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Abstract

Nutrition plays an important role in disease prevention and even in 
therapeutic interventions. Nutrigenomics has provided invaluable information of 
the relationship between food intake and gene expression. Nutrition has also 
been linked to epigenetic mechanisms, which can substantially affect disease 
development. In this context, aberrant DNA methylation, histone modifications 
and RNA interference have been associated with increased risk and progress 
of a wide variety of diseases such as cancer, metabolic, and cardiovascular 
diseases and neurological disorders. In this review, examples will be presented 
on how nutritional interventions affect epigenetic mechanisms influencing 
disease development. Furthermore, design of personalized nutrition and its 
relationship to epigenetics is discussed.      

Keywords: Nutrigenomics; Epigenetics; Personalized medicine; Nutrition 
and disease; DNA methylation; Histone modifications; RNA interference; Micro-
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subjected to unlimited food intake suggesting that the enhanced 
energy consumption was rather related to the energy density of the 
nutrition than the weight of the consumed food [8]. Additional studies 
have revealed a relationship between the FTO variant and physical 
activity [9,10], which suggested an increased susceptibility to obesity 
for the FTO variant when physical activity was not encouraged. 
Obesity has been linked to insulin resistance with over-nutrition a 
potential cause, although other factors might be involved [11]. For 
instance, the relationship between insulin-resistance and the intake of 
saturated fat is associated with polymorphism at the perilipin (PLIN) 
(storage of lipids in adipose tissue) locus and not related to obesity 
[12].  Another study showed that high saturated fatty acid intake 
induced insulin secretion in healthy volunteers via increased gastric 
inhibitory polypeptide levels [13].

Cardiovascular disease
The influence of diet on cardiovascular diseases has received much 

attention particularly through studies such as the Seven Countries’ 
Study linking coronary heart disease (CHD) mortality to lifestyle 
factors [14]. Application of the Mediterranean diet rich in vegetables 
and fruits and low intake of meat and dairy products resulted in 
significant differences in CHD deaths compared to a control group. 
Similarly, 605 patients who had experienced a first myocardial 
infarction were assigned to a Mediterranean diet and compared 
to individuals receiving a diet recommended by the American 
Heart Association (AHA) in the Lyon Diet Heart Study [15]. A 
remarkable 72% reduction in cardiac deaths and non-fatal acute 
myocardial infarction was observed after 46 months in individuals 
subjected to the Mediterranean diet in comparison to the control 
group. Furthermore, a 65% and a 55% reduction in CHD mortality 
and in all-cause mortality, respectively, were observed. Similarly, in 
patients with a recent history of acute myocardial infarction (AMI) 
moderate wine drinking was associated with a reduced risk of CHD 
complications [16]. In another study, a rigorous lifestyle regimen 
including low-fat vegetarian food, smoking cessation and regular 
exercise reduced the progression of coronary arterial disease and even 

Introduction
During the past decade the importance of nutrition for human 

health has received more and more attention at both population 
and individual levels. In this context, numerous studies suggest a 
significant contribution of diet to global occurrence of cancer [1] and 
other diseases. Moreover, the rapid development in bioinformatics 
and DNA sequencing has allowed closer analysis of the effect of dietary 
intake on individual gene expression, leading to the establishment 
of nutrigenomics [2,3]. Similarly, the term foodomics has been 
introduced for the comprehensive high-throughput approach to 
exploit the relation between food science and improved nutrition 
[4]. Most importantly, modified epigenetic mechanisms in disease 
development have also been strongly linked to nutritional factors and 
life-style changes [5]. 

In this review, an overview of the effect on food intake on disease 
risk, prevention and therapy will be presented. The current status of 
nutrigenomics research will also be summarized. Attention will be 
paid to the influence of nutrition on epigenetic mechanisms. Finally, 
personalized nutritional and epigenetic solutions will be highlighted.     

Nutrition and disease
There are numerous examples of direct and indirect effects 

of dietary intake on health and disease prevention. For instance, it 
has been suggested that over two-thirds of cancer-related deaths 
could most likely be prevented by nutritional interventions and life-
style changes [6]. In this context, nutrition plays a substantial role 
in risk reduction and treatment of diseases such as metabolic and 
cardiovascular diseases, neurological disorders and cancer (Table 1).

Metabolic disease
Studies on food intake have revealed that children with the genetic 

variant rs9939609 SNP in the first intron of the fat mass- and obesity 
associated (FTO) gene is associated with increased risk of obesity 
and type 2 diabetes [7]. Furthermore, children with the FTO variant 
showed increased calorie intake compared to a control group when 
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Disease Nutrition Effect Reference

Autoimmune

MS Vitamins, fish oil slow-down of disease [42]

ALS Balanced diet prevention of malnutrition [43]

Cancer

Breast Adolescent red meat increased risk on pre-menopausal breast cancer [57]

Dietary fiber meta-analysis on reduced cancer risk [142]

Dairy products (not milk) meta-analysis on reduced cancer risk [143]

Soy isoflavones reduced cancer risk in Asian women [144]

Colon Vegetables, fruits reduced risk of cancer [145]

Green tea anticancer activity [51]

Myrosinase hydrolysate reduced risk of colon cancer [99]

Colorectal Vitamin D lower cancer risk, improved survival [56]

Esophageal Vegetables, fruits decreased risk of esophageal carcinoma [146]

Vegetables, fruits prevention of cancer [145]

Gastric Vegetables, fruits prevention of cancer [145]

