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Abstract

With the intensification of the greenhouse effect and global warming, heat 
stress has become one of the most important factors that affect the profit in 
dairy industry production. In recent years, investigators have performed plenty 
of researches concerning metabolism of dairy cows under the heat stress. This 
article has reviewed the effect of heat stress on metabolism of lipid, carbohydrate, 
protein and energy in dairy cows and described several nutritional strategies 
to alleviate heat stress to reveal the underlying metabolic mechanism during 
heat stress and to provide references for exploring more effective measures to 
alleviate heat stress.
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Studies concerning metabolomics show that HS increased the 
concentrations of acetoacetate, acetone and hydroxybutyric acid in 
blood, which might involve in energy delivery or synthesis of milk 
fat [14,15]. Tian, et al. [15] considered that the reduction of the 
energy intake and negative energy balance might be the adaptive 
performance as the results of the increased concentrations of 
relative metabolites. Compared to their pair fed thermal-neutral 
counterparts, acetoacetate decarboxylase and 3-hydroxybutyric acid 
dehydrogenase concentrations were significantly higher in dairy 
cows under hyperthermia. Simultaneously, cortisol, epinephrine 
and norepinephrine, the indicators reflecting catabolism, increased 
during HS which might stimulate lipid decomposition and adipose 
triglyceride mobilization to meet the body needs via β-oxidation 
to produce new free fatty acids for energy generation [16]. Tian, et 
al. [15] proved that lipid catabolism was strengthened by HS due 
to the increased plasma fatty acid, such as linoleic acid, oleic acid 
and arachidonic acid. In their study, the results of metabolomics 
and lipidomics as well as ELISA assays presented that HS increased 
epinephrine and norepinephrine. Compared with HS-free group, HS 
decreased phosphatidylcholine PC (16:0/14:0), PC (14:1/18:3), PC 
(12:0/22:2), PC (15:1/18:2), PC (20:2/12:0) and PC (18:1/18:3), but 
increased choline, lysoPC (0:0/18:0), lysoPE (18:0), lysoPC (16:0) 
and lysoPC (18:0). It is known that phospholipase A1, A2 and D 
regulated the catabolic metabolites of PC including choline, fatty 
acids and lecithin [17,18]. These findings reflect the alterations in 
lipid metabolism induced by hyperthermia.

Carbohydrate metabolism 
Available evidence supports that HS changes carbohydrate 

metabolism [19]. Sports in high temperature environment promote 
the creation of hepatic glucose, and the consumption of fat heighten 
carbohydrate oxidation. Furthermore, ingestion of carbohydrate 
cannot suppress the decrease of hepatic glucose [20].That is, exogenous 
sugar cannot inhibit the output of hepatic glucose caused by HS [21]. 
Glycogenolysis [19] and gluconeogenesis [22] are the reason for the 
increased output of hepatic glucose. Wheelock, et al. [5] considered 
that HS reduced the milk lactose production by 200~400g daily 
compared with paired feeding HS-free group. The secretion amount 

Introduction
Heat stress (HS), caused by a high ambient temperature, 

impacts animal health and hampers animal production, and thus is 
a significant economic issue in the dairy industry [1,2]. Heat stress 
leads to lower milk production, higher incidence of metabolic diseases 
(such as rumen acidosis), worse milk quality, and lower production 
performance [3-5]. In order to find more effective measures to 
alleviate HS, scientists devote to studying the occurrence and 
physiological mechanism of HS. Studies have shown that the suitable 
environment temperature for adult dairy cows is from 5°C to 25°C. 
Once the ambient temperature is above 25°C or the Temperature 
Humidity Index (THI) is higher than 72, then cows encounter HS and 
milk yield decreases [6]. For the sake of adapting to the environment, 
the metabolism of animals who suffer from HS varies to some extent.

Lipid metabolism 
HS affects lipid metabolism significantly. Available data have 

suggested that the metabolism was changed by HS variously than 
would be anticipated derived from calculated energy balance. 
Compared with the paired HS-free group, HS did not decrease the 
weight of heifer [7], nor did the pregnant cows [8]. Studies reported 
that HS resulted in variations of intrauterine environment, which 
changed fatty acid metabolism of the fetus, and thereby affected 
adipose deposition of their offspring [8]. Ronchi, et al. [7] considered 
that HS reduced feed intake and the concentration of non esterified 
fatty acid (NEFA) in plasma. Baumgard, et al. [9] demonstrated that 
HS retarded the NEFA response in dairy cows that challenged with 
adrenaline. Because blood concentration of ketone reduced while urine 
ketone content remained constant under hyperthermia condition, 
the reduced NEFA was unlikely to derive from the strengthened 
oxidation or the accelerated conversion from NEFA to ketone [2,10]. 
In case of the increased lipoprotein lipase, which possesses the ability 
to uptake and store the triglycerides in the intestine and liver [11], 
animals suffered from HS have special capacity of lipogenesis but 
much blunted ability of lipolysis [2]. That is, the ability of breaking 
down fat in adipose tissue nearly diminished in HS animals, which 
may partly explain the reduction of plasma NEFA [12,13]. 
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of lactose and glucose were often similar [23], but the underlying 
mechanism for the reduced lactose yield is still unclear. However, 
glucose tolerance test showed that cows consumed exogenous 
glucose faster in the HS group [5]. Furthermore, the expression of 
pyruvate carboxylase gene, which regulated the involvement of 
lactate and alanine into gluconeogenic pathway, had been proved to 
be up regulated in the liver of multiple animals during HS [24]. It has 
been presented that plasma lactate concentrations rise when growing 
steers suffer from HS, which maybe originated from skeletal muscle 
secretions [25], illustrating that the aerobic glycolysis in peripheral 
tissues increased, to some extent. Additionally, Monteiro, et al. [8] 
stated that maternal HS altered the metabolism of their offspring 
by reducing starter intake and growth but enhancing the insulin-
independent glucose disposal [26]. 

