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birth, a complex community of microbes that reaches up to a density 
of 1×1012 bacterial cells per grams of content in the adult colon began 
to colonize the GI [1]. The stable adult microbiota is composed of 
autochthonous species (permanent members) and allochthonous 
species (colonizers that are briefly acquired from an external origin). 
The adult microbiota is composed of 400-1000 species, the major 
of them; about 60% are not culturable outside the GI environment. 
However, it is evaluated that 30-40 species predominate in this 
ecosystem [1]. Both prokaryotic and eukaryotic microbes are present, 
with bacterial species dominating. Main bacterial species are strict 
anaerobes (97%), whereas only 3% are aerobic (facultative anaerobes). 
The composition of the microbiota differs not only along the length 
of the GI tract, but also cross-sectionally, with different populations 
inhabiting the GI mucosa and lumen. The most common anaerobic 
genera in terms of concentration within the GI tract are Bacteroides, 
Bifidobacterium, Eubacterium, Fusobacterium, Clostridium and 
Lactobacillus. Among the aerobes are the Gram-negative enteric 
bacteria (Escherichia coli and Salmonella spp.) and the Gram-positive 
cocci (Enterococcus, Staphylococcus and Streptococcus). In addition, 
also aerobic fungal species, such as Candida albicans, are members 
of the normal microbiota [2]. These microbes live in a symbiotic 
relationship with the host and are key determinants of health and 
disease by influencing nutrient absorption, barrier functioning, and 
immune development [1].

Members of the normal microbiota, such as lactic acid bacteria, 
produce large quantities of biologically active Short-Chain Fatty Acids 
(SCFA). These fatty acids are byproducts of anaerobic fermentation 
and feature an anti-inflammatory function. Butyric acid is a well 
known short chain fatty acid holding immunomodulatory activities 
[8].

The Relation between Microbiota and Gut 
Immune System

Recent reviews have evidenced that the microbiota arouses innate 
and adaptive immune mechanisms collaborating to protect the host 
and maintain intestinal homeostasis [9,10]. The central components 
in the immune system of the gut are epithelial cells. Like immune 
cells, epithelial cells express receptors for Microbial-Associated 
Molecular Patterns (MAMPs). These receptors are able to activate 
signaling cascades that accurately tuned epithelial cell production of 
antimicrobial products and chemokines, on the basis on the signals 
that are provided by the microbiota. Thus, gut epithelial cells form 
a potent and inducible physico-chemical barrier, limiting microbial 
growth and access to the gut surface. They can also induce leukocytes 
to strengthen their barrier function or to participate in the activation 
of gut adaptive immune responses. Gut-associated Lymphoid Tissues 
(GALT) consist of the Peyer’s Patches (PP) and Small Intestinal 
Lymphoid Tissue (SILT) in the small intestine, lymphoid aggregates 
in the large intestine, and diffusely distributed immune cells in the 
lamina of the gastrointestinal tract. In addition to the immune cells, 
the intestinal epithelium also plays a role in the generation of immune 
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Since a century ago, scientists have demonstrated that diet can 

dramatically change the microbial composition of the microbiota 
associated to the gut; it has been demonstrated through animal 
models the importance of the microbiota for the development and 
maintenance of the mucosal immune system associated to the gut and 
the beneficial or negative effects on gut diseases [1]. The increase in 
the diffusion of antibiotics and drastic changes in the diet across years, 
in industrialized countries, have been linked to a surprising increase 
in the incidence of allergies. On the basis of previous concepts can 
we say that microbiota is a major regulator of the immune system? 
Therefore, microbiota could be considered as starter of inflammatory 
diseases, but it is also true that microbiota ca be considered the main 
positive regulatory force for immune responses after development.

A normal microbiota plays a positive role in protecting the host 
against pathogenic microbial challenge excluding microbes from the 
mucosa. Thus, in the future, researchers should be able to win the 
challenge in order to identify the ‘crossover points’ where microbial 
signals regulate immune function. A possibility could be through the 
production of fatty acid metabolites, such as oxylipins and short-
chain fatty acids, by the host and microbiota [2].

