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Abstract

Stem cells can spontaneously secret extracellular vesicle (EVs), which 
containing proteins, lipids, and nucleic acids. EVs have a broad prospect 
as a treatment of central nervous system (CNS) diseases, the release and 
uptake of EVs has important physiological functions and may also contribute 
to the development and propagation of inflammation, vascular, malignant, 
trauma and neurodegenerative diseases. This review will detail and discuss 
the characteristics of EVs and the potential challenges and strategies in the 
treatment of EVs-based therapies for CNS diseases in the future. 
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Introduction
CNS has complex anatomy and communicated with diverse 

cellular populations to respond to environmental stimuli and their 
metabolic requests. The diversity of CNS diseases can be caused 
by multifactor, and the existence of the blood-brain barrier has 
brought great difficulties to the treatment of CNS diseases. Currently, 
numerous of research developed to promote neurological recovery, 
but no drugs on the market is available. Increasing evidence is 
demonstrating that Mesenchymal stem cells (MSCs) derived EVs 
(MSCs-EVs) shown the positive effects and that the therapeutic 
value mainly attributed to the miRNA enriched EVs. This review 
summarized the characteristics of different components of EVs 
and the main mechanisms involved therapeutic approaches in CNS 
diseases, focusing on miRNA enriched MSCs-EVs, elucidating how 
and why miRNA enriched EVs could provide a unique opportunities 
in CNS diseases therapy, and discussed their clinical potential, neuro 
restoration could be a viable treatment strategy.

MSC Derived EVs
MSC

MSCs are usually obtained from adult bone marrow, peripheral 
blood, adipose tissue, and placenta, bone marrow is the most 
frequently used source [1,2]. They can promote tissue repair and 
remodeling through and secretion of cytokines [3-8], which has 
become a promising alternative strategy in treatment of CNS diseases 
[9]. However, the application of MSCs in clinical has some drawbacks, 
such as unstable phenotype, high costs of generation and processing, 
ectopic tissue formation [10]. In addition, lodged in the pulmonary 
microvasculature and caused infusion toxicity [11,12], and cellular 
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rejection or unwanted implantation also have been reported recently 
[13]. In recent years, some scholars have found that MSCs affects 
tissue repair rather than cell replacement by stimulating tissue cells 
through paracrine factors [14]. The main aspect of MSCs response 
to the disease is the secretion of differ functional molecules stored 
in EVs and play a significant role in cell-to-cell communication, 
which generate important actions in development, regeneration, 
angiogenesis, homeostasis, et al. [15-19].

EVs
EVs comprise a large variety of membranous structures released 

from almost all types of cells. The accumulated historical data and 
recent research have indicated that the contents, EVs are heterogeneous 
and dynamic existed in EV’s size, content, membrane composition 
and function, according to their cellular source, physiological status, 
and most importantly environmental conditions. Increasing research 
on EVs has increased understanding of their variety and complexity. 
EVs are lipid bilayer and comprise a heterogeneous population of 
membrane vesicles, by fusion of multivesicular bodies and the plasma 
membrane or formed from the direct budding or microvesicles. At 
present, three main subgroups of EVs have been defined by The 
International Society of Extracellular Vesicles, and they can be 
broadly classified based on size or origin: microvesicles (MVs, and 
exosomes) and apoptotic bodies [20,21]. MVs, which are typically 
larger in size (ranging from 100 to 1,000 nm) and are formed as the 
result of the outward budding of the plasma membrane. Exosomes 
generally representing smallest EVs of 150nm or less. Exosomes 
generally representing smallest EVs of 150nm or less, and derived 
from early endosomes by invagination of the recruited membrane, 
inward budding, and scission. Apoptotic bodies characterized by a 
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dimension ranging from 1,000 to 5,000 nm, and that released as blebs 
from cells undergoing programmed death cell [22-24]. EVs contain 
various specific molecules, such as, DNA, miRNA, mRNA, long non-
coding RNA, lipids, proteins, and genetic materials from viruses or 
prions, depending on the different cellular origin and the function 
of putative target [25,26]. The best characterized of EVs were firstly 
described in the early ‘80s [27]. Later, a small vesicle was founded 
in reticulocytes, It has a circular or concave cup shape under the 
electron microscope with a lipid bilayer structure, small vesicles fuse 
with the plasma membrane and release their contents to the outside 
of the cell in the process of exocytosis [28]. This was coined for 40-
100 nm vesicles released during reticulocyte differentiation by fusion 
of multivesicular endosomes (MVEs) with the plasma membrane 
[29,30]. To unify the nomenclature throughout, we will, therefore, 
use the term EVs for all types of vesicles in this review.

