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Abstract

Background: Pulmonary arterial hypertension is a potentially fatal condition 
with no effective cure. Recent studies have shown that progressively increasing 
pulmonary vascular resistance and irreversible pulmonary vascular remodeling 
are key factors contributing to pulmonary hypertension. Methyltransferase like 
3 (METTL3), a key N6-Methyladenosine (m6A) methyltransferase, it has been 
shown that elevated levels of METTL3 expression is a risk factor for pulmonary 
hypertension, Elevated levels of METTL3 contribute to vascular remodeling in 
the lungs, resulting in increased pulmonary artery pressure and right ventricular 
hypertrophy.

Methods: To obtain a model of pulmonary hypertension, we placed C57BL/6 
male mice in a 500-liter ventilated room with a 10% oxygen concentration for 
four weeks. After mice were placed in a hypoxic incubator for two weeks, they 
were started on intraperitoneal injections of STM2457 once a day for two weeks, 
after which right ventricular pressure was measured using a Miller catheter, right 
ventricular remodeling is determined using hematoxylin-eosin staining, right 
ventricular hypertrophy was assessed using the right ventricular/left ventricular 
+ septum (RV/LV+S) ratio and relative expression of TNF-α, IL-1β, IL-6 protein 
by western blot. The impact of STM2457 on Human Pulmonary Artery Smooth 
Muscle Cells (HPASMCs) under hypoxia was examined by evaluating their 
viability, proliferation, migration and the expression of IL-1β, IL-6, and TNF-α 
proteins.

Results: In mouse models of hypoxic PAH, METTL3 expression was 
significantly increased and pulmonary vascular remodeling. Treatment with 
STM2457 significantly decreased right ventricular pressure and hypertrophy, 
and inhibited molecules associated with the inflammation signaling pathway. 
Additionally, the inhibition of METTL3 by STM2457 attenuated hypoxia-induced 
proliferation and migration of HPASMCs, while further inhibiting molecules 
associated with the inflammation signaling pathway.

Conclusions: Based on the results obtained above, we are confident that 
treatment with STM2457 targeting METTL3 significantly reduces damage in 
PAH model mice and cells.

Keywords: METTL3, STM2457; IL-6; Pulmonary Arterial Hypertension 
(PAH); HPASMCs, Human pulmonary artery smooth muscle cells.

Introduction

Pulmonary Arterial Hypertension (PAH) is a deadly condition with 
a high death rate. It denotes a group of diseases characterized by 
heightened pulmonary vascular resistance caused by remodeling in 
the pre-capillary resistance arterioles [1-5]. Recent studies have found 
that genetic mutations, immune dysfunction and inflammation are 
closely related to the pathogenesis of PAH. NF-κB exerts a regulatory 
role in the inflammatory response of PAH, which can eventually lead to 
the activation of downstream cytokines [6-10]. Inflammatory cytokines 
exacerbate vascular remodeling pathology by promoting apoptosis 
and proliferation of vascular smooth muscle cells [11-13]. In PAH, the 
hyperproliferation and reduced apoptosis of Pulmonary Artery Smooth 
Muscle Cells (PASMC) worsen vascular remodeling [14]. Hence, 
reducing inflammation will be crucial for mitigating the pathogenic 
process of PAH.

N6-Methyladenosine (m6A), which has garnered growing attention 
in recent years, is the most abundant RNA methylation in eukaryotes 
[15,16]. 

