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Abstract

Introduction: Nutrition is one of the critical factors that influ-
ence brain development, and has a significant impact on the brain’s 
developmental processes and functioning from foetal to adult age. 
Newborn human brains utilise 60% of the body’s total oxygen, 
which has an impact on calorie intake. For the anatomical and func-
tional growth of the brain, all nutrients are essential, the ones that 
aid in energy, carbohydrate, protein, and fat metabolism are espe-
cially significant.

Objectives: The aim of this review is to boost up memory through 
diet, to know about the Nutrients for the development of the brain 
and to ensure Foods that adversely affect normal brain function.

Methodology: This literature review consulted multiple data-
bases, focusing on brain health and development, cognitive func-
tion, and maternal diet. The review included research from previ-
ous decades and analysed around 1,000 articles, with nearly 185 
selected. The review assessed the relevance of the content to 
search terms, evaluating resources based on material quality, topi-
cality, and publication year. The review discussed macronutrients 
and micronutrients, healthy and unhealthy foods, and maternal di-
ets for foetal brain development.

Conclusion: Factors such as maternal diet and macro and micro-
nutrient consumption significantly impact brain development and 
cognitive function. Nutrition is crucial for optimal brain health and 
preventing cognitive decline. Deficiencies and excesses of certain 
nutrients affect cognitive function differently. Vitamin A, LC-PUFAs, 
ketones, protein, zinc, neurotrophins, neuropeptides, choline de-
ficiency, vitamin B, copper, lutein, and zeaxanthin are essential for 
brain health. Consuming foods like walnuts, dairy, fish, caffeine, 
and low glycemic index foods can be beneficial for brain health, 
while junk foods, refined sugar, and saturated fats can be harmful.

Keywords: Brain health; Nutrition; Nutrients cognitive function; 
MicronutrientsIntroduction

Nutrition and Brain Development

Nutrition is one of the critical factors that influence brain 
development, and has a significant impact on the brain's de-
velopmental processes and functioning from foetal to adult 
age [62]. Throughout life, including early development during 
both the prenatal and postnatal stages, a balanced diet is cru-
cial for mental health and brain development [41,117], includ-
ing subsequent life stages [117]. In promoting the structural 
and functional development of the human cognitive function 
and brain, from conception, nutrition plays a major role during 
early infancy and continuing into later life [180,185]. Nutrition 
is vital for the maturation and functional development of the 

Central Nervous System (CNS). Brain development is a care-
fully controlled process involving cell division, differentiation, 
migration, and connectivity that depend on overlapping stages. 
Any disruption to this process can affect brain function [29]. 
Adequate nutrition is important during pregnancy [105,159] 
and the first few years of life, because it is during the prena-
tal and early postnatal period that the brain undergoes rapid 
growth and development, laying the foundation for cognitive, 
motor, and socioemotional skills [105]. It is becoming increas-
ingly evident that nutrional status throughout foetal develop-
ment and in a child's formative years has a significant effect on 
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neurodevelopment [185]. Nutrition is especially important due 
to the role that nutrients play in specific metabolic pathways 
and structural components. For instance, it is widely recognized 
that a dietary deficiency during critical stages of development 
can cause permanent changes to the brain. Observational and 
experimental studies provide mounting evidence that nutrition 
during intrauterine development can impact cognitive develop-
ment in offspring later in life [113].

Newborn human brains utilise 60% of the body's total ox-
ygen, which has an impact on calorie intake [67]. Around the 
world, one-third of childrens do not develop to their fullest 
potential by the time they are in preschool. Low-and Middle-
Income (LMIC) children are more vulnerable, with sub-Saharan 
Africa bearing a disproportionate share of the burden of cogni-
tive impairment. It is commonly known that the most important 
time for brain development is the first 1000 days of life, from 
conception to age two (McCann et al., 2020). Dietary restric-
tion is known to profoundly influence foetal brain development 
[103].

Maternal Diet

The role of maternal nutritional factors in foetal develop-
ment appeared as important research during the 20th century. 
Maternal nutrition has a direct impact on foetal neurodevelop-
ment, as diet and food choices play a significant role in defin-
ing maternal nutritional status [35]. For a healthy pregnancy 
and successful foetal development, the maternal diet is crucial 
[143]. Around 22 days after conception, foetal neurodevelop-
ment starts, and it progresses quickly in the second and third 
trimesters [63].

It's essential to have proper nutrition from the start of preg-
nancy as it interferes with the neural tube and plate's devel-
opment. Nutrients like folic acid, copper, and vitamin A play a 
crucial role in this process. The specific neurodevelopmental 
processes are also dependent on a number of nutrients. Dif-
ferent parts of the brain engage in each process at various, 
overlapping times. For instance, myelination of the brainstem 
auditory pathway starts from week 26 of pregnancy and lasts 
for at least a year after delivery. The formation of myelin re-
quires fatty acids like Docosahexaenoic Acid (DHA) [143]. As the 
fetal brain develops quickly, inadequate maternal intake of vital 
nutrients throughout pregnancy can affect the development of 
the structure and components of the brain [113].

Necessary Nutrients for Brain Function

For the anatomical and functional growth of the brain, all nu-
trients are essential, the ones that aid in energy, carbohydrate, 
protein, and fat metabolism are especially significant [67]. The 
three macronutrients that make up the body's main energy 
sources are carbohydrates, proteins, and fats [117]. Iodine, cop-
per, zinc, and choline, vitamin A, and Long-Chain Polyunsatu-
rated Fatty Acids (LC-PUFAs) are additional nutrients that have 
significant impacts on brain structure. Through their impact on 
neurotransmitter concentrations, receptors, and re-uptake sys-
tems, nutrients also have an impact on how the brain functions. 
Nutritional factors that specifically affect neurotransmitter ac-
tivity include protein, iron, zinc, copper, and choline. Through 
their impacts on metabolic rate, nutrients also have an impact 
on the electrophysiologic potential of neurons. Neuronal elec-
trical potential generation is a high-energy activity that depends 
on functioning mitochondria producing enough ATP. As a result, 
the developing brain has a high requirement for nutrients that 

promote glycolytic and oxidative metabolism [67].

I.	 Carbohydrates 

In Parenteral Nutrition (PN), glucose serves as the main non-
protein energy source and, because it is quickly metabolised, 
is crucial for the growing brain after birth. As a result of their 
limited glycogen stores, preterm neonates require an adequate 
source of exogenous glucose to maintain proper growth and 
brain development. The neonatal period's demands for glucose 
change depending on the neonate's specific needs as well as 
the gestational age. An infusion rate of 3-5 mg/kg/min of glu-
cose is enough for the majority of newborns [153].

II.	 Protein

Neonatal protein consumption is essential for the healthy 
development of the brain and lean body tissue [162]. A diet low 
in protein during pregnancy is linked to changes in the brain's 
oxidative state and neurotransmitters. As a result, psychoso-
cial issues start in childhood and persist throughout adulthood 
[164]. Legumes are nutrient rich sources of protein [118].