Head & neck Zinc beneficial effects in cancer patients [93]

Liver Coffee, tea inverse correlation with risk of HCC [58]

Lung Tea reduced risk of lung cancer [59]

Ovarian Green tea Anticancer activity [51]

Prostate fruits, vegetables change in cancer-related gene expression [54]

Urolithin A & B reduced proliferation and growth of cancer cells [55]

Polyphenols, green tea inhibition of tumor xenograft growth in mice [147]

Nigerian diet chemoprevention of prostate cancer [148]

Sulforaphane, tea prevention of prostate cancer [90]

Skin Folate protection of sun-exposed skin to cancer [149]

Epicatechins, green tea chemoprevention of carcinogenesis [47]

Proanthocyanid, grape chemoprevention of carcinogenesis [47]

Vitamin D reduced mortality [150]

Stomach Green tea anticancer activity [51]

Cardiovascular

CHD Mediterranean diet reduced risk of disease [14]

Low CH, high prot & fat inverse association with cardiovascular disease [26]

Vitamin A deficiency and excess: increased CHD mortality [28]

Vitamin D association between CHD and vitamin-deficiency [27]

Myocardial infarction Mediterranean diet 72% reduction in cardiac deaths [15]

Polysaturated fatty acid PPARG polymorphism enhances infarction risk [20]

Saturated fat intake APOE SNPs linked to myocardial infarction risk [25]

Alcohol consumption ADH3 SNPs linked to myocardial infarction risk [22]

Coffee CYP1A2 polymorphism linked to infarction [24]

AMI Moderate wine drinking reduced risk of CHD complications [16]

Stroke Folate MTHFR SNPs linked to ischemic stroke risk [23]

Arterial disease Low-fat vegetarian diet coronary arterial disease stopped [49]

Liver diseases

Fatty liver disease Polyphenols miR-103/107, miR-122 prevents disease [127]

Table 1: Examples of Nutrition and Disease.
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showed disease reversion by effective reduction of sclerotic plaques 
[17].

Genetic factors also play an important role in the relationship 
between nutrition and cardiovascular disease [18]. For instance, 
the complex interaction of genetic and environmental factors 
in cardiovascular disease is illustrated by polymorphism at the 
peroxisome proliferator-activated receptor alpha (PPARA) and PLIN 
loci [19]. Likewise, polyunsaturated fatty acid intake by individuals 
with polymorphism of the Pro12Ala peroxisome proliferator-
activated receptor gamma (PPARG) gene showed enhanced risk of 
myocardial infarction [20]. Moreover, individuals with the CETP-
TaqIB SNP showed sensitivity to alcohol consumption triggering 
myocardial infarction [21]. Similarly, alcohol consumption showed 
correlation with the alcohol dehydrogenase type 3 (ADH3) SNP 
in relation to myocardial infarction [22]. In this context, moderate 
drinkers homozygous for the ADH3 gamma-2 allele accumulate 
higher HDL levels and therefore present a substantially lower risk 
of myocardial infarction. Also, serum folate intake plays a role in 
determining the risk of ischemic stroke in individuals with the C677T 
SNP in the methylenetetrahydrofolate reductase (MTHFR) gene [23]. 
Moreover, polymorphism at the cytochrome P450 1A2 (CYP1A2) 
influenced the metabolism after coffee drinking, where homozygotes 
for the CYP1A2*1A showed a “rapid” caffeine metabolism while 
carriers of the CYP1A2*1F allele provided “slow” caffeine metabolism 
[24]. For this reason, individuals with the CYP1A2*1F allele have been 
associated with an increased risk of non-fatal myocardial infarction. 
Likewise, increased risk of myocardial infarction has been associated 
with intake of saturated fat in carriers of the APOE SNP E2 and E4 

gene variants [25].

In a recent 29-year follow-up study in Japan it was observed that 
moderate diets lower in carbohydrates and higher in protein and 
fat were inversely associated with cardiovascular disease and total 
mortality in women [26]. In association with the Heart and Soul 
Study, the effect of vitamin D deficiency on cardiovascular events in 
CHD patients was evaluated [27]. Adjustment for socio-demographic 
factors showed an association between vitamin deficiency (<20 ng/L) 
and cardiovascular events. However, there was no longer association 
after further adjustment for potential biological mediators, which 
highlighted the needs for controlled trials to establish the role of 
vitamin D supplementation in prevention of cardiovascular disease. 
As vitamin A has also been associated with cardiovascular events, 
a study on serum levels of vitamin A and the harmful effects on 
the cardiovascular system were investigated in older adults in the 
US [28]. The results indicated that both vitamin A deficiency and 
excessive vitamin A serum levels presented increased death from 
all-cause and cause-specific mortality and coronary artery disease-
related mortality. 

