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Abstract

Citrulline, a nonessential amino acid, is an important precursor substance of 
arginine. It has been implicated in diverse biological and physiological events, 
such as nitrogen balance, growth and development, muscle performance, and 
intestinal homeostasis, but its underlying mechanism in intestinal function is 
unclear. This review discusses the modulation effects of citrulline on protein 
synthesis and intestinal homeostasis, as well as its potential mechanisms to 
broaden its application.
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and Ornithine Carbamoyltransferase (OCT) converts ornithine 
to citrulline. Arginine converted to n-hydroxy-arginine by the 
catalysis of Nitric Oxide Synthase (NOS). N-Hydroxy-arginine is 
then converted to citrulline, and the process releases NO [2,16,18]. 
Furthermore, arginine can be converted into ornithine by the action 
of arginase and then into citrulline. Arginase is a key rate-limiting 
enzyme in the transformation of arginine into ornithine. Proline 
is metabolized to P5C at first under the action of proline oxidase, 
then metabolized to ornithine under the action of OAT in the 
small intestine, liver and kidneys [18]. CO2 and NH3 are transferred 
to citrulline by N-acetylglutamate synthase and Carbamoyl 
Phosphate Synthase I (CPS-I). The intermediate metabolites are 
N-acetylglutamate and carbamoyl phosphate [2]. Additionally, in the 
kidney, citrulline transferred to arginine by ASS and ASL contributes 
to the majority of endogenous arginine levels [2,17,19]. Citrulline 
metabolism involves three different pathways: arginine biosynthesis, 
NO cycle, and complete urea cycle, which take place in the whole 
body, local sites, liver and kidneys, respectively [16].

Modulation Effects of Citrulline on Protein 
Synthesis
Citrulline and nitrogen balance

Nitrogen balance is the balance between nitrogen intake and 
output. It exerts its regulation effects by affecting urea formation. 
The arginine/glutamine–citrulline cycle contributes to ureagenesis. 
The liver can absorb arginine and glutamine, activate ureagenesis, 
and consequently increase amino acid metabolism and protein 
synthesis. Citrulline synthesis from arginine and glutamine prevents 
the overactivation of urea formation, thus maintaining the nitrogen 
balance.

Citrulline is crucial for keeping nitrogen homeostasis. In the 
absence of arginine supplementation, the concentration of plasma 
arginine does not decrease, and the plasma citrulline concentration is 
increased [20]. Citrulline treatment, but not arginine supplementation, 

Introduction
Citrulline (C6H13N3O3), a key intermediate of urea cycle, mainly 

exist in the watermelon in nature [1]. In mammals, enterocytes have 
a significant effect on the circulating citrulline levels [2]. Citrulline is 
essential for various regulation processes, especially during sepsis and 
endotoxemia [3], and plays an important role in protein synthesis 
and intestinal homeostasis. Studies have found that citrulline 
regulates nitrogen balance [4], growth and development [5,6], muscle 
performance [7], gut barrier function [8-11] intestinal digestion and 
absorption [12], intestinal cell apoptosis [13] and antioxidant function 
[4,14,15]. The present review briefly highlights the significant role 
of citrulline in animals in the modulation of protein synthesis and 
intestinal homeostasis and points out its potential mechanisms. 

Physicochemical property
The term citrulline (Figure 1) was derived from watermelon 

(Citrullus vulgaris) in the 1930s [16]. Citrulline has a molecular 
weight of 175.19 g/mol and presents two enantiomers, namely, the L 
and D forms. In nature, citrulline exists in the L form. Under normal 
temperature and pressure, citrulline is a white crystal or crystalline 
powder. Citrulline has a melting point of 222 °C and density of 
1.289 g/cm [17]. It is well soluble in water but not in ethanol, ether, 
and methanol [17]. 