In the past 20 years, EVs were demonstrated that be produced 
and released by B lymphocytes and dendritic cells through differential 
centrifugation and described the role of EVs in antigen presentation 
in vivo and able to induce T cell responses [31,32]. Recently research 
found that all cell types are able to secrete EVs, including mesenchymal 
stem cell (MSC) [33], hematopoietic stem cell [34], cardiac progenitor 
cells [35], embryonic stem cell [36], pancreatic cancer cell [37] and 
liver cancer cell [38] et al. EVs are also found in physiological and 
pathological fluids, including pleural effusions, plasma [39], ocular 
effluent and aqueous humor [40], breast milk [41], broncho-alveolar 
lavage [42], synovial fluid [43], bile [44], urine [45,46] and sputum 
[46], ascites [47], amniotic fluid [48], semen (“prostasomes” and 
“epididymosomes”) [49-51], nasal secretions [52], CSF [53].

EVs have recently gained much attention for their application to 
CNS diseases, EVs participate in the regulation of normal physiological 
processes and disease pathology, not only including tissue 
homeostasis, such as stem cell maintenance, development, repair, 
regeneration, as well as pathophysiology [54-57], but also modulate 
immune system and protect apoptosis via multiple pathways [58,59]. 
In addition, EVS plays a significant role in cancer and cardiovascular 
disease [23]. Increasing interest in the development of EVs (Figure 
1). Its therapeutic effect for central nervous system diseases have 
been used in pre-clinical and clinical settings over the last decade, 
administration of MSCs-EVs has beneficial effects in numerous 
animal models of CNS diseases, including stroke, intracerebral 
hemorrhage (ICH), traumatic brain injury (TBI), glioblastoma 
(GBM), spinal cord injury (SCI) et al. The therapeutic effect of EVs in 
CNS diseases can be ascribed to the modulation of variety processes, 
including angiogenesis, neurogenesis, apoptosis, immune response, 
and reprogram in physiological and pathological status [60]. Compare 
with MSCs: EVs are smaller diameter and less complex content, so 
they are easier to produce and store, and will be more potential to 
address contentious regulatory issues [61]. Interestingly, purified 
EVs from MSCs exerted most, the key mechanism by which MSC 
contribute to tissue repair and regeneration is through their paracrine 
function, EVs are one of the major factors that are secreted [62-64]. 
Other studies have also showed that the treatment effects of MSCs are 
mostly attributed to cell-secreted paracrine factors rather than target 
and direct action of transplanted cells [65-67]. Moreover, paracrine 
factors can induce revascularization and promote proliferation of 
tissue cells [68,69].

EV components
The database was developed based on published articles, such 

as, EVpedia (http://evpedia.info) and ExoCarta (http://exocarta.
org) storing millions of the proteins, mRNAs, miRNAs, and lipids of 
mammalian EVs.

Nucleic acid content: Walking through the historical discovery 
of EVs mRNAs and miRNAs in humans and mice, 4,946 mRNA 
entries and 2,838 miRNAs from EVs from multi cells and body fluids 
have been identified (EVpedia, ExoCarta) [70,71]. Highly abundant 
small RNAs constituent of wide range of genetic materials in EVs, 
and many of them derived from ribosomal 18S and 28S rRNAs, 
tRNAs. By next-generation sequencing, diverse composition of small 
RNAs have been identified, not only contain commonly known RNA 
species, such as mRNAs, miRNAs, rRNAs, tRNA, vault RNA, long 
and short non-coding RNA, piwi-interacting RNA, and Y RNA also 
have been characterized [20,72-76]. Most of the RNA is generally 
shorter in size, around 200 nucleotides and smaller portion extending 
out to 4kb [77]. Interestingly, different types of RNA species can 
also be stably together with functional ribonucleoprotein (RNP) and 
depending on the isolation procedure, for example, high and low-
density lipoproteins (HDLs and LDLs) participate in a mechanism 
of cell-sell communication involving the transport of miRNAs and 
enables their stability and delivery throughout the body, argonaute 
2 (AGO2), which are essential to miRNA-induced silencing [78,79]. 
Multiple reports have implicated EVs serve as carriers of genetic 
information in cell-cell communication by carrying cell-specific 
mRNAs and miRNAs, especially in the treatment of CNS diseases. 
In some cases, genomic and mitochondrial DNA has been found, 
however, the therapeutic effects of not yet documented [80,81].