Metabonomics method was applied to investigate the alterations 
in carbohydrate metabolic pathway by Tian, et al. who found that 
HS reduced blood glucose level, but increased pyruvate and lactate, 
as well as the activity of lactate dehydrogenase [15]. Reinforce of 
glycolysis and anaerobic respiration may be to maintain the body’s 
energy balance during HS [27]. Meanwhile, researchers found that 
HS increased myocardial and muscle oxygen consumption, thereby 
reduced the oxygen supply and ultimately leaded to anaerobic 
fermentation. The changes in metabolic pathways deteriorated the 
negative energy balance that induced by the decrease in dry matter 
intake during HS [5].

Protein metabolism
HS affects protein metabolism by changing the carcass lean tissue 

[28,29]. Numerous investigations have presented that skeletal muscle 
catabolism is strengthened and plasma urea nitrogen content rises 
during HS, implying that HS may induce redistribution of nitrogen 
from protein to urea [5,30]. On the other hand, HS blunts the protein 
synthesis ability of mammary gland by reducing the contents of 
casein [31]. However, Rhoads, et al. [24] suggested that HS did not 
influence milk protein percentage, but reduced milk protein yield due 
to the declined milk yield [32].

Additionally, HS alters amino acid concentrations in the plasma 
of dairy cows [15]. To supply energy, phosphocreatine was mobilized 
in the muscle tissue resulting in the rise of creatine and creatinine 
in HS dairy cows [33,34]. Tian, et al. [15] found the concentrations 
of certain amino acids, such as proline, glycine, threonine, isoleucine 
and arginine, increased in the plasma of HS dairy cows. The 
reinforcement of amino acids mobilization might contribute to the 
enhanced urea in HS animals because the amino acids served as the 
precursors for glucose generation [35]. Simultaneously, HS induced 
the repartitioning of nitrogen from milk protein to milk urea in 
mid-lactation dairy cows [36], which agreed with the mechanism in 
skeletal muscles as mentioned above.

Energy metabolism
Energy metabolism of animal body is closely connected with 

substance metabolism, and the energy derives from carbohydrates, 
lipids and proteins, which release energy via oxidation process. The 
metabolic pathway of the substance varies as energy metabolism 
alters. HS results in reduced dry matter intake and negative energy 
balance, when energy for maintenance and lactation is scanty. It is the 
reduced feed intake that has been considered as the primary reason 

for the decrease in milk yield due to the alterations of hormone levels 
and enzymatic activity involving in anabolism and catabolism of 
nutrients [37-42]. However, recent results obtained by Wheelock, 
et al. demonstrated that only part of the decrease in milk yield was 
attributed to the reduced nutrient intake caused by HS [43]. Previous 
literatures have shown that hyperthermia directly changes the 
nutrient partitioning which is energy intake-independent [5].

Carbohydrates are the main source of energy for dairy cows, which 
are mainly absorbed and utilized in two forms. Firstly, carbohydrates 
are fermented to produce volatile fatty acids in the rumen which are 
utilized after entry to the liver. On the other hand, carbohydrates are 
absorbed and applied as glucose in the small intestine. Abeni, et al. [44] 
reported that plasma glucose concentration in heat-stressed cows was 
significantly lower than that of thermal-neutral dairy cows. Hepatic 
glucose metabolism was influenced since HS altered the enzymes 
related to gluconeogenesis. Inhibition of nutrient absorption by the 
liver can effectively relieve HS in dairy cows with the increase of the 
ambient temperature.

 In addition, heat-stressed cows would increase the mobilization 
of peripheral adipose tissue to make up for the energy deficiency due 
to inadequate intake of nutrients. In the liver of dairy cows suffered 
from HS, the amount of ketone elevates through β-oxidation by fatty 
acids. Because of the relative lack of oxaloacetate, ketone bodies 
cannot be oxidized timely via the citric acid cycle oxidation, leading 
to the increased ketone bodies in the blood to develop high ketosis. 
Flamenbaum, et al. [45] and Ronchi, et al. [7] found that NEFA 
concentration decreased in the plasma of dairy cows under HS, but 
β-hydroxybutyric acid concentration increased during HS, indicating 
that the utilization of NEFA as a source of energy increased in 
peripheral tissues and liver, resulting in reduction of plasma NEFA. 
Some scholars [46] believed that the decomposition of protein was 
accelerated when body fat was used in the body, which, to some 
extent, alleviated the glucose deficiency because glycogenic amino 
acid provided energy via the tricarboxylic acid cycle or by glucose 
synthesis through gluconeogenesis.