Neurologic disorders
The increase in neurological disorders has often been linked 

to the ageing population, but also genetics and nutrition has been 
demonstrated to play an important role. For instance, gene variants 
involved in lipid metabolism have been linked to the development 
of Alzheimer’s disease and Parkinson’s disease [29]. In this context, 
the APOE ε4 allele presents a significant risk factor for Alzheimer’s 
disease [30]. Similarly, the cytochrome P450 mono-oxygenase 

NAFLD High-fat diet miRNAs linked to disease [132]

Metabolic

Obesity Calorie intake FTO SNPs increase disease risk [7, 8]

Calorie-controlled diet weight loss and weight management [141]

Insulin-resistance Saturated fat PLIN polymorphism increases disease risk [12]

High saturated fatty acid induced insulin secretion [13]

Coeliac Gluten-free diet successful treatment of disease [134]

Neurological disorders

Alzheimer’s disease Phytonutrient suppl. potential disease protection [33]

Antioxidants protection against oxidative stress, disease [35]

Fruits, nuts, vegetables reduces disease risk in the elderly [36]

Parkinson’s disease Phytonutrient suppl. potential disease protection [34]

Low vitamin B6 increased disease risk [37]

Cognition Clorogenic acid improved cognition [39]

Traumatic brain injury Omega-3 fatty acids protection at neuronal level [40]

Neurodegeneration PC (spices, herbs) prevention against neurodegeneration [41]

PC, Curcumin (in curry) neuronal protection [41]

PC, tea catechin neuronal protection [41]

ALS Balanced diet improved quality of life [43]

ASD Gluten-, casein-free diet therapeutic effect [45]

ADH3: Alcohol Dehydrogenase type 2; ALS: Amyotropic Lateral Sclerosis; AMI: Acute Myocardial Infraction; ASD: Autism Spectrum Disorder; CH: carbohydrate; CHD: 
Coronary Heart Disease; CYP1A2: Cytochrome P450 1A2; FTO: Fat Mass and Obesity Associated; HCC: Hepatocellular Carcinoma; MS: Multiple Sclerosis; MTHFR: 
Methylenetetrahydropholate; NAFLD: Non-Alcoholic Fatty Liver Disease; PC: Phenolic Compounds; PLIN: Storage of Lipids in Adipose Tissue; PPRAG: Peroxisome 
Proliferator—Activated Receptor Gamma
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CYP2D6 polymorphism has been linked to Alzheimer’s disease 
and Parkinson’s disease [31]. Moreover, the leucine-rich repeat 
kinase 2 (LRRK2, PARK8) gene has been indicated as the most 
common cause of Parkinson’s disease [32]. Meta-analysis revealed 
that G2019S, G2385R, R1628P and A419V gene variations present 
risk factors associated with increased susceptibility to Parkinson’s 
disease. Furthermore, dietary phytonutrient supplements have 
provided potential protection against Alzheimer’s disease [33] and 
Parkinson’s disease [34]. Related to Alzheimer’s disease, antioxidants 
have demonstrated protection against amyloid β-peptide induced 
oxidative stress thereby slowing down disease development [35]. 
Various polyphenols like quercetin and resveratrol have been 
suggested to promote treatment of Alzheimer’s disease. Moreover, a 
higher intake of fruits, vegetables, fish, nuts and legumes combined 
with reduced consumption of meats, high fat dairy and sweets was 
associated with reduced risk of Alzheimer’s disease in the elderly 
[36]. Another study in Parkinson’s patients in Japan indicated that 
low intake of vitamin B6, but not folate, vitamin B12 or riboflavin 
showed an increase in disease risk [37]. Furthermore, higher intake of 
vitamin E and β-carotene might be associated with a decreased risk of 
Parkinson’s disease [38]. A number of studies have linked Clorogenic 
Acid (CGA) consumption to a wide range of benefits on cognition 
and neurological health [39]. Mounting evidence suggests that intake 
of polyphenols including CGAs can reduce the risk of developing 
neurodegenerative conditions.

Related to traumatic brain injury, omega-3 fatty acids (ω-3 
FAs) provide protective mechanisms at the cellular and neuronal 
levels including the modulation of inflammatory cascades [40]. 
Moreover, beneficial effects of ω-3 FAs such as eicosapetaenoic 
acid and docosahexaenoic acid should be considered for preventive 
general health, particularly for athletes and soldiers exposed to risk 
of high exposure to brain impacts. Also some phenolic compounds 
present in spices and herbs have been demonstrated to provide 
prevention against various age-related pathologic conditions in 
neurodegenerative disease [41]. For instance, heme-oxygenase-1 (HO-
1) expression provides strong protection against, oxidative damage 
and cell death in astrocytes, plays a crucial role in the pathogenesis 
of neurodegenerative disorders and is induced by curcumin present 
in curry. Furthermore, HO-1 induction by epigallocatechin-3-gallate, 
the major green tea catechin, can enable protection of neurons. Other 
phenolics such as caffeic acid phenethyl ester and ethyl ferulate show 
neuron protection by HO-1 induction.

In the context of Multiple Sclerosis (MS), nutrition has been 
shown to play an important role [42]. Dietary interventions can 
provide a pleiotropic role by changing cell metabolism from 
anabolism to catabolism and down-regulation of inflammation 
through interaction with nuclear receptors and transcriptional 
factors. Therefore, low fat diets including specific vitamins, oligo-
elements and dietary integrators such as fish oil and polyphenols 
might slow down disease progression and improve the quality of life 
of MS patients. Similarly, changes in nutritional state, energy intake 
and energy expenditure are important factors to prevent malnutrition 
in patients with Amyotropic Lateral Sclerosis (ALS) [43].