Dietary components can influence the response of gut, and 
changes in the diet can modify the relative abundance or dominance 
of several microorganism phyla [3,4] reported that a diet high in 
carbohydrate intake was associated with increase in the genera 
Prevotella-Type, protein and animal fat intake was associated with 
Bacteroides-Type, suggesting that food dietary intake might affect 
differently the community of microorganism of the gut. Every 
species of microbiota gut has a role [5]; their substrates, available 
to the microbiota, produce different outputs for the microorganism 
community [6]. The intestinal microbiota could be considered like 
a biomarker in relation to the consumption of healthy or unhealthy 
food intake; changes in the microbiota may encourage the consumer’s 
choices towards a long term diet able to influence the production of 
beneficial microbial metabolites [7].

The Normal Microbiota: Characterization 
and Development 

After birth the process of colonization of the GI tract leads to a 
series of ecological successions ending with the establishment of a 
stable microbiota (‘Microflora’) that is unique for each individual. At 
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responses through sampling of foreign antigens thanks to Toll-Like 
Receptors (TLR) and NOD-Like Receptors (NLR). In mammals, 
the developments of GALT begin before birth by a genetic program 
[11]. However, the maturation of GALT and the recruitment of 
IgA-secreting plasma cells, and activated T cells to mucosal sites, 
take place only after birth and it is strictly dependent on microbiota-
derived signals. Furthermore, microbiota-derived signals influence 
the crosstalk between epithelial cells and gut Dendritic Cells (DCs), 
modulating the nature and intensity of intestinal B and T cell responses 
[12]. In trials on immune-competent mice, intestinal colonization 
stimulates the production of secretory IgA, the differentiation of 
effect or T helper 1 (Th1), Th2 and Th17 cells, and the development 
of regulatory T (TReg) cells that are involved in the homeostasis of 
gut. Cleary, these adaptive immune elements cooperate with innate 
immune cells to improve the gut barrier and protect the host from 
invading pathogens [13].

It has been known that alterations in the gut microbiota can 
influence mucosal immunity [14]. Gut microbiota has a central 
role in the development of mucosal immunity considering that the 
intestinal mucosa represents the largest surface area in contact with 
the antigens of the external environment. In addition, the surface 
of the gut microbiota covering the mucosa normally represents the 
main proportion of the antigens presented to the resident immune 
cells and those stimulating the pattern recognition receptors as TLR 
and NLRs of the intestinal epithelial cells [15]. It is still unclear how 
individual members of the microbiota or their derived products can 
affect the balance between pro-inflammatory and regulatory immune 
responses; moreover, it is unclear if the composition of the microbiota 
can influence the development of inflammatory diseases in the gut. 
Before considering the possible role of the microbiota in disease, it 
should be necessary to understand how the different colonization 
strategies of individual members of the microbiota could influence 
the development and functioning of the gut immune system and to 
prove that is the host immune system that determines if a bacterium 
is a possible friend or an enemy.

The mucosal immune system needs to comply two, apparently 
conflicting, functions. It needs to be tolerant of the overlying 
microbiota to prevent the induction of an excessive systemic immune 
response, but it needs to control the gut microbiota to prevent its 
overgrowth and translocation to systemic sites.

The Microbiota Evolution
Particular dietary components should be carefully controlled 

human dietary studies, because they could have opposite effects 
on gut. Many studies have documented the response of selected 
groups to prebiotics, but only few studies have examined temporal 
changes in the gut microbial community in response to dietary food 
intake and changing in diet [16]. It should also be noted that many 
dominant groups of bacteria, perhaps those that possess a greater 
degree of nutritional diversity or flexibility, remained unaffected 
by dietary changes [3]. Infants born naturally become inoculated 
by the mother’s vaginal and faecal microbiota during delivers [17]. 
Babies that are breastfed have a more stable, less diverse, bacterial 
community than not breastfed babies [18,19].

After the introduction of solid food, gut microbiota composition 
develops towards the adult pattern with increased diversity [20] and 

increased abundance of anaerobic Firmicutes [21].

Early colonization of the gut has been shown to influence 
maturation of the immune system [22]. In old age a decline in 
microbiota diversity has been reported [23], with reduced numbers of 
Bifidobacteria and an increase in Enterobacteriaceae. At the moment 
is not yet clear how these changes correspond to changes in health 
status, as well as the extent to which they are linked with alterations 
in dietary intake, physical activity or changes in immune function.