III.	 Omega-3 Fatty

Lipids make up about 50-60% of the brain's weight, and 35% 
of those lipids are omega-3 Polyunsaturated Fatty Acids (PU-
FAs). Over 40% of all omega-3 PUFAs, especially in the grey mat-
ter, are made up of Docosahexaenoic Acid (DHA) in neural tis-
sue [50]. The brain lipid composition is unique and exceedingly 
diverse. The development of the brain is thought to depend on 
PUFAs from the omega-6 and omega-3 families, which are lipids 
that must be obtained from food. Beginning during gestation, 
the brain begins to accommodate both omega-3 and omega-6 
PUFAs, a process known as "accretion." The third trimester of 
pregnancy is when DHA accumulation begins in humans [109].

Omega-3 enhances mental function, protects neurons from 
degeneration, and preserves them [50]. Omega-3 fatty acids are 
highly prevalent in marine life and plant-based meals like grains 
and seeds. Docosahexaenoic Acid (DHA) and Eicosapentaenoic 
Acid (EPA) occurs naturally in different types of fish, however 
they can be obtained indirectly from certain seeds and grain. 
ALA, which is normally transformed into EPA and DHA with the 
aid of particular enzymes, is the most common type of omega 
3-fatty acids found in plant seeds and grains [86].

According to studies, fewer than 20% of people worldwide 
ingest more than 250 mg/day of n-3 LCPUFAs from seafood. The 
brain accumulates a significant amount of DHA during the first 
two years of life, both before and after birth [187]. Human neu-
roimaging research most recent findings imply that grey matter 
shrinkage in healthy, middle-aged, and elderly persons is asso-
ciated with decreased intake of omega-3 PUFAs, without pre-
existing neurological conditions, particularly in the areas of the 
brain such the prefrontal cortex, hippocampus, amygdala, ante-
rior cingulate, and temporal cortex that are frequently linked to 
mood and psychotic illnesses [114].

IV.	 Zinc

Zinc, a necessary trace element, is crucial for brain growth, 
synaptic plasticity, and overall brain health [141,177]. The cer-
ebral cortex, amygdala, olfactory bulb, and hippocampal neu-
rons are among the regions of the brain that contain free zinc 
ion (Zn) neurons. The presence of zine is crucial for adult brain 
neurogenesis, which has profound effects on the hippocampal 
structure and function, including memory and learning as well 
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as emotion and mood control [177]. Recommended daily intake 
of Zinc for men are 11mg and 8 mg for women [195]. Various 
illnesses, such as Alzheimer's disease, Parkinson's disease, and 
mood disorders, have been hypothesised to be influenced by 
changes in the amount of zinc in the brain [151]. Inadequate 
zinc during development can also disrupt brain function in the 
offspring, which might show as altered behaviour, motor and 
cognitive function, and attention symptoms, e.g. depression, 
and altered child psychomotor development [99]. Because the 
body cannot store zinc, it must be consumed regularly through 
diet to meet physiological requirements [25]. The main sources 
of zinc include dark green and dark yellow vegetables, shellfish, 
meat, eggs, cereals, peanuts, dairy products, and whole grains 
[87].

V.	 Choline

It is a necessary nutrient and is crucial for the production of 
the neurotransmitter acetylcholine, maintaining the integrity of 
cell membranes, metabolism of methyl groups (which lowers 
homocysteine), transmission of neural impulses and lipid trans-
port (lipoproteins) [55,81]. Additionally, choline is involved in 
memory, learning, cognitive function, and sensory processing. It 
is commonly known that choline aids with brain growth. Diet is 
the primary way that choline enters the body. Sufficient choline 
intake is also important during gestation as it contributes to the 
growth of the brain [81].

VI.	 Selenium

As a crucial micronutrient that controls growth, differentia-
tion, and development, selenium (Se) is a trace element. Ac-
cording to available data, Se may be important throughout key 
stages of brain development. Se is co-translationally integrated 
into the polypeptide chain as part of the amino acid seleno-
cysteine to produce selenoproteins, unlike other essential trace 
elements that play biological roles in proteins in the form of 
cofactors. Selenoproteins, of which 25 have been discovered, 
are essential for brain function [4]. Food sources of selenium 
are Brazil nuts and other nuts, grains, veggies, meats, and oil 
seeds [59].

VII.	 B Vitamins

B vitamins, in particular B6, B12, and folate, have an impact 
on how the central and peripheral nervous systems operate 
by helping to keep the nervous system healthy and enhancing 
neurological disorders even when a deficiency is not known to 
exist [81]. Numerous mental illnesses have been connected to 
vitamin B deficiency [52]. Thiamine is found in foods including 
powdered milk, eggs, almonds, oats, oranges, dry pulses, and 
liver [177].

Malnutrition

One of the key factors that can obstruct brain development 
is malnutrition [164]. Malnutrition presents in 3 forms - under-
nutrition, micronutrients deficiencies and over nutrition. An 
imbalance between dietary demands and nutrient intake that 
results in a cumulative loss of calories, protein, or micronutri-
ents is referred to as paediatric malnutrition, also known as 
undernutrition and hidden hunger. Poor growth and impaired 
physical or mental development may be the results of such di-
etary deficiencies [125].

Malnutrition, including overnutrition and undernutrition, 
can lead to altered maternal nutrient use [35]. Nutritional defi-
ciencies can affect the growth of the brain, synapse formation, 

and cell differentiation. Research on the effects of malnutrition 
on the Developing brains can be categorised into two types: 
studies that focus on clinical and physical brain growth and 
maturation and studies that focus on the development of "brain 
function," which includes neurological, psychomotor, and intel-
lectual development [164].

Junk Foods Effects on the Brain

It is believed that the modern diet's food choices have a sub-
stantial environmental impact on teenage neurodevelopment. 
Young people are especially drawn to "junk foods'' because 
they are affordable, nutrient-deficient, and energy-dense. Ado-
lescence is a pivotal phase when exposure to psychostimulants, 
cannabinoids, and high-fat or high-sugar diets can have pro-
nounced and long-lasting negative impacts on cognition, be-
haviour, and learning, according to a growing body of research. 
Diets heavy in fat and sugar, in particular, quickly interfere with 
cognitive functions involving the hippocampus. Studies con-
ducted on humans also show a link between worse cognitive 
abilities in the adolescent population and consumption of un-
healthy diets, particularly those high in dietary fat [152].

A Western Diet (WD) Is linked to decreased cognitive func-
tion across the lifespan [183]. Recent research has revealed 
that American adults consume more saturated fats and added 
sugars than the 5-10% range advised by the US Departments of 
Agriculture and Health and Human Services. American adults 
consume about 12% of their daily energy intake from saturated 
fats and 13% from added sugars. However, it has been discov-
ered that eating a high-fat diet has a deleterious impact on hu-
man memory performance, notably in the hippocampus [175].

Objectives

1.	 To boost up memory through diet

2.	 Nutrients for the development of the brain

3.	 Foods that adversely affect normal brain function

Review of Literature

Nutrition and Brain Development

One of the significant factors that influence brain develop-
ment is nutrition [62]. Nutrition is especially important during 
pregnancy and infancy [143], and plays an essential function in 
assisting the anatomical and functional evolution of the human 
brain and cognitive system from conception through early child-
hood and into old age [113,180,185]. The most crucial time for 
brain development is generally acknowledged to be the first 
1,000 days of life, from conception to age two [49] (McCann 
et al., 2020). To ensure proper neurodevelopment and lifelong 
brain function, it is important to have an adequate supply of 
nutrients during this period [45]. Nutrition influences develop-
ment of the brain after birth and during the prenatal period as 
well [49]. In adults, the brain makes up 25% of body weight and 
consumes 20% of total energy intake; in children, it makes up 
5-10% of body weight and controls 50% of metabolic rate [170].