Nutrition has also been linked to learning, behavioral and mood 
disorders [44]. As is well recognized, modern lifestyle and social 
factors has strongly contributed to the limited consummation of 

fruits and vegetables, whole grains and oily fish while intake of 
refined carbohydrates, altered fats, meat and dairy products has 
increased. Nutritional factors can therefore generate physiological 
responses, which influence mood and promote anti-social behavior. 
Dietary interventions and identification of potential food intolerance, 
hormone imbalances, blood sugar levels, enzyme deficiencies and 
other factors therefore play important roles in mood and behavioral 
disorders. Interestingly, the majority of children with Autism 
Spectrum Disorder (ASD) display gastrointestinal symptoms and 
increased intestinal permeability [45]. Furthermore, the micro biotic 
composition in ASD patients and control individuals show large 
differences. Abnormalities in carbohydrate digestion and absorption 
could explain some of the gastrointestinal problems in ASD patients. 
When ASD patients were subjected to gluten-free diets, casein-
free diets, and pre- and probiotic, and multivitamin supplements 
contradictive but promising results were obtained. Nutrition and 
other environmental factors might therefore lead to the development 
of autism at least in a subset pf ASD patients. 

Although nutritional interventions have provided some 
encouraging results in both disease prevention and treatment, 
failures have also been encountered. For instance, the combination 
of vitamin E, vitamin C and alpha-lipoic acid (ALA) supplements did 
not show a significant effect on Cerebrospinal Fluid (CSF) biomarkers 
for Alzheimer’s disease in relation to amyloid or tau pathology in a 
randomized controlled trial [46]. Despite the reduction of oxidative 
stress in the brain due to lower CSF F2-isoprostane levels, the 
treatment raised the concern of an accelerated decline in cognitive 
performance.       

Cancer
The impact of dietary intake on cancer has received significant 

attention as it was suggested already in 1981 that nutrition accounted 
for approximately a third of the risk of developing cancer in the US 
[47]. However, the many parameters such as individual variation in the 
amount of food consumed, digestion, metabolism and other factors 
has complicated the identification of those specific food components 
most important for human health [48,49]. In this context, a diet rich 
in vegetables and fruits could significantly inverse the association 
with the risk for development of gastric and esophageal cancer [50]. 
Furthermore, tea and particularly green tea has demonstrated benefits 
in relation to anticancer properties as it prevented stomach, ovarian 
and colon cancers [51].

Bioactive food compounds such as folate, polyphenols, selenium 
and retinoids have been demonstrated to influence epigenetic function 
through DNA methylation and histone modifications affecting early 
carcinogenesis [52]. Furthermore, nutritional modifications can result 
in aberrant epigenetic mechanisms through gene silencing by micro-
RNA (miRNA), which may contribute to enhanced risk of cancer 
development [53]. It was also recently discovered that bioactive food 
compounds are capable of modifying miRNA expression resulting in 
protection against cancer.

Remarkably, drastic nutritional changes and lifestyle 
modifications showed a strong impact in low-risk prostate cancer 
patients [54]. These patients demonstrated substantial improvement 
in treatment of obesity, blood pressure and lipid profiles. Monitoring 
of gene expression profiles from RNA samples before and three 
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months after the intervention revealed up- or down-regulation of 501 
genes. Interestingly, significant changes were observed in pathways for 
protein metabolism, intracellular protein traffic and phosphorylation 
related to cancer development. Moreover, walnut polyphenol 
metabolites such as urolithins A and B were demonstrated to slow 
the proliferation and growth of different types of cancer cells [55]. 
Urolithins showed down-regulation of mRNA and protein levels of 
prostate specific antigen (PSA) and androgen receptor in human 
LNCaP prostate cancer cells. Therefore, a diet rich in polyphenols 
such as walnuts may contribute to prostate cancer prevention. In 
another aspect of nutrition, vitamin D deficiency has been associated 
with health issues. In this context, higher vitamin D levels have been 
linked to lower risk of colorectal cancer and improved survival in 
colorectal cancer patients [56].

In the recent Nurses’ Health Study II cohort adolescent 
consumption of red meat was evaluated for breast cancer risk [57]. 
Greater intake of adolescent total red meat showed a significant 
correlation with higher pre-menopausal breast cancer risk, but not 
post-menopausal breast cancer risk. Moreover, the risk was lower in 
case of poultry consumption. When one serving/day of red meat was 
replaced with a combination of poultry, fish, legumes and nuts, the 
overall breast cancer risk decreased by 16% and the pre-menopausal 
risk was 24% lower. In another multicenter, prospective cohort study, 
the inverse association of coffee and tea in relation to Hepatocellular 
Carcinoma (HCC) risk was confirmed [58]. Increased coffee and tea 
consumption was consistently associated with a lower risk of HCC. 
Tea consumption has also been associated with a reduced risk of 
lung cancer [59]. In a meta-analysis of 26 case-control and 12 cohort 
studies overall tea consumption was significantly associated with 
decreased risk of lung cancer. Both green tea and black tea intake 
reduced the risk of lung cancer [59]. 

Nutritional interventions have also demonstrated an impact on 
quality of life in cancer patients. When patients with malnutrition 
disorders received ice cream as an adapted nutrition supplement 
significant differences in anxiety and depression was observed in 
comparison to the control group [60]. In conclusion, administration 
of ice cream presented in part the social aspect of food provision and 
could improve the quality of life in malnourished cancer patients. 