Investigation performed by Monteiro, et al. [8] has presented 
that maternal HS changed the preference of energy source in calves. 
HS calves had a noninsulin-dependent glucose disposal and utilized 
glucose prior to fatty acid or ketone. HS calves before weaning had 
lower blood glucose levels but higher utilization of glucose than 
HS-free calves. The rate of insulin clearance after insulin gavage was 
decreased in HS dairy cows, which indicated that the insulin resistance 
was enhanced in the peripheral tissues, such as muscle and fat tissues, 
and this limits the insulin-mediated glucose into peripheral tissues.

Nutritional strategies to alleviate HS
In the past decades, people have devoted to investigate effective 

feed additives aimed to alleviate heat stress [6,36,47]. Previous studies 
have proved that some feed additives, such as lipid substances, 
neurotransmitters, Chinese herbal medicine preparation can relieve 
the negative effects of heat stress by maintaining homeostasis and 
preventing nutrient deficiency [6,36,47,48].

As HS always induces energy deficit, enhancement of dietary 
energy density may be an alternative way that helps to mitigate HS 
[49,50]. Considering the supplementation of unsaturated fatty acid 
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may negatively impact rumen fermentation [51,52], Wang, et al. [6] 
supplemented saturated fatty acids (SFA) in the diet of mid-lactating 
dairy cows and found that SFA decreased the rectal temperature 
but increased milk yield and milk fat content and yield. Wang, et al. 
explained that the decrease of body temperature might be due to the 
lower heat increment of the diets with SFA, in which metabolic heat 
was saved. Similar results were also observed by Chan, et al. [49], 
who noted that fatty acids could reduce rectal temperature. On the 
other hand, supplementation of high SFA might improve the energy 
status in heat stressed cows, as found by Wang, et al. who proposed 
that plasma NEFA in dairy cows fed 3% SFA were slightly lower than 
those fed no SFA [6]. Furthermore, plasma NEFA in dairy cows fed 
SFA was similar [53] or lower [54,55] than those fed unsaturated fatty 
acids.

γ-Aminobutyric acid (GABA) is a kind of inhibitory 
neurotransmitter [56] which has the function of regulating body 
temperature and feed ingestion. Cheng, et al. [36] demonstrated 
that rumen protected GABA in the diet could be well absorbed 
into the blood and reduced the rectal temperature of dairy cows. 
Simultaneously, GABA increased the feed intake of HS dairy cows, 
because it irritated gastrin and digestive enzyme release, restrained 
cholecystokinin oxytocin release and weakened the negative feedback 
effect of alimentary canal chime on feed intake. Consequently, not 
only milk production, but milk protein and lactose concentrations 
were elevated as the ingestion of diets increased with GABA 
supplementation, which indirectly reflected the alleviation of HS.

Chinese herbal medicine has some special functions for mitigation 
of heat stress without toxic side effects, which has been verified in 
live stocks [47,57]. Compared with traditional feed additives, herbal 
feed additives have nutritional and medicinal values but no residues, 
which have been regarded as the potential effective alleviation for HS 
[58,59]. Pan, et al. reported that dietary supplemented Radix Bupleuri 
extract (RBE) reduced the rectal temperature of HS dairy cows and 
increased dry matter intake, which, at least partly promoted the 
milk production, but had no effect on milk composition, apparent 
digestibility and rumen fermentation [47]. Meanwhile, Chinese 
herbal medicine declined the respiration rate of HS animals which, 
in turn, increased the comfort and finally improved the health of the 
HS dairy cows. This might explain why lactation performance was 
promoted with increased milk yield but decreased somatic cell count 
in milk after RBE supplementation [47].

Summary
With global warming, HS will be one of the most important 

issues that threat the profits of future dairy industry. Numerous 
investigations have witnessed that HS influences the health and 
performance of dairy cows including inhibited reproductive 
performance, suppressed growth, increased metabolic diseases, 
reduced milk yield and compromised milk quality. Although great 
advances have been achieved in environmental cooling systems, 
dairy production losses are still remarkable. Therefore, it is of great 
importance to reveal the underlying mechanism of the variations 
of metabolism in hyperthermia and investigate the pathway for HS 
alleviation. New strategies that can help maintain dairy cow health and 
improve milk performance are under investigation. Further studies 
are still needed to elucidate the variations of energy distribution and 

material metabolism of dairy cattle during HS. Effective additives in 
parallel with the advanced technology in the construction design of 
animal housing facilities as well as the cooling systems may contribute 
to minimize economic losses caused by HS in the future.
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