A healthy diet Is essential for normal brain development, 
optimising brain function and preventing cognitive decline 
[143,148]. Cognitive function refers to a range of brain func-
tions and processes, such as receiving external information, 
internally processing it, and responding with a behaviour [12]. 
The Central Nervous System's (CNS) growth and development 
require proper nutrition [29]. Childhood emotional and behav-
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ioural dysregulation is linked to dietary restriction, poor mater-
nal nutrition status, and early diet [103,110].

Cell differentiation, migration, and connection are all tightly 
regulated processes during the development of the brain that 
depend on momentarily overlapping stages. The brain function 
could be impacted by any disruption to this mechanism [29]. 
During development, the human brain is formed in the late pe-
riod of pregnancy and initial postnatal periods [14]. Early in the 
brain's development, neuronal and glial cells separate from pre-
cursor cells and move to take up their final locations. The brain 
over produces neurons and synaptic connections at this period, 
and between the ages of 1 and 2 years, the brain reaches its 
peak synapse creation. Synaptic pruning refers to the removal 
of redundant synapses and cells by microglia [160]. The primary 
immune-competent cells of the CNS, microglia, play a signifi-
cant role in all aspects of brain growth and function [18]. In-
flammation of the nervous system and brain development are 
crucially dependent on microglia [95,160].

The last step Myelin sheaths are formed during the foetal 
brain's development, creating an insulating layer that enables 
quick signal transmission. The CNS's stem cells continue to dif-
ferentiate into neural or glial cells that move into the cerebral 
white or grey matter even beyond adulthood [52].

60% of the body's overall oxygen and calorie usage occurs in 
the neonatal human brain [67]. Around the world, one-third of 
children’s do not develop to their fullest potential by the time 
they are in preschool. Children growing up in Low and Middle-
Income Countries (LMICs) are most at risk, and sub-Saharan 
Africa has one of the highest rates of cognitive deficiency (Mc-
Cann et al., 2020).

Maternal Diet

In the 20th century, research on the role of maternal nutri-
tional factors in offspring development became a crucial area 
of study. An optimal maternal nutrient supply and food choices 
can directly influence fetal neurodevelopment [35]. Maternal 
malnutrition during pregnancy can negatively impact placen-
tation, resulting in changes to placental size. shape, and blood 
flow, which may lessen the fetus's access to nutrition. Later, the 
foetal nutrition status is disturbed, which has dramatic conse-
quences on organogenesis, growth, and programming and has 
been linked to both short and long-term effects on develop-
ment and morbidity [108].

Healthy pregnancy and successful foetal development de-
pend on the food of the mother. Approximately 22 days after 
conception [143], the brain and spinal cord develop from an 
ectoderm region referred as neural plate [181]. Proper nutri-
tion is crucial from the beginning, as vitamins and minerals like 
copper, folic acid, and vitamin A can affect how the neural plate 
and neural tube develop. For particular neurodevelopmental 
processes, a number of nutrients are required. In various parts 
of the brain, each process happens in distinct, overlapping time 
periods. By way of illustration, myelination of the brainstem au-
ditory circuit begins from week 26 of pregnancy and lasts for 
at least a year after birth. Fatty acids such as docosahexaenoic 
acid (DHA, C22:6 n-3) are necessary for myelination. [143]. Hu-
man studies suggest that prenatal inflammation and low con-
sumption of n-3 Polyunsaturated Fatty Acids (PUFAs) can have a 
negative impact on neurodevelopment, leading to long-lasting 
consequences on behaviour [95].

As the fetal brain grows quickly, the structure and function-

ing of the developing brain might be impacted by low mater-
nal consumption of essential nutrients during pregnancy [113]. 
Malnutrition in mothers can alter the brain development of 
the embryo, leading to changes in developmental tendencies 
that may impact leaming, memory, and social-emotional proc-
esses. Deficiencies that occur in the postnatal period can persist 
throughout adulthood, and may increase the possibility of de-
veloping schizophrenia, personality problems, and other psychi-
atric illnesses including depression [29.

Nutrients for Brain Function

All nutrients are important for all cells to function [41]. How-
ever, certain nutrients are essential for the anatomical and 
functional growth and development of the brain, and they are 
especially crucial for the metabolism of fat, protein, and carbo-
hydrates for energy. Iodine, zinc, copper, choline, iron, folate, 
iodine vitamin A, D, B6, B12, and Long-Chain Polyunsaturated 
Fatty Acids (LC-PUFAs) are additional nutrients with significant 
impacts on brain morphology and neurotransmitter function 
[67,155,192]. Micronutrients are essential dietary components 
[166] that make up the CNS structure and play major functional 
roles [71]. Lifelong impairments in brain function may result 
from failing to provide these essential nutrients throughout the 
crucial time of brain development [192].

The nutrients have an impact on the metabolic rate, which 
has an impact on the electrophysiologic potential of neurons. A 
healthy mitochondrion must produce sufficient amounts of ATP 
in order for neurons to generate their electrical potential, which 
is a highly energy-intensive activity. In order to maintain glyco-
lytic and oxidative metabolism, the developing brain is highly 
dependent on certain nutrients [67].

I.	 Carbohydrates

Despite the adult brain accounting for only 2% of body 
weight, it requires a significantly higher amount of energy. 20-
23% of the body's overall energy needs, mostly in the form of 
glucose, are met through this action [39]. The brain mostly uses 
glucose as fuel, the brain also has an alternative fuel for occa-
sions when glucose supply is inadequate, such as extended fast-
ing, starvation, intense exercise, nutritional ketosis, or malnutri-
tion [39,69]. In that it specifically requires ketones (also known 
as ketone bodies) [39]. Ketones are an important substitute fuel 
for glucose for the brain during fasting intervals and extended 
exercise. Due to their increased oxidative efficiency and com-
petition with pyruvate for entry into the citric acid cycle dur-
ing fasting or calorie restriction, plasma ketones (acetoacetate 
[AcAc] and -hydroxybutyrate [BHB]) rise and reduce the need 
for brain glucose [186].

The principal glucose catabolic pathways, which are crucial 
for neurons, are likely mostly divided between astrocytes and 
neurons. The most prevalent glial cells in the brain, astrocytes, 
carry out a variety of tasks in the Central Nervous System (CNS), 
including synaptic transmission and synaptogenesis as well as 
energy storage in the form of glycogen. According to recent 
research, astrocytic lactate transporters cause molecular al-
terations important for memory formation and intraneuronal 
lactate import is required for long-term memory and glycog-
enolysis [83].

In addition, there is growing evidence linking the amount of 
carbohydrates in breast milk to a baby's neurodevelopment. 
Breast milk carbs have an impact on neurodevelopmental re-
sults in addition to somatic growth outcomes [16]. The milk 
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from a mother is examined to be the ideal resource for infant 
nutrition [111]. Infant somatic development and breast milk 
fructose were positively correlated [16]. Carbohydrates, partic-
ularly oligosaccharides, are a crucial component in breast milk 
that aid in the development of the brain. Mature human milk 
has a carbohydrate content of about 7% [17]. Cereals have been 
important source of carbohydrates [89].