Biosynthesis and Metabolism
Citrulline is synthesized from substrate of arginine, proline, 

glutamine in the intestine (Figure 2). The common metabolic 
product of arginine, proline, and glutamine is ornithine, which is 
then converted to citrulline. The citrulline synthesized by glutamine 
accounts for the major proportion of the intestinal epithelial cell 
circulating citrulline levels [18]. The conversion of glutamine to 
citrulline depends on four enzymes: glutaminase metabolizes 
glutamine to glutamate, and glutamate regulates the synthesis of 
pyrroline through Pyrroline-5-Carboxylate Synthase (P5CS). Then, 
Ornithine Aminotransferase (OAT) converts P5C to ornithine, 
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increases the concentration of plasma arginine in horses [21] and 
restores the production of NO in small intestinal cells and the nitrogen 
balance [3,22-25]. Citrulline supplementation improves the activity 
and expression of kidney arginine succinate synthase and arginine 
concentration [12]. This arginine–citrulline cycle is a mean to protect 
dietary arginine from excessive liver degradation. Moreover, in a 
mouse model fed with an arginine-free diet, ornithine contributes to 
citrulline synthesis [26] and ornithine synthesis from citrulline in the 
small intestinal mucosa of mice [27]. After citrulline is synthesized 
from ornithine by enterocytes, it is then largely absorbed by the 
kidneys [28]. In the kidney, almost all the citrulline is metabolized 
to produce arginine under the action of argininosuccinate synthetase 
and argininosuccinate lyase. In conclusion, the arginine–ornithine–
citrulline cycle is central to maintaining nitrogen homeostasis.

Citrulline and growth
Animal growth and development is the guarantee of efficient 

production, which is influenced by many factors, such as animal 
species, nutrition level, environment and maternal effect [29-31]. 
Citrulline supplementation is an important nutrition regulator in 
animal growth and development. In the cases of intrauterine growth 
restriction, the supply of citrulline promotes fetal development. Fetal 
growth enhancement is related to increased fetal muscle protein 
synthesis [5,6]. This promotion effect may also be related to increased 
hormone secretion. Citrulline contributes to the release of a variety 
of endocrine hormones, mainly including the growth hormone, 
insulin [32]. Furthermore, these hormones are contributed to protein 
synthesis [33-36]. These findings are in agreement with those of 
previous studies, which found that arginine and its metabolites 
are responsible for the secretion of insulin and growth hormone 
and influence piglet growth [18,37,38]. When mice fed with an 
arginine-free diet are weaned, their citrulline production increases, 
and the mice achieve normal weight [39]. Furthermore, citrulline 
administration increases the body weight and average daily gain in 
suckling piglets, and the suitable adding dose is 0.29 g/kg/day [12]. 
However, the precise mechanisms behind these processes remain 
unclear.

Citrulline and muscle performance
Animal muscle performance is related to the supply of certain 

nutrients. It’s reported that citrulline could be transported to rat aortic 
smooth muscle cells by a low-affinity carrier with characteristics 
resembling systems L and N [40]. Citrulline exerts its promotion 
effects on muscle performance by enhancing muscle protein 
synthesis and protecting the muscle cells from atrophy [14,41-44]. 
The supply of citrulline increases the synthesis rate of muscle protein 
by 33% in male rats [45]. Citrulline affects muscle protein synthesis 
by the following action: increasing myofibrillar protein synthesis 