Previous research has identified notably higher m6A levels in both 
patients with Idiopathic Pulmonary Arterial Hypertension (IPAH) and 
experimental Pulmonary Hypertension (PH) models, in comparison 
to control lung sections [17]. A methyltransferase complex multimer 
composed of methyltransferase-like enzymes 3 and 14 (METTL3, 
METTL14) catalyzes the formation of m6A [18]. The m6A modification of 
Phosphatase and Tensin homolog (PTEN) is regulated by METTL3 and 
leads to a decrease in the expression of PTEN protein levels, which in 
turn promotes the activation of the PI3K/Akt axis and leads to hypoxia-
induced proliferation of PASMCs [19,20]. Under hypoxic conditions, 
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lowering or inhibiting METTL3 protein expression can inhibit PASMC 
proliferation, thereby attenuating pulmonary vascular remodeling and 
ultimately alleviating pulmonary hypertension [19]. Previous studies 
have shown that in urologic cancers, high expression of METTL3 
positively promotes the activation of NF-κB and SHH-GL1 pathways, 
while negatively inhibiting the PTEN signaling pathway [21]. Taken 
together, it is reasonable to hypothesize that inhibition of METTL3 may 
attenuate PAH by inhibiting the NF-κB signaling pathway.  Therefore, 
this study aimed to determine if inhibiting METTL3 could mitigate 
the effects of hypoxia on pulmonary hemodynamics, inflammatory 
responses, and NF-κB signaling in PAH mouse and cellular models.

Materials and Methods

Drug and Antibodies
The METTL3 inhibitor STM2457 (SJ-MX0125) was obtained from 

Shandong Sparkjade Biotechnology Co., Ltd. Antibodies against 
TNF-α (26162-1-AP), IL-6 (21865-1-AP), GAPDH (23660-1-AP) and 
IL-1b (16806-1-AP) and were from Proteintech Group. 

Cell Culture and Treatment
According to the manufacturer’s instructions, HPASMCs (CP-

H243, Procell) were cultured using the complete medium specifically 
designed for HPASMCs (CM-H243, Procell). Cells were cultured in an 
humidified incubator set at 37oC, 5% CO2 concentration. PASMCs were 
exposed to the METTL3 inhibitor STM2457 (Shandong Sparkjade 
Biotechnology Co., Ltd.) for 24 hours following the manufacturer’s 
protocol. To simulate the hypoxic pathological process of pulmonary 
hypertension in vitro,

Cells were cultured in a hypoxic incubator (HF100 incubator, 
Harmonic Bio-pharmaceuticals Holding Co., Ltd., Shanghai, China) 
with a gas composition of 92% nitrogen, 5% carbon dioxide, and 3% 
oxygen. PASMCs at passages 4-7 were used, and after inoculation into 
6-well plates, they were maintained in the anoxic environment of the 
incubator for 24 hours.

Animals
Male C57BL/6 mice aged 8-12 weeks were used for all animal 

experiments in this study. The Ethics Committee for Laboratory 
Animal Welfare, Institute of Biology, Shandong Academy of Sciences 
approved the study.  Six male C57BL/6 mice were used in each group 
to complete the experiment.

Mouse Models for PAH 
The methodology employed to develop the pulmonary arterial 

hypertension mouse model is based on prior research findings [22,23]. 
We randomly divided C57BL/6 mice into two groups for modeling 
pulmonary hypertension. Mice were maintained in a hypoxic 500-liter 
ventilated chamber containing 10% oxygen concentration for 4 weeks 
[24]. After acclimating for two weeks in a hypoxic environment, the 
treatment group received daily intraperitoneal injections of STM2457 
(50mg/kg) for two consecutive weeks. Control mice were administered 
an equivalent volume of solvent, in which the drug was dissolved, via 
intraperitoneal injection. The animal facility maintained a constant 
temperature of 22°C under a 12-hour light-dark cycle. All mice were 
housed in this controlled environment and provided with standard 
mouse chow and autoclaved water ad libitum.

2.5 Phenotyping of mice with pulmonary arterial hypertension

Following established protocols, we exposed the right jugular vein 
by incising the neck skin of the mice. Subsequently, a 1.4F Millar Mikro-
tip catheter converter was inserted into the right ventricle through the 

exposed jugular vein to measure Right Ventricular Pressure (RVSP) in 
both the experimental and control groups of mice. Using scissors, we 
isolated the Right Ventricle (RV) from the heart of each mouse, leaving 
the Left Ventricle plus septum (LV + Septum). Each part was weighed 
using a precision scale and the measurements were recorded. The 
degree of right ventricular hypertrophy was quantified using the ratio 
RV/(LV + Septum) [25]. Hematoxylin and eosin-stained lung images 
of mice were analyzed using case viewer software. Outer and inner 
diameters of pulmonary vessels were measured, and the medial 
wall thickness was calculated using the formula: vascular media wall 
thickness = (outer diameter - inner diameter) / (2 × outer diameter) [26]. 