II.	 Protein

Protein intake was positively associated with cognitive func-
tion [100]. Neonatal protein consumption is necessary for the 
proper development of lean body tissue, and particularly the 
brain [162]. During pregnancy, an inadequate protein intake is 
linked to changes in the brain's oxidative state and neurotrans-
mitters. As a result, psychosocial issues start in childhood and 
persist throughout maturity [164].

Neurotrophins are important for brain function in humans 
[115]. Small proteins called neurotrophins, which are found 
in the brain and other tissues, control a number of crucial el-
ements of neuronal function, such as neurogenesis, synaptic 
plasticity, and neuroprotection, as well as programmed cell 
death [130]. Along with neurotrophins, neuropeptides such as 
neuropeptide Y are crucial for various pregnancy processes and 
foetal brain development [158].

The activity of the brain's satiety centers has been found to 
be influenced by high protein diets [70,196]. It has been dem-
onstrated that a high protein diet affects the function of the 
brain's satiety centers. Gastric hormones like cholecystokinin 
and the vagal nerve may interact to send protein signals to the 
brain [43]. Legumes are nutrient-rich source of protein [118]. 
Protein is largely obtained from milk and dairy products like 
cheese and yoghurt [196]. For adults, 0.8 g/kg BW of protein is 
the Recommended Daily Intake (RDI) [98].

III.	 Omega-3 fatty acids

The brain has a distinctive and incredibly complex lipid make-
up [109]. The brain's most prevalent fatty acids, Long Chain 
Polyunsaturated Fatty Acids (LC-PUFAs), are crucial for the for-
mation and growth of the brain [134]. A lipid-based structural 
component makes up 50-60% of the brain, of which 35% and 
30% are omega-3 (PUFAs) [5,14,50]. During development, the 
buildup of PUFA in the brain is essential [5].

The brain contains a high concentration of the fatty acids do-
cosahexaenoic acid (DHA; n-3 PUFA) and Arachidonic Acid (AA; 
omega (n)-6 PUFA), which together account for nearly 90% of 
the brain's PUFAs [109]. DHA, is one of the most studied LCPUFA 
[34], which is accumulated during the brain growth spurt begin-
ning in the second half of pregnancy, especially in the first two 
years of life, which are crucial for the development of the cen-
tral nervous system and other functional organs [96,160,186]. 
DHA is crucial for brain homeostasis during fetal development 
[74]. DHA has been reported to affect cognitive functions such 
as working memory, mental agility, information processing rate 
and motor neuronal preservation, and protection against neu-
rodegeneration [50].

DHA, although being a highly unsaturated fatty acid, can act 
as an antioxidant in a brain that is prone to oxidation. Detoxify-
ing enzymes support DHA's antioxidant defence in brain cells 
[15]. Parkinson's Disease (PD) and Alzheimer's Disease (AD), 
among other neurodegenerative diseases, were protected 
against by DHA [74]. Omega-3 (EPA and DHA), have attracted 

great attention for their ability to prevent cognitive decline as a 
result of the anti-inflammatory and anti- amyloidogenic proper-
ties of PUFAs [31]. The physiology of the brain is significantly 
influenced by omega-6 and omega-3 Polyunsaturated Fatty Ac-
ids (PUFA) [19]. The balance of n-6/n-3 PUFAs during prenatal 
development has an impact on the hippocampus by influenc-
ing neurogenesis. The structure of the adult hippocampus may 
also be affected by the balance of n-6/n-3 PUFA throughout 
adulthood [156]. Due to the body's inability to synthesize ei-
ther n-6 or n-3 PUFA endogenously, both are considered es-
sential fatty acids that must be obtained through diet [109,197] 
while Long-Chain (LC) PUFAs, EPA, and DHA can be synthesized 
endogenously from their precursor 3 or 06 PUFA or obtained 
through direct dietary consumption or supplementation [197]. 
Both n-3 and n-6 PUFAs begin to be incorporated into the brain 
during pregnancy, a process known as "accretion." In humans, 
DHA accretion starts at the beginning of the third trimester of 
pregnancy and continues throughout this trimester [109,150].

While pregnant women are advised to consume enough 
n-3 fatty acids. By activating PPAR-Y, increased n-3 LCPUFA 
consumption during pregnancy and lactation promotes the de-
velopment of the developing brain [15]. The prefrontal cortex, 
hippocampus, amygdala, anterior cingulate, and temporal cor-
tex are among the brain regions frequently linked to mood and 
psychotic disorders, and recent evidence from human neuroim-
aging studies suggests that decreased omega-3 PUFA intake is 
linked to faster grey matter atrophy in healthy. middle-aged, 
and elderly adults [114]. A higher intake of omega-3 PUFA might 
be linked to a decrease in AD risk [74].

Diet rich in PUFAs from the omega-6 and omega-3 families 
are considered crucial for brain development and have been 
linked to improve memory [109,126]. While ingestion of poly-
unsaturated fatty acids (DHA) has positive effects in their pre-
vention, high saturated fat intake has been linked to cognitive 
decline [155].

High concentrations of Omega-3 fatty acids can be found in 
marine life and plant-based foods like grains and seeds. Plant 
seeds and grains which are rich in omega-3 fatty acids are found 
in the form of alpha-linolenic acid (ALA,C18:3 n-3), which is 
transformed into Eicosapentaenoic Acid (EPA) and DHA by a set 
of particular enzymes. Fish types contain EPA and DHA directly. 
whereas they can be found in grains and seeds in an indirect 
manner [86]. Human milk is a common and natural source of 
LCPUFA and DHA [34]. The ALA, is also present in addition to 
soybean and canola oil, in flaxseed oil and walnuts, and the EPA 
and DHA are found in seafood [58]. Preferable neurocognitive 
development of the offspring is linked to the ingestion of com-
mercially available fish during pregnancy [27].

A normal Western diet has an increased 20-30:1 n-6 to n-3 
PUFA ratio [5]. N-3 LCPUFAs, which comprise DHA and EPA, are 
mostly obtained from oily fish [90,180]. Previous research have 
suggested that eating fatty fish and its component n-3 fatty 
acids improves brain health and neurocognitive development 
[90]. Less than 20% of the world's population is thought to in-
gest more than 250 mg/day of seafood-origin n-3 LCPUFA, ac-
cording to research on the global intake of these fats [187]. The 
recommended amount of omega-3 fatty acid consumption is 
0.6-1.2% of total calorie intake [184]. For the processing of LLC-
n3-Fatty acids, astrocytes in the brain are a key location [77].

After weaning, n-3 PUFA supplementation cannot repair the 
negative effects of PUFA deficit that occur during pregnancy and 
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breastfeeding on the brain neurogenesis and apoptosis of the 
adult offspring [57]. Lack of N-3 PUFAs disrupts neurotransmis-
sion, neuritogenesis, and synaptic fine-tuning, resulting in a va-
riety of neurobehavioral disorders [95]. Numerous studies show 
that elderly people's brain health and cognition are improved 
by LC-n3-FA ingestion through fish or fish oil supplements [77].

