to the 
loss of synaptic connections, and this loss is manifested as a reduction 
in spine density. Spine loss appears to be a protracted process and 
thus is difficult to study. Nonetheless, a few studies have attempted to 
examine this process. By using organotypical slices and monitoring 
both presynaptic boutons and spines, Becker et al. showed that 
LTD induction enhanced the turnover rate of presynaptic boutons 
and led to reduced contacts between the pre- and post-synaptic 
sites. Although the disappearance rate of presynaptic boutons and 
postsynaptic spines were greatly elevated after LTD induction, the 
sequence of events did not appear to follow a particular pattern, as 
disappearance of either presynaptic boutons or spines was observed 
to occur prior to the other [40]. These observations suggest that the 
exact sequence of events may not matter much, as long as there is a 
mismatch between the two sites.

Learning and memory in vivo
The ultimate proof that spine modifications have significant 

contributions to physiological process must come from in vivo studies, 
by comparing the same set of spines before and after the occurrence 
of a physiological process (such as learning or memory). By using 
time-lapse two-photon imaging on the same set of spines, Yang et 
al. discovered that new spines were formed after in vivo experience 
(sensory or motor), and a fraction of these new spines persisted for 
months [41]. More importantly, the genesis of new spines is specific 
to the experience or training, rather than other non-specific factors. 
Hayashi-Takagi et al. showed that motor learning (rotarod) resulted 
in enhanced Arc signaling and spine expansion in a subset of spines 
in the motor cortex [42]. By expressing a photo activatable GTPase 
Rac1 in spines, they showed that prolonged photo-activation led to 
spine shrinkage (reversed expansion) and loss of recently-acquired 
motor memory. This is a striking demonstration that enlarged spines 
are underlying the stored memory and reversing these changes 
“erased” memory.
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Alterations of dendritic spines in brain disorders
It has been convincingly demonstrated that spine alterations 

occur in various brain diseases, including neurodegenerative diseases 
and psychiatric disorders. Here we will review briefly evidence of their 
occurrence and potential contribution to pathology in Alzheimer’s 
disease and schizophrenia.

Alzheimer’s disease
Individuals with early-onset Alzheimer’s disease had significantly 

fewer synapses in the inferior temporal gyrus, CA1, dentate gyrus, 
and posterior cingulate gyrus [43-45]. Spine genesis is likely impaired 
in AD mice. For example, enriched environment was shown to 
elevate spine density in wt mice, but failed to do in AD mice [46] and 
immunohistochemical analysis showed loss of the presynaptic marker 
synaptophysin [47]. Major contributing factor in spine loss in AD is 
the presence of amyloid plaque. Numerous studies on both human 
post-mortem samples and AD transgenic mice have shown that spine 
loss preferentially occurs in regions near the amyloid plaques [48-50].

In addition, substantial axonal damage is present at the fibrillar 
plaques [51], which may cause spine loss. It has been shown that the 
level of oligomer form of Aβ is correlated with the degree of synapse 
loss [52], suggesting that Aβ oligomers may be a direct culprit in 
spine loss. Supporting this hypothesis, immunotherapy directed 
against oligomeric Aβ abolished synapse loss in Tg2576 mice [53]. 
In addition, many of the identified targets of Aβ are associated with 
synapses [54-57].

Psychiatric disorders Schizophrenia
Spine loss in neurodegeneration and aging is easy to comprehend. 

Significant spine loss also occurs in other brain diseases, such as 
psychiatric disorders, most of which have developmental origins.

Reduced spine density in multiple areas within the frontal and 
temporal neocortex has been reported in schizophrenia patients 
[58,59]. Dendritic arborization is also decreased with reduction 
of dendrite length, field size and dendrite number [60,61]. During 
adolescence, spine genesis dominates over spine elimination. But 
there is a net spine reduction/elimination in schizophrenia which is 
likely caused by the instability of the newly formed spines [62]. In 
addition, the molecular machinery regulating actin skeleton function 
was also altered in schizophrenia patients, such as Kalirin-7, Cdc42 
[63] and MAP2 [64-66].

Conclusion
Dendritic spines play critical roles in excitatory synaptic 

transmission and plasticity. They are the site where physiological and 
morphological modifications meet and integrate. Changes in spine 
density and dimension contribute significantly in both physiological 
and pathological processes and also can serve as a marker of such 
processes. During the LTP, the insertion of new AMPA receptors and 
spine enlargement are closely related, and appear to be dependent 
on each other to certain extent. In vivo studies demonstrated that 
learning and memory contributes to spine genesis and morphological 
changes, and more importantly these changes are required to sustain 
memory. In neurodegenerative diseases and psychiatric disorders, 
the density and size of spines are altered which may contribute to 
pathogenesis. Based on the above evidences, signaling molecules 

which regulate spine density and morphology may be potential drug 
targets.
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