[41]; enhancing the expression of skeletal muscle myofibrillar 
constituents [14]; improving insulin levels [42]; and increasing 
muscle mass, content, strength, and motor activity[46]. The positive 
effect of citrulline on muscles is related to three mechanisms. First, 
the implication of the NO pathway. NO synthesis depends on 
NOS, which includes nNOS, eNOS, and iNOS [47]. L-citrulline 
supplementation significantly increases protein synthesis rate and the 
diameter of C2C12 myotubes incubated in HBS or serum free media 
and in the presence of NOS inhibitors (NG-nitro-L-arginine methyl 
ester (L-NAME) and aminoguanidine). L-citrulline significantly 
increases iNOS gene expression [48]. In one study, male Wistar 
rats were assigned to four groups: recovered, 1-(2-Trifluoromethyl-
phenyl)-Imidazole (TRIM), L-NAME, and control. The TRIM is also 
an inhibitor of NOS. The cross-sectional area of skeletal muscle in the 
recovered group reached complete muscle regrowth which exceeds 
the l-NAME and TRIM group after 10 days of immobilization and 
7 days of recovery [49]. These results show that the NOS pathway 
is vital for the regrowth of immobilized muscles. Moreover, the 
activation of the mTOR pathway is involved in the muscle regulation 
process. mTOR expression in the recovery group of male Wistar 
rats was enhanced compared to the control group and the increase 
was blocked in the l-NAME and TRIM groups after 10 days of 
immobilization and 7 days of recovery [49]. Moreover, citrulline 
activates the phosphorylation of mTORC1 pathway downstream 
molecules, such as S6K1 and 4E-BP1, in in vitro cultured myotubes 
and malnourished aged rats [43,50-52]. These findings suggest that 
citrulline regulates muscle performance possibly by activating mTOR 
in muscle protein synthesis. Finally, the hypothalamus is one of the 
possible anatomical sites in which citrulline may modulate muscle 
performance. Hypothalamus is the center of the endocrine and 
nervous systems. The activity and amount of tyrosine hydroxylase 
is a rate-limiting enzyme to dopamine synthesis from tyrosine [53-
55]. In aged rats, citrulline supplementation improves the total 
tyrosine hydroxylase numbers and locomotor activity [56]. Thus, 
citrulline can regulate daily activities by the dopaminergic pathway. 
Furthermore, the arginine group (injected L-arginine) increases the 
total workload of exercise and nNOS-positive cell numbers in the 
paraventricular nucleus and dorsomedial hypothalamus, decreases 
the athletic ability of the L-NAME group (injected L-NAME), and 
exerts no significant effect on the quantity of nNOS-positive cells in 
rats [57]. These results show that hypothalamic NO participates in 
regulating the exercise performance of rats. In conclusion, citrulline 
supplementation obviously enhances animal muscle performance 
through the NO pathway, mTOR pathway, and the hypothalamus is 
one of the sites of action.

Citrulline and Intestinal Homeostasis
Citrulline not only adjusts protein synthesis but also exerts certain 

effects of regulating intestinal homeostasis. The gut is the main source 
of plasma citrulline; hence, citrulline concentration is an indicator of 
enterocyte function and quality [58]. Additionally, citrulline can be 
effectively transported into the intestine through several pathways 
such as carrier-mediated active transport system in everted sacs of 
the small intestine [59], the Na+-dependent (system B0,+) and the Na+-
independent uptake (systems L and b0,+) in the Caco-2 cells [60], and 
a neutral amino acid transport system in the hamster intestine [61]. 
The intestinal homeostasis of animals is responsible for their normal 

Figure 1: Citrulline structure [16].
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growth and development. The normalization of gut barrier function is 
one of the important aspects of intestinal homeostasis. The gut barrier 
is the sum of the structures and functions that prevent intestinal 
harmful substances, such as bacteria and toxins, from passing 
through the intestinal mucosa and from being circulated in the blood 
[62]. The intestinal barrier includes physical, chemical, microbial, and 
immunological barriers, all of which are related to intestinal health 
[63]. Citrulline exerts its effects on maintaining intestinal homeostasis 
by protecting the gut barrier function, promoting intestinal digestion 
and absorption, and inhibiting intestinal cell apoptosis. 