IV.	 Vitamin A

Fat-soluble vitamin A is a necessary nutrient that is fat-sol-
uble and can be obtained from both plant- and animal-based 
sources [133]. The mother needs vitamin A and the compounds 
that are derived from it during pregnancy for the maintenance 
of the placenta, and the embryo needs it for the formation and 
development of many different organs, including the heart, eye, 
kidney, lung, limbs, spinal cord, and brain. Vitamin A is stored 
in the placenta and is released to the developing foetus during 
pregnancy. This storing process helps ensure that retinoids are 
adequately delivered to protect the developing fetus in situa-
tions where mothers don't consume enough [20].

The hippocampus, which is important for learning and mem-
ory, as well as the hypothalamus. which is important for main-
taining the body's internal physiological equilibrium, all depend 
on vitamin A [171], It is well-known that both vitamin A defi-
ciency and excess during prenatal and postnatal life can lead to 
birth defects, also known as teratogenic effects [201]. Vitamin A 
deficiency can negatively impact the hypothalamus, which may 
result in a decreased appetite and growth [171].

Vitamin A cannot be synthesised by the body, it must be con-
sumed through diet [126]. Functional Vitamin A concentrations 
are highest in liver and fish oils [146]. The liver has around 90% 
of vitamin A [201]. Glandular meat, red palm oil, milk, egg yolk, 
carrots, tomatoes, apricots, green vegetables, fortified proc-
essed food that may include cereals, condiments and fats are 
all rich in Vitamin A [54,149]. Breast milk is one of the primary 
sources of vitamin A for infants [54].

V.	 Zinc

Zinc (Zn) is a crucial trace element that is crucial for brain 
health, development and synaptic plasticity [141,177]. The hip-
pocampus, cerebral cortex, thalamus, and olfactory cortex have 
the largest concentrations of it, along with the amygdala and 
cerebral cortex [92]. Offspring may experience impaired brain 
performance caused by a lack of zinc during development, 
which can result in modified behavior, cognitive and motor per-
formance, attentive symptoms, such as depression, and altered 
child psychomotor development [99]. Both excess and defi-
ciency is associated with cognitive decline. Approximately 150 
µmol/L is the average concentration of zinc ions [174].

A crucial step in the CNS's growth is neurogenesis [92]. Zinc's 
importance for neurogenesis in the adult brain has wide-rang-
ing effects on how the hippocampal region functions in terms 
of memory and learning as well as emotion and mood regu-
lation. Zinc supplementation (15 or 30 mg/day) was tested in 
387 healthy individuals between the ages of 55 and 87 in a 
study on the relationship between zinc and cognitive function 
in adults. Each zinc dose taken over a three-month period, the 
study found, improved spatial working memory. One of the few 
studies on the relationship between zinc and cognitive function 
in adults looked at the effects of zinc supplementation (15 or 
30 mg/day) in 387 healthy individuals aged 55 to 87 years and 
found that each dose had a beneficial impact on spatial working 
memory over the course of three months [177].

A lack of zinc is linked to a number of different mental ill-
nesses. Inadequate levels of zinc affect behaviour, mental 
health, and brain development since it is essential for neuronal 
impulses. A number of diseases, including Alzheimer's, Parkin-
son's, and mood disorders, have been associated to changes in 
brain zinc levels [151]. There is a higher risk of zinc insufficiency 
throughout pregnancy and older infancy [112].

To achieve nutritional demands for zinc, which cannot be 
stored by the body, one must consume it frequently [25]. Di-
etary Reference Intakes (DRIs), developed by the Food and Nu-
trition Board (FNB) at the Institute of Medicine of the National 
Academies, suggest a daily consumption of 8 mg of zinc for 
women and 11 mg for men. These values can be increased dur-
ing pregnancy. The vast majority of Zinc intake comes from food 
[195]. The highest amounts of zinc were found in oyster, for-
tified breakfast cereals, beef meat, pumpkin and squash seed 
kernels [61,195].

VI.	 Choline

Choline is one of the vital nutrients necessary for normal 
brain development and may be the first step in the pathogen-
esis of the psychotic spectrum [45,65,66]. Choline is recognised 
to aid in the growth of the brain [81]. Acetylcholine, the neuro-
transmitter choline, cell membrane integrity, methyl-group me-
tabolism (homocysteine reduction), the transmission of brain 
impulses, and lipid transport (lipoproteins) are all significant 
functions of choline [81,55]. Choline also contributes in sensory 
processing, memory, learning, and neurocognition [81,131]. 
During pregnancy, it's critical to consume enough choline since 
it helps with brain growth [81].

Choline deficiency can cause irreversible impairments. Life-
long deficiencies in brain function may occur if choline is not 
provided during the first 1000 days of life [45]. It has been dem-
onstrated that low maternal choline intakes during pregnancy 
increase the incidence of neural tube abnormalities, a cleft pal-
ate and suboptimal brain development among the fetus and in 
infants [192,193].

Normally, choline is ingested into the body through food 
[81]. The best sources of choline are liver, wheat germ, milk, 
eggs, meat, fish, poultry, and dairy products. Choline is also 
present in some plant foods, such as cruciferous vegetables 
and some legumes [55,131,192]. Eggs, on the other hand, are 
a more concentrated source of choline. For pregnant women, 
450 mg/day of choline is considered a sufficient dose [13,72], 
550 mg per day for nursing mothers [72,131] 550 mg per day for 
men and 425 mg per day for women [189]. Animal studies have 
suggested that providing choline supplements during pregnan-
cy can lead to better cognitive outcomes in offspring [78].

VII.	 Selenium

The trace element selenium (Se) is a vital micronutrient that 
controls growth, development, and differentiation [4]. Sele-
nium seems to have greater effects on brain development in 
comparison to other microelements [122]. According to the 
available evidence, Se may be important throughout crucial 
stages of brain development [4]. Its influence is mediated pri-
marily through selenoproteins [140]. To create selenoproteins, 
se is co-translationally integrated into the polypeptide chain as 
a component of the amino acid selenocysteine. There are 25 
selenoproteins that have been identified, and they are crucial 
for brain function [4].
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Neurodevelopment and maternal selenium levels have been 
linked in similar ways [188]. Thus, in connection to prenatal Se 
levels, impacts on a child's cognitive development have been 
identified that are favourable, negative, and null (Amoros et al., 
2018). In the first two years of life, these levels were favour-
ably correlated with a child's psychomotor development [141]. 
Age-related cognitive decline, decreased coordination, motor 
speed, and muscle strength was all linked to low Se levels in 
humans [200].

Exposure to this element mainly occurs through diet, partic-
ularly through seafood and fish and through meat, cereals and 
eggs [188,190] whereas the selenium level in plant-based diets 
varies depending on the region of cultivation [188]. Se is also 
present in breast milk (Amoros et al., 2018). During pregnancy, 
the requirement for selenium increases. General recommenda-
tion of selenium for pregnant women is 60 µg/d [168]. The daily 
selenium allowance for newborns up to four months old is 10 
µg (0.13 µmol), while 15 g (0.19 mol) of recommended intake is 
for infants between the ages of 4 and 12 [188].