Influence of Fatty Acids of Dairy Products 
on Gut Microbiota

Polyunsaturated Fatty Acids (PUFA) contain two or more double 
bonds and are categorized on the basis of location of the double 
bond relative to the last methyl at the end of the molecule. Linoleic 
acid (C18:2ω-6) and α-linolenic acid (C18:3ω-3) are essential fatty 
acids belonging to PUFA family. Although the adult microbiome is 
not particularly enriched in genes involved in fatty acid metabolism 
[24] some interactions between PUFAs and some probiotics in 
microbiota have been reported, which could be able to affect the 
biological roles of both. Studies in vitro demonstrate that some 
PUFAs as linoleic, gamma-linolenic, arachidonic, alphalinolenic and 
docosahexaenoic acids have effects on the growth and adhesion of 
different Lactobacillus strains [25]. CLA is a mixture of positional 
and geometric isomers of octadecadienoic acid (predominantly at 
position 9 and 11, or 10 and 12) and appear in a conjugated double 
bond system (two double bonds separated by a single bond). Several 
health benefits are associated with their consumption. Several CLA 
isomers, including cis-9, trans-11 CLA, are naturally found in milk, 
cheese and ruminant food products [26]. However, since CLA 
can also modulate the production of arachidonic acid metabolites 
[27,28], it could be speculated that the reduced production of 
inflammatory lipid mediators could have a role to CLA’s beneficial 
actions in Inflammatory Bowel Disease (IBD) that is a group of 
disorders characterized by different levels of intestinal inflammation. 
Moreover, PUFA in general have beneficial effects on health; they are 
involved in the formation of prostacyclins and thromboxanes, pro-
inflammatory cytokine production, and induction of the release of 
acetylcholine [29]. In different studies it has been showed that diets 
rich in PUFAs positively influence immune function, blood pressure, 
cholesterol and triglycerides levels, and cardiovascular function in 
animals and humans [30]. In cheese, CLA content ranges depends 
on CLA content of raw milk. The transfer of fatty acids from milk 
to dairy products is influenced by their content in the milk. During 
cheese ripening CLA concentration is subjected to a decrement. This 
bioactive compound is adsorbed from gastrointestinal tract and could 
give beneficial effects on human health.

Microbiota community can alter and modify ω-3 PUFA 
metabolism to generate an increasing of long-chain PUFA metabolites 
that are able to produce CLA and an increase production of SCFA [31]. 
SCFA are the last products of anaerobic gut microbial fermentation 
and they play an important role in prevention of metabolic disorders 
interacting with the intestinal microbiota [32]. Bacterial products 
like short-chain fatty acids (SCFAs: Acetic acid, Propionic acid and 
Butyric acid) have also been shown to induce TREG cells [33,34,35]. 
Tregs play an essential role in immune tolerance and in their absence 
both humans and mice spontaneously develop autoimmune disorders 
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at a young age [36]. Natural Tregs develop in the thymus and induced 
Tregs development at sites of inflammation in the presence of IL-2 
and TGF-b [37]. SCFAs are showed to induce IL-18 production 
from epithelial cells and promote tolerogenic dendritic cells, which 
produce IL-10 and retinoic acid [38].

Besides, SCFAs have a number of important functions, such as 
the regulation of the balance between fatty acids synthesis, fatty acid 
oxidation and lypolisis in human body. Other studies reported that 
SCFAs, especially butyrate, have anti-inflammatory properties [39] 
and changes in gut motility [40] and energy consumption [41]. Thus 
SCFAs production changing may determine important physiological 
consequences.

Future Perspectives and Conclusions
The gut microbiota has a great impact on the nutritional and 

health status of the host, modulating the immune and metabolic 
functions. The bacterial community of gut is involved in the 
transformation of dietary compounds that could have beneficial 
effects. Thus, some kind of food compounds also exerts significant 
effects on the intestinal environment, changing the gut microbiota 
composition and probably its functional effects on human organism.

Further knowledge and research on interactions between 
bioactive food compounds and specific intestinal bacteria could 
contribute to a better understanding of both positive and negative 
interactions in human health and it could be interesting to investigate 
how milk and dairy products can influence the gut microbiota and 
subsequently outputs.

Investigate how milk and dairy products can influence the gut 
microbiota and subsequently outputs.
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