Citrulline and gut barrier function
Citrulline and intestinal physical barrier: Epithelial tight 

junctions are vital for proper maintenance of intestinal barrier 
function. Citrulline exerts its modulation effects by regulating the 
intestinal tight junction and integrity of the intestinal mucosa. Dietary 
supplementation with L-citrulline enhanced ileal tight junctions in the 
case of ileum coinfected with malaria and nontyphoidal Salmonella 
serotypes which impaired intestinal barrier in a mouse model [64]. 
Additionally, a female C57BL/6J mice model trial which fed with 
western-style diet and citrulline showed that mice fed a western-style 
diet + citrulline diet has a significantly higher level of tight junction 
proteins occludin and zonula occludens-1 in duodenum [65]. 
Moreover, the trans epithelial electrical resistance ratio is the index 
that reflects the permeability of cell membranes. Citrulline improves 
the mean transepithelial electrical resistance ratio of jejunal IPEC-J2 
cell monolayers in neonatal piglets and decreases the inulin flux 
across the hypoxic monolayers after exposure to hypoxia [8]. Hence, 
citrulline supplementation contributes to the maintenance of the 
tight junctions and integrity of intestinal epithelial cells. In a murine 
mucositis model, citrulline administration attenuates damage to the 
mucosal architecture, decreasing the size of the injured areas and 
permeability of the small intestine [9]. Additionally, the protective 
effects of citrulline in the intestinal epithelial cells are prevented in 
the presence of irreversible NOS inhibitors [8]. Thus, the efficiency 
of citrulline in intestinal epithelial cells depends on the NO pathway. 

Therefore, citrulline can regulate the intestinal physical barrier by 
affecting intestinal mucosa cell junctions, integrity, and permeability.

Citrulline and intestinal immune barrier: The intestinal tract 
is the largest peripheral immune organ in animals. The intestinal 
mucosa associated with lymphoid tissue contains more immune 
cells than other tissues in the body. The intestinal mucosa immune 
cells secrete various regulatory substances involved in the immune 
response, including many cytokines (IL-6, IL-10, TNF-α, IFN-γ) and 
immunoglobulins. IL-10 is an anti-inflammatory cytokine. TNF-α, 
IFN-γ, and IL-6 possess proinflammatory cytokine effects [10]. 

Citrulline can affect the intestinal immune barrier through three 
channels. First, citrulline affects the levels of proinflammatory or 
anti-inflammatory cytokines. Oral citrulline significantly decreases 
the jejunal content of TNF-α and IL-6 in the male rat jejunum model 
of ischemia–reperfusion injury and resistin (an adipose-derived 
peptide hormone) levels without impairing the secretion of anti-
inflammatory cytokines (IL-10 and adiponectin) [11,66]; this process 
provides a safe means of immunomodulation that preserves the 
anti-inflammatory mediator response. Citrulline supplementation 
reduces IFN-γ levels and maintains IL-10 levels, which may decrease 
overall mucosa inflammation [67]. Second, citrulline regulates 
immunoglobulins, including IgA (including sIgA), IgG, and IgM. 
Citrulline supplementation increases IgA, IgG, and IgM levels and 
improves the immunity of suckling piglets [12]. SIgA, a secretory 
immunoglobulin, participates in the generation of local immune 
response. It neutralizes the antigen, forms the antigen–antibody 
complexes, and prevents bacterial adhesion to the intestinal mucosa 
to prevent the bacteria from entering the intestinal wall [68]. 
Pretreatment with citrulline can significantly stimulate the intestinal 
production of sIgA and reduce bacterial translocation [17]. Third, 
immune cells play critical roles in suppressing the immune response. 
Neutrophil infiltration is one of the manifestations of inflammation. 
Citrulline supplementation reduces neutrophil infiltration in the 
intestinal mucosa [69]. Therefore, neutrophils and macrophages 
are involved in the regulation process of citrulline in the intestinal 
mucosa. In summary, citrulline can affect the intestinal immune 
barrier by regulating cytokine, immunoglobulin, and macrophage 
levels. 

Citrulline and intestinal digestion and absorption 
The intestinal tract is the largest digestive organ of the body. 