VIII.	 B Vitamins

Vitamins of the B group are water-soluble vitamins with 
many positive effects on the nervous system [106]. B vitamins 
being necessary for every facet of brain function [85]. The B vi-
tamins B6, folate (B9), and B12 have drawn the most attention 
in studies examining their effects on brain development [148]. 
B6, B9, and B12, affect both the peripheral and central nerv-
ous systems' functionality by improving neurological conditions 
and maintaining a healthy nervous system, even when a defi-
ciency is not determined [81]. The Consortium to Establish a 
Registry for Alzheimer's Disease (CERAD) word acquisition and 
recall modules were used to examine the relationship between 
dietary intakes of vitamins B6, B9, and B12 and cognitive func-
tion in the elderly [199].

Folate, also known as Vitamin B9 [191] has special impor-
tance in pregnancy [191]. Pregnant women should consume at 
least 400 µg (mcg) folic acid [23], preferably a month before 
conceiving [108]. Folate is naturally found in many food sources 
[191]. Leafy greens, seeds, fortified cereals, and folic acid sup-
plements are all natural sources of dietary folate [63]. Recent 
work promote the consumption of folate-abundant plants 
along with the addition of foods high in folate, including bread 
and eggs. Meanwhile, animal liver is a plentiful natural supply 
of folate but is frequently disregarded [42].

Vitamin B6 (Thiamine) can be consumed in its purest form 
through fish, liver, pork, fortified cereals, eggs, nuts, oats, or-
anges, dried beans, yeast, powdered milk, potatoes, dark leafy 
greens, and chickpeas [63,177]. The main dietary source of 
vitamin B12 is found in foods including meat, milk, eggs, fish, 
and shellfish that are sourced from animals [194]. Liver in par-
ticular is a very rich source of Vitamin B12, followed by kidney 
and heart [169]. Compared to non-vegetarians, vegetarians are 
more susceptible to vitamin B12 insufficiency [194].

Numerous mental illnesses have been connected to vitamin 
B deficiency [52] like Parkinson's and Alzheimer's disease [106]. 
In later life, vitamin B insufficiency and elevated total plasma ho-
mocysteine levels have been related to poor cognitive function, 
cognitive decline, and dementia [60,93]. In both the cognitive-
domain and global cognition trials, allocating to B vitamins was 
linked to a 28.4% and 26.1% decrease in homocysteine plasma 
concentrations [32]. Evidence shows that vitamin B supplemen-

tation may lowers the homocysteine level that reduce cognitive 
decline [204]. To prevent neural tube closure problems, which 
affect about 50% of the population, and to further benefit chil-
dren's neurodevelopment, folic acid supplementation has been 
frequently recommended to expectant mothers [131,147].

Studies have shown that a lack of folate is associated with 
changes in offspring' neurodevelopment, include changes in 
neurogenesis and neuronal death, changed cortica thickness 
and cerebral white matter, and decreased overall brain volume. 
These modifications have been associated with alterations in 
brain activity in children, including memory, mo function, lin-
guistic abilities, and psychological problems [191].

In particular, the metabolism and transport of glucose are 
sensitive to the brain. The function of pancreatic beta cells, glu-
coneogenesis (and lipogenesis), insulin receptor transcription, 
and hepatic glucose uptake are all significantly regulated by bi-
otin (vitamin B7) [85].

IX.	 Vitamin D

During the past decades, numerous studies that demon-
strate the relationship between vitamin D and brain health as 
well as the effects of vitamin D insufficiency on the brain have 
been reviewed [7]. The nervous system's health and disease are 
affected by vitamin D and its metabolites in a variety of ways 
[44]. During foetal development, growth, and senescence, vi-
tamin D may be essential for improving neurocognition; but, 
in maturity, it may have little (or no) effect [8]. Vitamin D may 
influence particular neurotransmitters and cortical function 
[37]. Vitamin D has crucial roles in the brain's calcium signalling, 
proliferation and differentiation, as well as neurotrophic and 
neuroprotective activities. It may also change synaptic plasticity 
and neurotransmission [73].

Vitamin D can impact the brain through different mecha-
nisms, such as regulating neurotrophic growth factors, influenc-
ing inflammation, and thrombosis [127]. Numerous research 
has examined the associations between maternal Vitamin D 
(VD) insufficiency and the brain health of offspring. The placen-
ta allows vitamin D to pass from the mother to the foetus. thus, 
the mother is the sole source of vitamin D substrate for her 
developing child. Studies have suggested that low maternal VD 
levels could affect neuronal development and lead to the begin-
ning of mental disorders like schizophrenia and autism [138].

It has been shown that vitamin D status affect brain cell dif-
ferentiation. Numerous clinical brain conditions are connected 
to vitamin D levels (Eyles, 2020). Dementia, Alzheimer's disease, 
and Parkinson's disease have all been associated with low vita-
min D levels [36]. However, the causality of the association be-
tween VD and dementia has not been confirmed [127]. Interest-
ingly, some studies have shown that VD deficiency is linked to 
reduced hippocampus volumes, which is a brain region that has 
a crucial role in memory and learning [36]. Worldwide, there 
is a high prevalence of vitamin D insufficiency [73]. Numerous 
studies have found a connection between adult vitamin D insuf-
ficiency and some neurodegenerative diseases [38].

By exposing skin to sunlight, vitamin D can be produced in-
ternally in the body [65,120] and from foods and supplements 
that include the vitamins D2 and D3 ergocalciferol and chole-
calciferol, respectively [120]. The primary nutritional source of 
vitamin D2 is mushrooms (Janousek et al., 2022), along with 
fatty fish and eggs, whereas most of vitamin D3 is synthesised 
within the body [10]. Natural dietary sources of vitamin D3 is 
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also present in small amounts in the diet of animal origin and 
include fatty fish, egg yolks, liver oils, dairy products, and sup-
plements [12] (Janousek et al., 2022). In humans, most vitamin 
D is acquired by vitamin D3 production in the skin [107]. Vita-
min D supplements is readily available and affordable [73] and 
should be integrated into the care management of older adults 
with cognitive disorders [8].

X.	 Copper

Trace elements such as copper (required in amounts 1 to 100 
mg/day by adults) are essential micronutrients [206], for brain 
health [3]. However, it may be hazardous when administered 
in excess [91]. Astrocytes are regarded as crucial controllers of 
copper homeostasis in the brain. Menkes disease, Wilson's dis-
ease, and Alzheimer's disease are just a few of the conditions 
that have been linked to impaired homeostatic systems of cop-
per metabolism in humans [6,161].

Several biological activities require copper, including control-
ling intracellular signal transduction, balancing catecholamine 
levels, promoting neuronal myelination, and facilitating effi-
cient synaptic transmission in the central nervous system [6]. 
Milk, is a dietary source of copper [144]. Food and water are the 
main sources of copper intake [198]. Sources of copper include 
dietary categories such nuts and offal, and to a lesser extent 
grains and fruit [21].

XI.	 Lutein and zeaxanthin

Zeaxanthin and lutein operate widely in several brain areas 
[47]. The carotenoids lutein and zeaxanthin (L+Z) build up in 
neural tissue and may have positive effects on cognition [26]. 
Lutein intake is associated with positive outcomes in brain 
health [121]. Lutein is particularly distributed in gray matter, 
and has been identified in the prefrontal cortex, the temporal 
cortex, and the hippocampus. Of particular concern, lutein lev-
els have been associated with memory and general intelligence 
[202].