Cell Proliferation Assays
5 x 103 PASMCs were inoculated in each well of a 96-well plate, and 

then the different concentrations of STM2457 inhibitor (5 wells were set 
up for each concentration) were treated for 24 hours. Subsequently, 
10 μL of CCK-8 reagent (Beyotime Biotechnology) was added to each 
well, and the mixture was incubated for 1-2 hours. and finally, the 96-
well plate was placed into a Microplate Reader, and the values of the 
proliferation levels of the cells were measured at 450 nm [27,28]. 

Cell Migration
Each well in a 6-well plate was inoculated with 5 x 105 PASMCs cells 

and then incubated for 24 hours at 37�oC with 5% CO2 concentration. 
When the monolayer cells grew to about 90% of the area of each well, 
we used 200 µL pipette tips to make a scratch in each well, at the same 
time, STM2457 inhibitor and solvent were added to incubate for 18 
hours, and finally, the migration distance was recorded by microscope 
and calculated by Image J Software.

Western Blot Analysis
Mouse lung tissues obtained from mice isolated after cervical 

dislocation [29, 30].  The lung tissue and collected PASMCs samples 
were lysed on ice at �4oC by adding Cell lysis buffer for Western and 
IP buffer (P0013, Beyotime) containing PMSF (ST506, Beyotime). 
Cell lysates were centrifuged at 4oC, 12000 rpm for 30 minutes, the 
supernatant was collected, the following precipitate was discarded, 
and then 5× SDS loading buffer was added to the supernatant and 
analyzed by western blotting as in previous studies �[30]. Detailed 
information and sources of antibodies to the proteins of interest in this 
study can be accessed in the Drugs and Antibodies section.

Statistical Analysis
We designed the experiment and completed the statistical analysis 

of the data in accordance with previous studies �[30]. Mean±SE 
represents all quantitative data. Statistical analysis between two 
groups utilized a two-tailed Student’s t-test, while comparisons among 
multiple groups employed one-way ANOVA followed by Tukey’s post 
hoc test for data analysis [50]. We considered p-value less than 0.05 as 
statistically significant. *P < 0.05, **P < 0.01, ***P < 0.001.

Results

As previous studies showed that METTL3 increased in mouse 
PAH models, we wondered whether the pulmonary hypertension 
phenotype could be reversed with STM2457, an inhibitor of METTL3. 
To investigate the therapeutic effect of STM2457 on experimental PAH, 
we maintained mice in a hypoxic environment for four weeks., with 
STM2457 (50mg/kg) administrated daily for the latter 2 weeks. The 
control group mice were treated with the same hypoxia environment, 
and with the same volume of solvent as in the treatment group for 
the latter 2 weeks. Hemodynamic data demonstrated that STM2457 
treatment attenuated the hypoxia-induced elevation of RVSP (Figure 
1A). RVSP was significantly higher in mice exposed to hypoxia 
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compared to those treated with STM2457. Analysis of hypertrophy 
indicated a notable increase in the RV/LV+S ratio in control mice 
(Figure 1B), which was absent in mice treated with STM2457. The 
impact of STM2457 on pulmonary vascular remodeling was initially 
assessed using H&E staining. Figures 2A and 2B illustrate significantly 
thicker pulmonary artery medial walls in hypoxia-exposed PAH 
mice, a condition mitigated by STM2457 treatment. Previous studies 
have found that elevated levels of TNF-α, IL-6 and IL-1β expression 
enhance distal arterial vascular muscularization and promote right 
ventricular hypertrophy. These mechanisms are likely to influence the 
pathogenesis of pulmonary hypertension. As depicted in (Figure 3), 
STM2457 markedly suppressed the hypoxia-induced expression of 