Animal life activities depend on intestinal digestion and absorption, 
which provide nutrition to sustain life. The intestinal epithelium can 
absorb nutrients and water and block various antigens and toxins 
[70]. Citrulline supplementation increases the villus length of the 
duodenum in suckling piglets [12]. Moreover, citrulline promotes 
the piglet’s digestion and nutrient absorption ability for growth 
[12]. Citrulline levels can effectively reflect intestinal digestion and 
absorption capacity [71]. In patients with short bowel syndrome, 
post-absorptive plasma citrulline concentration is significantly 
correlated with the net digestive absorption of protein and fat [72]. 

It also reflects the mass of absorptive enterocyte and the functional 
absorptive bowel length [72,73]. Therefore, citrulline exerts positive 
effects on intestinal digestion and absorption, but the exact molecular 
mechanisms remain unclear.

Figure 2: Scheme of synthesis of L-citrulline [2]. P5C: l-Δ1-Pyrroline-5-
Carboxylate; P5CS: Pyrroline-5-Carboxylate Synthase; OAT: Ornithine 
Aminotransferase; OCT: Ornithine Carbamoyltransferase; ASS: 
Argininosuccinate Synthetase; ASL: Argininosuccinate Lyase; CP: 
Carbamoyl Phosphate; CPS-I: Carbamoyl-Phosphate Synthase I; NOS: Nitric 
Oxide Synthase.
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Citrulline and intestinal cell apoptosis
Intestinal epithelial homeostasis depends on a balance between 

cell proliferation and apoptosis. Apoptosis, or programmed cell death, 
is a key factor to control the number of intestinal epithelial cells [74]. 
Any reason that increases or decreases cell apoptosis may contribute 
to mucosal atrophy or tumor formation and thus hinder intestinal 
function [75]. Citrulline has an obvious influence on intestinal 
cell apoptosis through the NO pathway. NO is synthesized from 
citrulline, and low NO concentrations protect cells from apoptosis 
[76]. The antiapoptotic effects of NO are related to the modulation 
of cyclic nucleotides and ceramide and inhibition of caspases by 
S-nitrosylation and mitochondrial respiration [13]. In addition, 
citrulline attenuates jejunal apoptosis through devitalization of the 
NOS and NF-κB pathways in male Wistar rats [11]. In conclusion, 
citrulline administration decreases intestinal cell apoptosis.

Citrulline and Antioxidant Function 
In normal state, the oxidant and antioxidant abilities of animals 

are in dynamic equilibrium. Free radicals can make strong reaction 
with the protein, fat, nucleotides and carbohydrate molecules. When 
intracellular accumulate lots of free radicals, there will be occurrence 
of cell apoptosis, cell membrane permeability and barrier function 
changes and immune damage [77]. Citrulline exhibits certain 
antioxidant functions. Citrulline can effectively protect plant DNA 
and enzymes from damage by reactive oxygen species [78]. In animal 
models, citrulline can effectively reduce the harm caused by oxidative 
stress. Citrulline supplementation limits lipoprotein oxidation and 
decreases protein carbonylation and thiobarbituric acid (the final 
product of lipid peroxidation) reactive substances in elderly rats and 
in plasma [4,15]. Therefore, citrulline supplementation significantly 
contributes to antioxidant function.

Conclusion
Citrulline is a highly promising nutrient that has well-defined 

roles in nitrogen homeostasis and gut homeostasis. In recent years, it 
has been shown to modulate protein synthesis, intestinal homeostasis 
and antioxidant capacity (Figure 3). However, the precise mechanism 
of citrulline in the regulation of intestinal function, e.g., as intestinal 
barrier, remains unclear. Moreover, the internal molecular mechanism 
of citrulline for the control of gut digestion and absorption and its 
antioxidant function are not yet clearly understood. An in-depth 
study of citrulline to clarify its mechanism of action in maintaining 

intestinal function will provide new ideas to strengthen animal 
intestinal health, improve livestock production performance, and 
promote husbandry development.
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