L and Z have been suggested to benefit cognitive function 
and neural outcomes in older adults through dietary intake 
[119]. For instance, consuming a diet high in carotenoids in late 
middle age was linked to higher executive functioning, working 
memory, verbal fluency, and episodic memory 13 years later. By 
improving cell membrane fluidity, permeability, stability, thick-
ness, and ion exchange, L and Z may also have good impacts 
on neurocognitive performance [101]. L and Z in neural tissue 
can have various biological effects, such as antioxidation, anti-
inflammation, and structural actions [82].

Since L and Z cannot be synthesised in the body, they must 
be obtained from diet, specifically through green vegetables, 
coloured fruits, and other dietary sources [101]. 1-3 mg/day of 
L. and Z are often found in a typical US diet. In addition to egg 
yolks, common sources of these carotenoids include green leafy 
vegetables including kale, spinach, broccoli, peas, and lettuce. 
Einkorn, Khorasan, and durum wheat, maize, and their food 
items also contain them in rather large concentrations. The ra-
tio of L to Z in green vegetables has been observed to range 
between 12 and 63, with kale having the highest value, while 
this ratio ranges between 0.1 and 1.4 in yellow-orange fruits 
and vegetables [1].

Relationship between Healthy and Unhealthy Foods and 
Brain

Walnut diet can enhance memory and cognitive level [2], 

Consuming walnuts in your diet might reduce oxidative stress 
by lowering the production of free radicals and improving anti-
oxidant defence, which will limit oxidative damage to lipids and 
protein [28]. Walnut extracts could decrease Amyloid-ß fibrilla-
tion and aggregation, indicating their positive impact on mem-
ory and cognition [2].

English walnuts are abundant in Linoleic Acid (LA), Alpha 
Linolenic Acid (ALA), polyphenolics, phytosterols, and micro-
nutrients [2,142] which, regardless of age, have been found to 
enhance brain health and function. In addition to 4.4 g of satu-
rated (palmitic acid, 16:0) and 8.7 g of monounsaturated (oleic 
acid, 18:1n-9) fatty acids, each 100 g of walnuts (Juglans regia) 
contains 38 g of LA and 9 g of ALA [142].

The findings suggested that eating more 'healthy' foods such 
fruit, vegetables, seafood, and whole grains was associated 
with a lower risk of depression [79]. Healthy eating habits have 
been demonstrated to be inversely associated to the likelihood 
of, or risk for, depression in recent systematic studies looking at 
the connection between nutrition and common mental diseas-
es. Such diets emphasize eating fruit, vegetables, whole grains, 
nuts, seeds, and seafood while limiting the intake of processed 
foods. On the other hand, it has been demonstrated that un-
healthy diets high in processed, high-fat, high-sugar meals dur-
ing adolescence and adulthood are positively connected with 
the prevalent mental disorders, sadness, and anxiety [110].

The benefits of caffeine for the brain are numerous. Only 
those who are sensitive to caffeine may experience sleep dis-
ruption. Caffeine is not dangerous whether used in doses of 200 
mg in a single sitting (equivalent to about 2½ cups of coffee) or 
400 mg per day (equivalent to about 5 cups of coffee). Long-
term coffee use has been associated with reducing the risk of 
stroke, Parkinson's disease, and Alzheimer's disease as well as 
preventing cognitive decline [128].

High nutrient intake can have negative impacts on cognition 
through promoting atherosclerosis, hypertension, and poor gly-
cemic management [184]. A considerable and long-lasting ef-
fect on cognition can be produced by calorie intake and diet 
composition. There is evidence that certain dietary elements 
may reduce the incidence of age-related cognitive decline and 
AD, such as antioxidant or vitamin foods, fish, and dietary fats 
[24].

The research suggests that eating a balanced diet that priori-
tises consuming fish, fruits, vegetables, nuts, and seeds while 
limiting the consumption of added sugars will significantly slow 
and reduce cognitive decline [184]. Diets with a low glycemic in-
dex have been shown to improve cognition, memory, and func-
tional capacity, whereas diets high in simple sugars have been 
connected to attention and concentration problems. The manu-
facture of neurotransmitters, especially serotonin and catecho-
lamines, requires a steady supply of amino acids in the brain. 
Reduced memory, thinking, and learning have been linked to 
low serotonin levels (RM et al., 2018). Low serotonin levels and 
impaired brain function are both likely to be linked to excessive 
sugar consumption [135].

Choline, iron, iodine, vitamins B1, B6, B12, D, and folic acid 
have been shown to enhance cognitive function and have neu-
roprotective benefits. Antioxidants like vitamins C, E, and A. 
zinc, selenium, lutein, and zeaxanthin are essential for prevent-
ing the oxidative stress that is associated with cognitive decline 
and for enhancing cognition. However, the current trend of 
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consuming diets that are low in fruits, vegetables, and water 
and heavy in refined sugars, saturated fats, and sodium may be 
detrimental to cognitive function (RM et al., 2018). Toxic trace 
elements, such as lead, methylmercury, arsenic and manganese 
have constantly been shown to impair neurodevelopment [88].

Dairy products have been extensively studied and are con-
sidered nutrient-dense and health- promoting, providing nu-
merous health benefits to consumers [76]. While it has been 
suggested that dairy consumption can affect cognition, though, 
evidence to support this claim is limited and inconsistent [129]. 
Several countries dietary guidelines have recommended a serv-
ing of dairy products, at least one, per day. But even in the 
United States, a large number of people do not consume the 
recommended 3 cups of dairy products each day [76].

According to recent research, American adults get 13% of 
their daily energy from added sugars and 12% of their daily en-
ergy from saturated fats, which is much more than the 5-10% 
that the US Departments of Agriculture and Health and Hu-
man Services recommend, Despite this, a high-fat diet has been 
demonstrated to negatively impact hippocampus-dependent 
memory function in humans [175].

In the present review, only a few epidemiological research 
were discussed, regarding the effect of consuming fermented 
foods on brain function [167]. Fermented foods are regarded 
as functional foods due to their potential health benefits [11]. 
Studies suggest that Fermented Papaya Preparation (FPP) has 
antioxidant and free radical scavenging properties. The extract 
of yeast-fermented papaya was discovered to enhance both 
short- and long-term memory. Human studies likewise dem-
onstrated that FPP can enhance memory functions (Kim et al., 
2017). Numerous studies have revealed that consuming soy-
beans that have been fermented such as tempeh does not have 
a detrimental effect on cognitive performance. In fact, high tofu 
consumption, a form of soybean curd, has been linked to re-
duced memory [167].

Malnutrition

One of the main factors that can prevent proper brain de-
velopment is malnutrition [164]. Malnutrition is the result of 
insufficient, excessive, or changed differential percentages of 
calories, macronutrients, or micronutrients. An urgent world-
wide health and socioeconomic burden that is becoming more 
closely associated with neurodevelopmental problems is mal-
nutrition, particularly in the early years of life [33]. Under and 
overnutrition in mothers during pregnancy have been shown to 
negatively affect foetal brain development and child behaviour 
in studies using both human epidemiologic data and animal 
models [51].