Protein content: Proteomic profiling of the EVs underwent 
a significant development in recent years, 41,860 protein entries 
from EVs have been identified, including annexin (Annexins I, II, 
IV, V and VII), cytoskeletal components (actin, alanine, tubulin, 
coenzyme), small GTPase family members Rab7 and Rab11, and EVS 
marker proteins Alix, TSG101, CD9, CD63 [82,83]. Alix, Syntenin-1, 
integrins, tetraspanins, cytoskeletal proteins, Tsg101, HSPs, annexins, 
Rab proteins, metabolic enzymes, and ribosomal proteins were 
categorized as common EVs protein [84,85]. As more EVs proteomes 
are identified, the inclusion or exclusion of cellular protein packaging 
is governed by protein-sorting mechanism during production of EVs 
[86].

Figure 1: Publication in exosome research annually since 2010 retrieved 
from a PubMed search of the term “exosome”, “exosome + RNA”, “exosome 
+ Lipid”, “exosome + Proteomic”.
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During the last 20 years, extensive research has investigated 
in the protein composition of MSC-EVs (MSC derived EVs) by 
various proteomic analysis, including immunoelectron microscopy, 
fluorescence-activated cell sorting and Western blotting, there have 
been over 900 proteins identified in MSC-EVs [82,87]. Recent studies 
have shown that MSC-EVs can improve the recovery of damaged 
tissues [84], and identified 730 proteins by LC coupled MS/MS analysis, 
43 surface receptors as well as signaling molecules are characterized, 
which is responsible for self-renewal and differentiation. Some 
other analysis indicated that MSCs-EVs proteins contributed to 
cell proliferation, migration, adhesion, and morphogenesis [88,89]. 
Self-renewal ability and differentiation potentiality of MSCs can 
be associated with the therapeutic effects, which is regulated by the 
integration of related genes, including signaling molecules (CDC42, 
VAV2); surface receptors (PDGFRB, EGFR, and PLAUR); antigens 
(CD109, CD248, CD151 and CD276) [84].

Lipid content: In addition to the abundance of proteins and 
nucleic acid within EVs, similarly, the lipid composition has also been 
investigated quite extensively [90-92]. A total of 1116 lipids have been 
identified (http://exocarta.org) in various settings. While there does 
not appear to similar lipid composition for EVs derived from different 
cells types, all of EVs lipid bilayer mainly contains the components 
plasma membrane lipids (sphingomyelin, phospholipids,  ganglioside 
GM3, and cholesterol) [93,94]. Among them, glycerophospholipids 
accounted for 91.5% of the total lipid ion abundance, followed 
by sphingolipids (5.3%), sterols (1.9%) and glycerol (1.4%) [95]. 
Glycerol phospholipids mainly include phosphatidylserine and 
phosphatidylglycerol. The former is a recruiter of negative charge 
activators and signaling proteins [96], and the latter involved in 
transmembrane transport [97,98]; sphingomyelin is related to the 
construction of outer membrane [99]; sterols are associated with 
vesicles and plasma membranes [100].

MSC-EVs-miRNA in CNS Disease Therapy
Accumulating evidence reveals that modification of exosomal 

miRNAs content can be a promising tool in the development of 
CNS diseases therapeutic. In addition, exosomes can penetrate the 
blood-brain barrier to enhance the therapeutic effect of miRNAs. 
Evidence from extensive studies in the last decade has indicated 
that exosomes from MSCs carrying miRNAs were found to be 
effective against several CNS disease targets and were reported to 
enhance chemosensitivity while suppress angiogenesis. Moreover, 
Exosomes express miRNAs regulate the expression of related genes 
in receptor cells and promote the regeneration and repair of receptor 
cells. Exosomal miRNAs currently studied in CNS diseases mainly 
include miRNA-126, miRNA-21, miRNA-17-92, miRNA-133b, and 
miRNA-124 (Figure 2).