IL-6, IL-1β, and TNF-α in lung tissue. Furthermore, we employed the 
CCK8 assay to assess PASMC viability and investigate the potential 
impact of STM2457 on cell proliferation. However, as shown in Figure 4, 
50 μM to 200μM STM2457 significantly attenuated hypoxia-challenged 
PASMCs viability elevation. We selected 150μM of STM2457 for the 
next experiments. We used the scratch wound assay to detect the effect 
of STM2457 on the hypoxia-induced migration capacity of PASMCs. 
Interestingly, the scratch-wound assay (Figure 5) demonstrated that 
STM2457 dose-dependently inhibited PASMC migration induced by 
hypoxia. Further western blot analysis confirmed that treatment with 
150μΜ STM2457 reversed the up-regulation of IL-6, IL-1β, and TNF-α 
(Figure 6).

Figure 1: STM2457 partially inhibited the right ventricular pressure and 
right ventricular hypertrophy in hypoxia-induced PAH. (A) STM2457 partially 
alleviated the elevated RVSP caused by hypoxia stimulation. (B) STM2457 
partially alleviated the right ventricular hypertrophy (RV/LV+S) caused by 
hypoxia stimulation. ** p <0.01 vs controls.

Figure 2: STM2457 partially reversed vascular remodeling in hypoxia-
induced PAH. (A) Shows representative H&E staining images of lung tissues. 
(B) Presents quantified data on pulmonary artery medial wall thickness index. 
STM2457 significantly attenuated the hypoxia-induced thickening of medial 
walls in muscular pulmonary arteries (** p < 0.01 vs. controls).

Figure 3: Effects of STM2457 on TNF-α, IL-6, IL-1β in the therapeutic 
treatment of hypoxia-induced PAH. (A) Western blotting analysis showed that 
the TNF-α, IL-6, IL-1β induced by hypoxia could be reversed by STM2457 in 
lungs. (B) Quantifications of TNF-α expression in lungs. (C) Quantifications 
of IL-6 expression in lungs. (D) Quantifications of IL-1β expression in lungs. 
** p <0.01 vs controls.

Figure 4: The impact of STM2457 on hypoxia-induced HPASMC proliferation 
was assessed using the CCK-8 assay. The results indicated that STM2457 
dose-dependently inhibited cell proliferation under hypoxic conditions. 
Statistical analysis revealed significance levels as follows: NS (Not 
Significant), * p<0.05 vs controls, ** p <0.01 vs controls, *** p <0.001 vs 
controls.

Figure 5: The effect of STM2457 on hypoxia-induced HPASMC migration 
was evaluated using a scratch assay, demonstrating significant inhibition by 
STM2457. Statistical analysis indicated. *** p <0.001 vs controls.
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Discussion

Pulmonary Arterial Hypertension (PAH) is marked by structural 
changes in the pulmonary vasculature and sustained elevation of 
pulmonary arterial pressure. These conditions contribute to the rapid 
progression of the disease, leading to right heart failure (RHF), and 
ultimately, mortality [31,32]. In this work, we evaluated the effects 
and molecular mechanisms of STM2457 directed against METTL3 in 
PAH models induced by hypoxia. Our findings suggest that hypoxia-
induced PAH mice have typical features of pulmonary hypertension 
such as pulmonary artery remodeling, right ventricular hypertrophy, 
and dysfunction, and STM2457 significantly inhibits the above 
progression. A significant inhibitory effect of STM2457 was found in 
hypoxia-induced PASMCs proliferation in vivo and vitro. Furthermore, 
it was demonstrated that STM2457, restrains the NF-κB signaling 
pathway and inhibits PASMCs proliferation. In conclusion, these 
findings illustrate that STM2457 may alleviate vascular remodeling 
in Pulmonary Arterial Hypertension (PAH) via a novel mechanism. 
Additionally, this study identifies STM2457 as a promising innovative 
target for treating hypoxic PAH.