Malnutrition manifests in three ways: undernutrition, hid-
den hunger (deficiencies in some micronutrients) and over nu-
trition. An imbalance between dietary demands and nutrient 
intake that results in a cumulative loss of calories, protein, or 
micronutrients is referred to as paediatric malnutrition, also 
known as undernutrition and hidden hunger. Poor growth and 
impaired physical or mental development may be the results 
of such dietary deficiencies [125]. Malnutrition, whether it is 
in the form of a lack of macronutrients or micronutrients, can 
have an immediate effect on brain development and opera-
tion [185]. Nutritional deficiencies can affect the growth of the 
brain, synapse formation, and cell differentiation [164].

Impact of Junk Food on Brain

Fast food is also called Junk food [165]. Young people are 
especially drawn to "junk foods" since they are affordable and 
easily accessible while being high in energy and low in nutri-
ents [152]. Junk foods are rich in calories, salt and fats [9,165]. 
Compressively, the total fat content of junk food can range from 
20.8% to 36% [178]. While quickly raising and lowering insu-
lin levels, junk food is changing the structure and function of 
the human brain [84]. Some examples of junk foods are skated 
snacked foods, candy, pizza, burgers, sandwich, pastries, hot 
dogs, gum, samosa, chocolates, most sugary foods, desserts, 
fried fast food, and fizzy beverages [9,84].

A diet of poorer quality, which excludes items like vegeta-
bles, fruit, and sources of healthy fats like fish, nuts, and veg-
etable oils, and includes processed meals, fast food, refined 
grains, animal fats, and is high in added sugars, can have a nega-
tive effect on mental health (Mechlinska et al., 2022). Regular 
consumption of fast food and junk food may cause nutritional 
deficiency as well as cognitive and aberrant behaviour develop-
ment [84]. Even with small effects, continuous use of junk food 
might increase the symptoms of mental disease [75]. Adoles-
cents consuming high-fat diets, including junk food, may experi-
ence cerebral dysfunction, and whether any changes to brain 
function are irreversible or permanent. Urban adolescents also 
show evidence of depression associated with junk food con-
sumption [178].

Investigations were also done into the combined effects of 
using junk food and drinking energy drinks. High caffeine bever-
ages include energy drinks that are advertised to enhance both 
mental and physical stimulation. Energy drinks mostly consist of 
caffeine and sugar. The most well- known use for caffeine is as 
a CNS stimulant [135] (Vandewoude et al., 2016). This causes 
serotonin and noradrenaline neurons to fire. Energy drinks with 
caffeine may also activate methylxanthine, which may be asso-
ciated to psychological conditions like memory, anxiety, or sleep 
[152].

Currently, the diet is suggested to have a potent influence of 
the environment on adolescent neurodevelopment [152]. Con-
suming junk food during pregnancy can cause structural and 
functional alterations in the brain's reward networks that are 
long-lasting (Muhlhausler et al., 2017). An increasing body of 
research has demonstrated that adolescence is a crucial time 
when exposure to alcohol, psychostimulants, cannabis, and a 
high-fat or high-sugar diet has pronounced and long-lasting 
negative consequences on cognition, behaviour, and learning. 
Especially high sugar and fat content diets rapidly disrupt the 
memory task reliant on the hippocampus. Studies on humans 
also show a link between worse cognitive abilities in adolescent 
populations and consumption of unhealthy diets, particularly 
those that are excessive in dietary fat [152].

Methodology

Multiple databases were consulted in order to find sources 
for this literature review such as Google Scholar, Sci hub and 
PubMed. The articles used for this study possessed the most 
current publication dates, extending back only to 2013. Most of 
the listed references were within the past five years. To develop 
tenets that remain relevant today, this review includes research 
from previous decades conducted by a few researchers. This 
study was based on different keywords including brain, brain 
development, cognitive function, maternal diet, macronutrient, 
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micronutrient, healthy foods, unhealthy foods, caffeine, wal-
nuts, junk foods. All of the search phrases used were carefully 
selected because of their suitability and significance in relation 
to the aim of this literature review. Around 1,000 articles were 
checked for this study, and nearly 185 articles were taken into 
account. Remaining articles were rejected because they were 
disproportionate to this topic. The initial sources were chosen 
by reading the article summaries and assessing whether the 
contents were pertinent to the search terms. The evaluation 
of the resources was based on three factors: the standard of 
the material, the topicality, and the year of publication, which 
ranged from 2013 to the most recent year. In this study differ-
ent macronutrients and micronutrients were discussed which 
are crucial for brain health and development. As well as, dif-
ferent healthy and unhealthy foods were explained. In addition 
maternal diets were also acknowledged which are necessary for 
foetal brain development.

Studies on the Recommendations of nutrients for brain 
Health.

Studies
Key nutrients for 

brain Health
Recommended Dietary  

Allowances (RDA)
Chibbar et al., [30] Carbohydrate 88%
Phillips et al., [139] Protein 0.8g/kg bodyweight

Bowen et al., [22]
Omega 3 fatty 
acids

4g/day

Storz & Ronco [172] Vitamin A
900 /d for men 
700 /d for women

Derbyshire et al., [46] Choline

Non pregnant women: 425 
mg/day 
Pregnant Women: 450 mg/day 
Lactating women: 550 mg/day

Toth & Csapo 2018 Selenium 55 g/day
Fratoni & Brandi 2015 Vitamin B6 1.9 mg day-1
Kennedy et al., 2016 Vitamin B9 200 & 400  g/d
Fratoni & Brandi 2015 Vitamin B12 2.4mcg day-1
Scilly et al., 2023 Vitamin D 10  g
Elajzzar et al., 2023 Copper 900  g/day

Szadkowska et al., 2023 Zinc
4.2 to 14 mg for men 
3 to 12 mg for women

Results and Conclusion

There are a variety of factors that can affect brain devel-
opment and cognitive function including maternal diet and 
the consumption of macro and micronutrients. Optimal brain 
health and the prevention of cognitive decline depend heavily 
on nutrition. Nutrition should be a priority for pregnant women 
and infants. We now know that specific nutrients affect brain 
function and development, Deficiency and excess of certain nu-
trients differently affect cognitive function. Vitamin A is essen-
tial for placental maintenance and foetal brain development. 
The placenta stores vitamin A to protect the developing foetus 
in case of maternal insufficient intake LC-PUFAs, particularly 
DHA is one the most studied that affect cognitive function and 
offer protection against neurodegeneration. Brain can use ke-
tones because it can serve as an alternative fuel source in cer-
tain situations. Adequate protein intake during pregnancy and 
throughout life is crucial for brain health. Neurogenesis in the 
brain depends on the presence of zinc and a small protein that 
is neurotrophins along with neuropeptides play a role in many 
brain functions. Choline deficiency during pregnancy increases 
the risk of neural tube defects. Vitamin B especially B6, B12 and 
B9 have greater importance in brain function and its supple-
mentation reduces cognitive decline. Copper, lutein, zeaxanthin 

are all essential for brain health. Moreover, certain foods like 
walnuts (English walnuts), dairy foods, fish, yeast fermented 
papaya, caffeine and low glycemic index foods can be beneficial 
for the brain, while junk foods, refined sugar and saturated fats 
can be harmful.
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