Stroke
Compared to native MSC, MSC-EVs-miR-17-92 cluster can 

further enhanced axonal growth in stroke mice, which activated the 
PTEN/mTOR signaling pathway [101]. Similarly, Xin et al, suggest 
that MSC-EVs-miR-17-92 cluster also increased neural plasticity 
and improved functional recovery via the PI3K/Akt/mTOR/GSK-3β 
signaling pathway [102]. In another study, miR-21, which increased 
the expression in MSC-derived EVs, improved learning and memory 
capabilities via the PTEN/Akt pathway. Moreover, EVs have been 

shown to increase miR-21 level in AD mice, which restored the 
cognitive deficits in APP/PS1 mic [103]. Additionally, c(RGDyK)-
conjugated EVs (cRGD-Exo) loaded with cholesterol-modified miR-
210 (RGD-exo-miR-210) targets the ischemic brain contributing 
to miR-210 increase in the lesion region, which increased vascular 
endothelial growth factor (VEGF) and CD34 and shown neural 
protection in middle cerebral artery occlusion (MCAO) mouse [104]. 
What’s more, obtained evidence indicated that, overexpression of 
miR-138-5p was observed to promotes the proliferation and migration 
of astrocytes injured because of hypoxia and glucose deprivation, 
while BMSCs-EVs-miR138-5p promote proliferation which was 
achieved by inhibiting the apoptosis of astrocytes via downregulate 
LCN2 [105]. After oxygen-glucose deprivation (OGD) treatment, 
BMSCs-derived miR-134 EVs suppressed oligodendrocytes (OLs) 
apoptosis through a caspase-8-dependent apoptosis pathway [106].

Traumatic brain injury (TBI)
Some studies demonstrated for the first time that EVs from MSCs 

improve nerve functional recovery, stimulate angiogenesis, and 
promote neurogenesis in traumatic brain injury (TBI) [107]. In the 
latter, MSCs-EVs have been found to reduce neurological impairment 
in a transient intraluminal MCAO. MSCs-EVs -miR133b could 
regulates the expression of connective tissue growth factor (CTGF), 
a major inhibitor of axonal growth at injury sites, in astrocytes and 
the Ras homolog gene family member A (RhoA) expression in the 
IBZ, it also increased the expression of von Willebrand factor (vWF) 
in stroke rat, which demonstrated that MSCs communicate with 
brain parenchymal cells by transfer miR-133b to neural cells via 
EVs [108,109]. EVs from MSCs cultured in 3D conditions showed 
better outcome than 2D, EVs derived from 3D scaffolds provided 
better spatial learning, hMSC-generated EVs promoted endogenous 
angiogenesis, neurogenesis, and improved functional recovery in 
rats after TBI [110]. Moreover, EVs-miR124 could play a crucial 
role in the microglial polarization, and move it towards to anti-
inflammatory phenotype (M2) state by inhibiting TLR4 pathway, 
thus improving neurogenesis and enhancing functional recovery in 
the hippocampus [111]. Recently research demonstrated that, MSCs-
EVs-miR-17-92 improved functional recovery after TBI by reducing 
neuroinflammation and enhancing endogenous angiogenesis and 
neurogenesis, providing a novel therapeutic strategy for TBI.

Spinal cord injury (SCI)
A significant recovery of hindlimb function was observed in spinal 

cord injury (SCI) rats after MSCs-EVs-miR133b administration. 
Additionally, MSCs-EVs-miR133b promoted the regeneration of 
axons, protected neuronal cells, and reduced the volume of the lesion, 
which targeted RhoA and decreased the expression. Moreover, it also 
activated signaling pathway proteins, which involved in the survival 
of neurons and the regeneration of axons, such as ERK1/2, STAT3, 
and CREB, could be an effective strategy [112]. Other research 
reported that, hMSCs-EVs-miR-21 and miR-19b regulated PTEN 
mRNA and protein as well as the value of cell apoptosis index, 
involved in the apoptosis and differentiation of neuron cells in SCI 
[113]. Further studies reveal that, EVs with miR-21 deficiency would 
not exert protective effects against SCI [114]. Interestingly, miR-21-
5p was up-regulated after SCI, motor function and apoptosis were 
significantly increased in spinal cord post-SCI after miR-21-5p in 
MSCs-EVs transplantation therapy, an effect which was associated 
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with   increased the proportion of TUNEL-positive cells [115]. In 
vitro analysis indicated that, MSCs-EVs-miR-126, a key regulator, 
promoted the angiogenesis and migration of human umbilical venous 
endothelial cells (HUVECs), through inhibiting the expression of 
SPRED1 and PIK3R2 [116].