As the most abundant RNA methylation in eukaryotes, m6A has 
attracted increasing attention and research in recent years [33]. The 
modification of m6A is involved in important physiological responses by 
affecting the processes of mRNA splicing, export, translation and decay. 
The modifications of m6A are not static but dynamically regulated over 
time and in response to environmental changes. Methyltransferases 
(writers), demethylases (erasers), and binding proteins (readers) are 
responsible for catalyzing, removing, and recognizing the modifications 
of m6A, respectively [18,34]. The “writers” are primarily composed 
of METTL3 and METTL14, while the “erasers” include FTO and 
ALKBH5. The “readers” comprise YTHDF1, YTHDF2, and YTHDF3, 
among others. These enzymes work in concert to modulate the 
m6A modification, thereby affecting mRNA metabolism and protein 
expression [15,34]. METTL3, as an m6A methylase has been confirmed 
to participate in the regulation of pulmonary hypertension [19,35,36]. In 
this study, we reported that the METTL3 inhibitor STM2457 partially 
reversed pulmonary vascular remodeling to ameliorate the hypoxia-
induced pulmonary hypertension phenotype in mice.

Prior research has highlighted multiple factors influencing 
pulmonary vascular remodeling in Pulmonary Arterial Hypertension 
(PAH), with a crucial emphasis on the excessive proliferation of 
pulmonary smooth muscle cells [37]. Many studies have shown that 
the pathogenesis of various heart diseases is closely related to the NF-
κB signaling pathway. Inflammation is known to be one of the essential 
features of PAH, and NF-κB and (IL�)-1β have been shown to promote 
an inflammatory response that affects the course of pulmonary 
hypertension in both human PAH and animal models of PAH [38-
40]. Mitani Y et al. demonstrated that pyrrolidine dithiocarbamate 
attenuates the progression of pulmonary hypertension in rats with 
monocrotaline-induced PAH by suppressing the NF-κB signaling 
pathway [40]. Studies have demonstrated that zinc finger protein A20 
mitigates hypoxia-induced pulmonary hypertension by suppressing 
NF-κB signaling pathway activation and the excessive proliferation of 
pulmonary artery smooth muscle cells [41]. NF-kB/TNF-α pathways 
were upregulated after hypoxia induction in important organs of rats, 
such as heart, liver, spleen, lung, kidney, brain and muscle [42]. With 
the prolongation of hypoxia induction in lung tissues, expression levels 
of these relative genes were gradually increased [43,44]. Previous 
experimental investigations [45,46] have indicated the involvement of 
the NF-κB pathway in Reactive Oxygen Species (ROS) production and 
polymorphonuclear neutrophil infiltration during PAH. NF-κB also plays a 
regulatory role in the inflammatory response of PAH, potentially leading 
to the activation of downstream cytokines [47,48]. Cancer-Associated 
Fibroblast (CAF)-produced METTL3-derived IL-18 counteracts Non-
Small Cell Lung Cancer (NSCLC) immunosuppression by driving the 
NF-κB pathway [49]. Elevated expression of METTL3 was confirmed 
in lung tissue of pulmonary hypertension, and depletion of METTL3 
can inhibit the proliferation, invasion, and migration of PASMCs [19,50]. 
Therefore, novel approaches to inhibit NF-κB signaling pathway 
activation and inflammation may hold new promise for the treatment 
of PAH. Interestingly, STM2457 effectively reduces the proliferation 
and migration of PASMCs by inhibiting the NF-κB signaling pathway, 
thereby mitigating vascular remodeling.

Conclusion

In summary, the administration of STM2457 directed at METTL3 
reduced right ventricular pressure, and hypertrophy, remodeling and 
the molecules associated with the inflammation signaling pathway 
associated with PAH. Additionally, our findings demonstrate that 
blocking METTL3 reversed hypoxia-induced proliferation and migration 
of HPASMCs, and suppressed molecules involved in inflammatory 
signaling pathways. This identifies a novel potential target for treating 
pulmonary arterial hypertension.
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