Nutrigenomics
The impact of nutrigenomics in disease prevention and treatment 

by targeting food intake can be compared to how genomics 
information has influenced drug development. Obviously, the 
emerging area of personalized medicine and individually designed 
diets will play an important part in future disease prevention and 
improved health. Moreover, to establish a more complete picture of 
nutrigenomics, a metagenomic approach covering the interaction of 
the genomes of food, gut microbes and the human host needs to be 
addressed [61]. In this context, food proteomes of both animal and 
plant origin have been characterized [62,63]. Plants provide a variety 
of bioactive food compounds, which function as growth factors, 
anti-hypertensive agents, anti-microbials and immune regulators. 
Bioactive food compounds containing soy, rice, cereals and sunflower 
can provide protection against oxidative stress and different types of 
cancer and are released through proteolysis by host or microbial gut 
enzymes during food processing and ripening [64].

Milk is an important food source, which has been demonstrated 
to present significant differences dependent on whether of human 
or bovine origin [65]. For instance, the protein/peptide, lipid and 
carbohydrate contents are different with human milk containing 
caseins and whey proteins at a 50:50 weight/weight ratio in comparison 
to 80% caseins and 20% whey proteins in bovine milk [66]. Human milk 
also presents a strong impact on the host defense system as it contains 
various immunoglobulins and the iron-binding protein lactoferrin 
[67]. Milk provides protection against bacterial pathogens supports 
the growth of protective colonic microbes, reduces gastro-intestinal 
infections, inflammation, and allergic disorders [68]. Furthermore, 
food-derived peptides have demonstrated reduced cardiovascular 
disease risk by affecting blood pressure, oxidative stress, appetite, and 
lipid metabolism [69]. In this context, lactotripeptides were shown 
to inhibit angiotensin-converting enzyme (ACE) resulting in reduced 
blood pressure in rats [70]. Soybean can also provide significant 
health benefits as they contain high amounts of all essential amino 
acids, isoflavones and saponins [71]. Moreover, phytochemicals, 
lunasin Bowman-Birk inhibitor, lectin and beta-conglycinin have 
been associated with prevention of cancer cell division and histone 
acetylation [72,73].

A bioinformatics-based strategy called “reverse-genome 
engineering” was applied for in silico discovery and evaluation of 
bioactive food compounds [74]. In this approach, public domains 
are searched for known bioactive peptides and mapped onto 
suitable animal or plant food genomes for identification of their 
location in parent protein sequences. Moreover, human digestive 
or food processing-related conditions can be mimicked to reveal 
the proteolytic release of bioactive peptides by in silico analysis. 
Currently, bioactivity prediction based on only amino acid sequences 
is not possible, but in the future the technology might be expanded to 
peptide sequences in general.

Obviously, human health is strongly affected by the complex 
composition of the gut microbiota, which consists of a huge biomass 
of more than 100,000 billion bacteria representing more than 400 
species [75]. The gut microflora is involved in an intense metabolic 
activity, degradation of otherwise non-digestible substances and 
providing resistance to colonization by external bacterial strains. 
When germ free (GF) mice were colonized by a human baby flora 
(HBF) resistance to obesity was observed in animals fed on a high-
fat and high carbohydrate diet, which indicated that GF mice 
consumed fewer calories, excreted more fecal lipids and weight 
significantly less than control mice [76]. In addition, GF mice showed 
higher sensitivity to insulin and glucose tolerance. Human obesity 
has also been linked to the microbiota. For instance, the beneficial 
gut bacteria group Bacteroidetes was found in obese individuals 
compared to lean people in reduced proportion and it increased with 
weight loss [77]. When GF mice were colonized with Bacteroides 
thertaiotaomicron the outcome was intestinal cellular differentiation 
and gene expression, which resulted in benefits to both the host and 
the microbe [78]. Further studies of the gut microbial system has 
also revealed how age-related changes affect the gastro-intestinal 
tract, the lifestyle, nutritional behavior and the host immune system 
[79]. In ageing individuals the changes in gut microbiota balance 
has resulted in “inflamm-ageing” and “immunosenescence” [61]. 
Also, studies on the relationship between the gut microbiota and 
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human intestinal dendritic cells revealed enhanced IL-6 production 
in patients with Crohn’s disease, which correlated with disease 
progression [80]. Related to inflammatory bowels disease, bacterial-
driven metalloproteases caused degradation of extracellular matrix 
components [81].

The gut microbiota has recently been shown to contribute to the 
etiology of colorectal cancer (CRC) [82]. For instance, the short-
chain fatty acid acetate, propionate and butyrate are linked to the 
suppression of inflammation and cancer. Moreover, other microbial 
metabolites like secondary bile acids promote carcinogenesis. 
Furthermore stool profiling identified intestinal bacteria and 
metabolites, which are differentially expressed in patients with CRC 
compared to healthy controls [83]. Particularly, butyrate-producing 
species were under-represented in CRC patients, while the mucin-
degrading Akkermansia muciniphilia showed 4-fold higher levels. 
When the combined datasets were subjected to correlative analysis 
some potential relationships between stool metabolites and certain 
bacterial species was discovered.

Food intake in humans is also strongly influenced by a number 
of factors such as age, physical activity and special conditions like 
pregnancy. Additionally cultural and ethnic aspects as well as lifestyle 
have a great impact. Obviously genetic factors should not be neglected. 
In this context, the most prominent genetic individual differences are 
SNPs, but also deletions, insertions and copy number variations play 
important roles. G proteins, which act as central signal translation 
mediators for G protein-coupled receptors (GPCRs) have shown 
relevant responses on the gene level to nutritional interventions [84]. 
For instance, the C825T polymorphism in the Gβ3 subunit and the 
G659C in the Gα11 subunit have been associated with weight loss 
after sibutramine treatment [85]. Likewise, carriers of the 825T allele 
in the GNB3 subunit indicated an enhanced hypertension risk [86]. 
The first signs of metabolic syndrome with increased total cholesterol 
and uric acid were observed in lean mice carrying the C825T 
mutation [87]. In older hypertensive subjects insulin resistance 
was more prominent for the 825TT and 825TC genotypes than the 
825CC genotype. In another study, the C to T substitution in the 
methylene-tetrahydropholate-reductase (MTHFR) gene resulted in 
elevated plasma homocysteine and a different response to folic acid 
supplements [88], which affected the risk for such chronic diseases as 
vascular disease, cancer and neural tube defects.