Intracerebral hemorrhage (ICH)
Interestingly, intracerebral hemorrhage (ICH) could induce 

an increase of EVs level in the brain, inhibition of EVs release 
augmented neurological deficits and brain edema [117]. Proteomics 
analysis of the EVs identified 2416 proteins that have been implicated 
in regulating number of cell functions, EVs derived from MSC 
therapy work in ICH as paracrine effectors responsible for brain 
repair processes, improved functional recovery, more axons, a higher 
expression of oligodendrocyte formation markers [118]. Regarding 
functional recovery, previous studies demonstrated that miR-21 
is downregulated in blood and brain tissue after ICH, MSCs-EVs-
miR-21 can be transported to neurons and that it plays a crucial 
role in alleviate neuronal injury via targeting transient receptor 
potential melastatin 7 (TRPM7) [119]. Recent evidence indicated 
that improvement in functional outcome after miR-146a-5p-
riched BMSCs-EVs administration following ICH, which could be 
associated with the inhibition of M1/M2 polarization transitions via 
downregulating the expression level of IRAK1 and NFAT5 [120]. In 
addition, it was also suggested that the expression of miR-133b levels 
were negatively correlated with RhoA expression and that the effect 
of MSCs-EVs-miR-133b play a significant role in neuroprotection via 
targeting RhoA and activating ERK1/2 [121].

Glioblastomas (GBM)
MSC-EVs are associated with mixed effects on tumor initiation 

and progression, being able either to favor angiogenesis and tumor 
initiation, or to inhibit metabolic signaling and progression of 
established tumors. These biological rationale for this response is 
likely attributable to their microenvironment. MSC-EVs, as the 
pivotal mediators of communication in the tumor microenvironment, 
play essential roles in cell-to-cell communication, and suppress 
angiogenesis by directly transferring anti-angiogenic molecules, 
MSC-EVs-miR-16 suppressed the expression of VEGF, to lead to 
the inhibition of angiogenesis and tumor progression [122]. Other 
research found that MSC-EVs-miR146b effectively reduced glioma 
xenograft growth in rat brain, it is likely that inhibition of factors 
EGFR and NF-κB protein in glioma cells underpins the anti-tumor 
[123]. When administered systemically, EVs-miR [124] is capable 
of downregulating FOXA2 and induced apoptotic cell death, 
which may correlate with FOXA2-mediated aberrant intracellular 
lipid accumulation [124]. In addition, EVs-miR9 was linked to 
temozolomide resistance in glioblastoma, when transfer this anti-
miRNA into co-cultured- GBM cells, it was be able to affect GBM cells 
at a considerable distance [125]. MSC-EVs- miR199a enhanced the 
chemosensitivity to temozolomide and inhibited the tumor growth, 
besides, it suppressed the proliferation, invasion, as well as migration 
of glioma cells by down-regulating the expression of AGAP2 [126]. 
In a separate study, further research showed that the known targets 
of the miR-302-367 cell-to-cell transfer resulted in the inhibition of 
cyclin A, SHH, cyclin Dand, E2F1 and CXCR4/SDF1, and prevented 
growth of GBM stem-like or progenitor cells [127]. Some studies have 

Figure 2: Schematic representation of possible routes of MSC-EVs-miRNA to improve CNS diseases.
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suggested that MSC-EVs promote tumorigenesis and metastasis, for 
example, it promoted the metastasis of the breast cancer, human 
renal cell carcinoma and bladder cancer [128-130].

Discussion
EVs, vectors of biological information, are involved in cell-cell 

communication in both physiological and pathological processes 
by delivering miRNAs to recipient cells that transferring beneficial 
mediators in CNS diseases. MSCs-EVs target housekeeping processes 
by their secreted EVs containing different miRNA to promote 
angiogenesis and neurogenesis, protect neurons, suppresses t neuron 
apoptosis, and increase neural plasticity. MSCs-EVs can also inhibit 
tumor proliferation, migration, and invasion, as well as enhance the 
chemosensitivity (Figure 2). The MSCs-EVs therapy, easier to cross 
the blood-brain barrier and avoiding the risk of iatrogenic tumor 
formation as well as intravenous administration-induced pulmonary 
embolisms, is a promising alternative to overcome the obstacles 
of cell-therapy. Despite numerous studies and literature reports, 
challenges are remaining for clinical application of MSCs-EVs-based 
therapy. Further studies of the cellular and molecular mechanisms 
of MSCs-EVs are necessary to maximize its clinical benefits in CNS 
diseases. Development and standardization of technologies in the 
manufacture, detection, and characterization of MSC-EVs are also 
indispensable for its clinical application. In conclusion, once these 
critical issues around MSC-EVs are settled, MSC-derived EVs can be 
harnessed as powerful therapeutic agents in CNS diseases. 
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