Epigenetics
Epigenetics has received plenty of attention recently because 

of mechanisms leading to modifications outside the scope of 
conventional genetics and does not involve any modifications of 
the primary DNA sequence [89]. The reversibility of epigenetic 
functions has also made their application as targets for therapeutic 
interventions attractive. The three main mechanisms for epigenetic 
functions are DNA methylations, histone modifications and RNA 
interference. DNA methylation involves covalent addition of methyl 
groups to the 5’-position of cytosines upstream of guanosines, which 
affects regulation of gene expression, genomic imprinting and DNA 
repair mechanisms [90]. Methylated CpG dinucleotides affect mRNA 
transcription resulting in reduced or terminated transcription but 
also in its up-regulation, which has been linked to cancer [91, 92]. In 
this context, hypermethylation in promoter regions has been linked 

to the inactivation of HIC1, INK4b and TIMP3 tumor suppressor 
genes [93]. Histone modifications such as acetylation, methylation, 
ubiquitination and phosphorylation can modify histones H3 and 
H4 and thereby provide essential epigenetic mechanisms resulting 
in either repression or activation of transcription [94,95]. Similarly, 
RNA interference (RNAi) strongly contributes to the regulation 
of gene expression [96]. In this context, 21-23 nucleotide single-
stranded microRNAs (miRNAs) interfere with mRNA leading to 
down-regulation of gene expression [97]. Alternatively, miRNAs 
can increase transcription and gene expression [98]. Currently, more 
than 1000 human miRNAs have been isolated and it is believed that 
up to a third of all human mRNAs are regulated by miRNAs [99].

Nutrition and epigenetics
There are numerous indications of how nutrition affects 

epigenetic functions (Table 2). The classic example of how nutrition 
causes epigenetic modification is from the Agouti mouse model 
where the fur color is linked to the methylation of the Agouti gene 
[100]. When pregnant black mice carrying the eumelanin (a) gene 
are fed on a methyl-supplemented diet a shift in offspring color 
occurred. However, when the food intake of pregnant yellow mice 
contained methyl donors (folic acid, vitamin B12, choline and 
betaine) the color of the offspring changed [101]. In the presence of 
a complete unmethylated Agouti gene, the coat color is yellow and 
the mice become obese and show a high risk for diabetes and cancer. 
Another approach relates to feeding mice with a choline-methionine 
deficient (CMD) diet, which resulted in elevated expression of Igf2 
and H19 in prostate tissue compared to control mice [102]. Shorter 
exposure to the CMD diet demonstrated the reversibility of the 
epigenetic regulation of gene expression. The lack of change in DNA 
methylation in the promoter regions and H19 and Igf2 imprinting 
was a strong indication of epigenetic plasticity and suggested 
that methyl deficient diets have a stronger effect on chromatin 
modifications than DNA methylation. In humans, overfeeding with a 
high-fat diet induced DNA methylation in men with low birth weight 
leading to peripheral insulin resistance and decrease in peroxisome 
proliferator-activated receptor gamma-1 alpha (PPARGC1A) and 
oxidative phosphorylation (OXPHOS)-related gene expression in 
five days [103].

In primates a maternal high-fat diet significantly modified in 
utero the expression of the fetal hepatic circadian gene Npas2 [104]. 
Analysis of the mRNA copy number suggested that components 
of the peripheral circadian machinery were transcribed in the fetal 
liver in an intact phase anti-phase fashion and the Npas2 paralog of 
the Clock transcription factor served as a rate-limiting transcript. 
When fetuses were exposed to a high-fat diet in utero the hepatic 
Npas2 expression increased by 7.1-fold. Interestingly, in obese 
mothers subjected to a control diet the effect was reversible in fetal 
offspring. Moreover, exposure to the maternal high-fat diet seemed 
to affect differential Npas2 promoter occupancy of fetal histone H3 
at lysine 14 (H3K14ac). Another interesting phenomenon is the 
silencing of genes based on paternal or maternal origin by genetic 
imprinting. In this context, after fertilization the paternal genome 
is actively demethylated whereas the maternal genome is passively 
demethylated [105], which results in parent-of-origin-dependent 
mono-allelic expression of critical autosomal genes [106]. Loss of 
methylation therefore results in either decrease or increase in gene 
expression.
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Environmental factors and not the least nutrition have been 
shown to play an important role in epigenetics prior to birth leading 
to increased vulnerability to neurodevelopmental deficit in offspring 
[107]. For instance, alcohol exposure induces DNA methylation in 
sperm, embryos and developing brain resulting in alcohol-induced 
fetal alcohol syndrome [108-110]. Likewise, maternal smoking affects 
fetal growth, preterm delivery and long term health of offspring [111]. 
Examination of human placenta has revealed epigenetic changes 
such as alteration in DNA methylation and reduced miR-16, miR-
21 and miR-146a expression related to smoking. [112]. Analysis of 
buccal cells from children exposed prenatally to tobacco smoke 
demonstrated lower DNA methylation in the transposable element 
AluYb8 suggesting a link to disease pathogenesis [113].

Drug abuse during pregnancy has obviously been associated with 
fetal deficits. For instance, cocaine promotes premature birth, cardiac 
defects and attention deficit disorders [114]. Differential DNA 
methylation has been associated with altered expression in selected 
genes [115]. For example, increased H3 acetylation and decreased 
methyl CpG binding protein 2 (MeCP2) -association with BDNF 
promoter IV was observed in cocaine treated rats [116]. Moreover, 
paternal cocaine administration showed impaired memory in female 
offspring and caused hyperactivity in male offspring rats [117]. The 
impact on fetal cardiac development indicated that pregnant rats 
exposed to cocaine resulted in myocardiate apoptosis in fetal heart 
because of DNA methylation induced reduction in protein kinase Cε 
(PKCε) expression [118]. Similarly to cocaine, cannabis, the major 

Nutrition Epigenetic effect Reference

Polyphenols

Fatty liver disease miR-103/107, 122 dysregulation [127]

ApoE mutant mice miR-30c, 291, 296, 374, 476b dysregulation [128]

Proanthocyanidines in HepG2 cells miR-30b, 197, 532-3p, 1224-3p dysregulation [129]

High-fat diet

Obesity up-regulation of miR-21, 142, 146 [130]

C57BLJ6 mice down-regulation of miR-1, 30, 122 [130]

Diabetes up-regulation of 8 miRNAs [131]

Skeletal muscle down-regulation of 22 miRNAs [131]

NAFLD miR-467b dysregulation [132]

Insulin resistance DNA methylation decreased PPARGC1A, OXPHOS levels [103]

Circadian Npas2 gene in primates histone modification affected Npas2 promoter activity [104]

Alcohol

Alcohol-induced fetal alcohol-syndrome induced methylation in sperm embryo, developing brain [107]

Maternal smoking

Fetal growth, long-term health aberrant DNA methylation, reduced miR16, 21, 146a levels [112]

Link to disease pathogenesis lower DNA methylation in transposable element AluYb8 [113]

Maternal drug use

Premature birth, cardiac defects aberrant DNA methylation after maternal cocaine use [114]

Impaired memory, hyperactivity histone modifications after parental cocaine use [117]

Impaired fetal cardiac development aberrant DNA methylation after maternal cocaine use [118]

Impaired fetal growth epigenetic modifications after cannabis use [121]

Special diet

Agouti mouse fur color aberrant DNA methylation after methyl-supplemented diet [100]

Choline-methionine deficient diet DNA methylation led to increased Igf2 and H19 expression [102]

Plant intake

Gene expression regulation in mammals decrease of LDLRAP1 by miR-168a after rice consumption [124]

Differential gene expression miR-92 differences in vegans, vegetarians, omnivores [126]

Carcinogens

2-acetylaminofluorene miR-34, 200b, 200c dysregulation [151]

Diethylhexylphthlate miR-429 dysregulation [151]

Metapyrilene miR-429 dysregulation [151]

Table 2: Examples of Association of Nutrition with Epigenetics.

LDLRAP1: Low-Density Lipoprotein Receptor Adapter Protein 1; NAFLD: Non-Alcoholic Fatty Liver Disease; OXPHOS: Oxidative Phospohorylation; PPARGC1A: 
Peroxisome Proliferator-Activated Receptor Gamma-1 alpha
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ingredient in marijuana, when exposed in utero restricts fetal growth 
and alters fetal behavior [119, 120]. The epigenetic relevance was 
showed by reduced dopamine D2 (DRD2) receptor expression in 
human ventral striatum of fetuses maternally exposed to cannabis 
[121]. In a rat model, it was further demonstrated that decreased 
DRD2 expression resulted in long term disruption of the transcription 
machinery for DRD2, which suggests the link between prenatal drug 
exposure and adulthood addiction [122].

The direct effect of regulatory components present in food has 
received much attention lately. It was recently discovered that oral 
intake of plant miRNAs in the food might accumulate in the serum 
of humans or animals and to provide regulation of gene expression 
in a sequence-specific manner [123]. It was suggested that micro-
vesicles and specific RNA-transporter-like proteins are involved 
in the miRNA transport between species. Moreover, miR-168a 
abundant in rice has been shown to bind to the human and mouse 
low-density lipoprotein receptor adapter protein 1 (LDLRAP1) 
mRNA [124]. Exogenous miR-168a can therefore potentially 
regulate gene expression in mammals as decreased LDL removal 
from the plasma corresponds to reduced LDLRAP1 expression. In 
contrast, another study indicated that substantial miRNA amounts 
present in the diet did not show detectable levels of miR-156a, miR-
159a and miR-169a in the plasma [125]. Similarly, mice subjected 
to a fat-rich diet with endogenous miR-21 showed only negligible 
miRNA levels in the plasma. Furthermore, plant miRNA showed 
hardly any presence in honeybees subjected to oral pollen uptake. 
Therefore, miRNA delivery through food uptake seems to be rare. 
However, a recent study on the uptake of seven human miRNAs in 
plasma and stool samples in individuals with different dietary habits 
showed differential expression of miR-92 with vegetarians showing 
higher expression than omnivores but lower than vegans [126]. This 
clearly suggested that nutritional intervention can modulate miRNA 
expression.

Polyphenols derived from plants have been shown to regulate miR-
103/107 and miR-122 contributing to the prevention of diet-induced 
fatty liver disease [127]. Also miR-30c, miR-291, miR-296, miR-374 
and miR-476b are modulated by polyphenols [128]. Moreover, the 
most abundant polyphenols in the human diet, proanthocyanidins, 
induced modulation of miRNA expression in human HepG2 cells 
[129]. Treatment with grape seed proanthocyanidin extract (GSPE), 
coca proanthocyanidin extract (CPE) or pure epigallocatechin gallate 
from green tea (EGCG) resulted in down-regulation of miR-30b*. 
Additionally, GSPE and CPE enhanced the expression of miR-1224-
3p, miR-197 and miR-532-3p.

A high-fat diet has shown strong influence on miRNA expression 
in adipose tissue in a C57BLJ6 mouse obesity model [130]. Several 
miRNAs were up- or down-regulated indicating a role for epigenetic 
function in adipogenesis and obesity. In relation to type 2 diabetes, 
high-fat diet can induce skeletal muscle insulin resistance [131]. 
When mice were fed on a high-fat diet 8 miRNAs were up-regulated 
while 22 miRNAs were down-regulated. Moreover, miRNAs have 
been linked to non-alcoholic fatty liver disease (NAFLD) in mice fed 
on a high-fat diet [132]. In this context, miR-467b expression was 
significantly reduced in liver tissue resulting in enhanced hepatic 
lipoprotein lipase (LPL) production associated with insulin resistance.             

Personalized nutrition and epigenetics
The impact of nutrition in prevention and treatment of disease 

has been significant on a general level. Intensified bioinformatics 
and nutrigenomics research has generated a better understanding 
of individualized approaches including personalized nutrition and 
personalized medicines. In this context, factors such as age, sex, 
cultural and environmental differences has strongly influenced 
nutritional preferences. Taken into account these factors, a “generic” 
program called Mypyramid has been established for a personal eating 
plan through a website providing information on sex, height, weight 
and level of physical activity [133].

Perhaps one of the best examples of successful personalized 
nutrition is represented by individuals with coeliac disease, who are 
unable to tolerate gluten-containing food [134]. Although a hereditary 
component is not sufficient for disease development genetic variants 
in the human leucocyte antigen HLA-DQ genes provides an 
indication of high disease risk, the straightforward treatment strategy 
is to comply to a strict gluten-free diet [135]. Currently, no biomarkers 
for genetic screening of coeliac disease are available. Additionally, in 
connection to the world wide obesity epidemics much attention has 
been paid to nutritional interventions and the effect of lifestyle and 
other changes. In this context, a personalized calorie-controlled diet 
was designed for a weight reduction program based on 24 variants 
in 19 genes [136]. The personalized diet and exercise advice resulted 
in substantial weight loss and excellent weight loss maintenance in 
comparison to the control group, who received a generic diet and 
exercise advice. In another study, a tailor-made personalized diet was 
designed for 51 overweight-to-obese individuals carrying five SNP 
variants in four genes, which resulted in some success after six weeks 
[137]. However, in general the difficulties with personalized diets and 
exercise instructions are the slow change in implementing changes.

In a recent study, the prognostic among patients with localized 
cutaneous melanomas was surveyed in relation to dietary habits, 
which suggested that daily fruit intake was associated with improved 
melanoma-specific survival [138]. In contrast, red meat intake was 
linked to a worse outcome.

The preventive function related to disease of nutrition has played 
an important part in human health. For example, a meta-analysis of 
six randomized trials indicated that the significant weight reduction 
observed in obese adolescents by sibutramine can be further 
supported by a hypocaloric diet and modification of lifestyle [139].

The importance of epigenetic regulation has been indicated by the 
establishment of the new field of nutriepigenetics [140]. Epigenetic 
regulation has been shown to be associated with the consumption of 
plant-derived polyphenols, which has strengthened the link between 
personalized nutrition and epigenetic effects [5]. Additionally, 
ageing and age-related disease has demonstrated a strong link to 
nutritional epigenetics [127]. In this context, folate, vitamin B12, 
vitamin B6, riboflavin, methionine, choline and betaine have been 
suggested to regulate S-adenosylmethionine amd methyltransferase 
inhibitor S-adenosylhomocysteine levels affecting DNA methylation. 
Furthermore, retinoic acid, resveratrol, curcumin, sulforaphane and 
tea polyphenols have the capacity to modulate epigenetic patterns 
and thereby catalyze DNA methylation and histone modifications. 
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Conclusions and Future Prospects
In the light of the ever increasing costs related to human health 

rapid and cost cutting approaches are most welcome. Probably 
the most important approach would be to focus on preventive 
medicine. In this context, two factors have been indicated to play 
important roles. Nutrition cannot be neglected as one of the most 
essential components in our daily lives. A wide range of studies have 
demonstrated how nutritional interventions can reduce the risk of 
disease and can even provide therapeutic efficacy. Additionally, 
epigenetic mechanisms have proven to be closely associated with 
disease development. Interestingly, nutrition has also been shown to 
affect epigenetic functions. Nutrigenomics has further enlightened 
the understanding of individual and genetic requirements for the 
establishment and design of dietary interventions, which can improve 
human health and even prevent future disease development. In the 
future, additional understanding of epigenetic mechanisms and 
nutritional requirements will contribute immensely to the reduction 
of disease risk and health improvement.
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