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Abstract

Soy consumption has been associated with many potential 
health benefits in reducing chronic diseases such as obesity, cardio-
vascular disease, insulin-resistance/type II diabetes, certain type of 
cancers, and immune disorders. These physiological functions have 
been attributed to soy proteins either as intact soy protein or more 
commonly as functional or bioactive peptides derived from soy-
bean processing. These findings have led to the approval of a health 
claim in the USA regarding the ability of soy proteins in reducing 
the risk for coronary heart disease and the acceptance of a health 
claim in Canada that soy protein can help lower cholesterol levels. 
Using different approaches, many soy bioactive peptides that have 
a variety of physiological functions such as hypolipidemic, anti-
hypertensive, and anti-cancer properties, and anti-inflammatory, 
antioxidant, and immunomodulatory effects have been identified. 
Some soy peptides like lunasin and soymorphins possess more than 
one of these properties and play a role in the prevention of mul-
tiple chronic diseases. Overall, progress has been made in under-
standing the functional and bioactive components of soy. However, 
more studies are required to further identify their target organs, 
and elucidate their biological mechanisms of action in order to be 
potentially used as functional foods or even therapeutics for the 
prevention or treatment of chronic diseases.

Keywords: Soy protein; Soy peptides; Bioactives; Property
Introduction

Soybean (Glycine max) was cultivated in Asia for nearly 5000 
years, first in China, then in Japan. It was introduced to Europe 
in the 18th century and then to the United States in the 19th cen-
tury [1-3]. Soybean has been an important economic crop in the 
United States since the 1940s. Currently the United States is the 
leading soy producer and accounts for over 30% of the world’s 
production [3,4]. The popularity of soy foods or products has 
been rising in North America over the last decades, particularly 
after the U.S. Food and Drug Administration (FDA) approved 
the food health claim linking soy protein to the reduction of 
the risk for coronary heart disease in 1999 [4-7]. Soybean is a 
rich source of high-quality proteins containing all the essential 
amino acids found in animal proteins without cholesterol and 
with less saturated fat.

Epidemiological studies have associated soy consumption 
with potential benefits in reducing the risk for chronic diseas-
es such as obesity, cardiovascular disease, insulin-resistance/
type II diabetes, certain type of cancers, and immune disorders 
[3,5,6,8-11]. Soy proteins and their associated phytochemicals, 
mainly isoflavones, are believed to be responsible for these 
health benefits. However, the specific functional or bioactive 

component(s) in soy have not been identified nor their mecha-
nism of action well understood. In recent years, research has 
focused more on biologically active or “bioactive” peptides de-
rived from soybeans from processes mimicking gastrointestinal 
digestion. This paper summarizes the current knowledge about 
the soybean bioactive peptides and their roles in the modula-
tion of physiological functions or prevention of chronic diseases.

Soy Composition and Major Bioactives

Soybeans are generally composed of ~35–40% protein, ~20% 
lipids, ~9% dietary fiber, and ~8.5% moisture based on the dry 
weight of mature raw seeds [3]. Their compositions vary with 
the variety and with the location and climate of the planting. 
The major soy components that have been shown to have bio-
logical activity include proteins or peptides, isoflavones, sapo-
nins, and protease inhibitors [8,12].

Soy Proteins and Subunits

The two major storage proteins, β-conglycinin (βCG, 7S) and 
glycinin (11S), comprise 80–90% of the total protein in soybean 
[5,6,13,14]. βCG is composed of α’, α, and β subunits, whereas 
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glycinin is composed of acidic (A) and Basic (B) subunits: A1aB2, 
A1bB1b, A2B1a, A3B4, and A5A4B3 [6,12]. Minor proteins in 
soybean include 2S, 9S, and 15S storage proteins; lectin; and 
Kunitz and Bowman–Birk (BBI) protease inhibitors [14]. Soy 
proteins with different ratios of βCG and glycinin are believed 
to have different nutritional and physiological effects [15,16]. 
Soy proteins with varying subunit compositions have also been 
shown to have significantly different functional properties in 
relation to quality, yield, and texture in tofu production [17]. 
Bioactive peptides are inactive when they are part of the parent 
protein sequence, but become activated upon release by enzy-
matic processing, gastrointestinal digestion, food processing, or 
fermentation [9,10,16]. They are usually 2 to 20 amino acids in 
length and are absorbed by the intestines into the blood circula-
tion to exert systemic or local physiological effects in target tis-
sues [9,11,16]. Maebuchi et al. has demonstrated that human 
intestinal absorption of 11S peptides resulted in significantly 
greater increase in venous blood amino acid concentrations 
than did 11S globulin or amino acid mixture when administered 
as a beverage [18]. This difference was particularly notable for 
aromatic and branched-chain amino acids, suggesting that hy-
drolyzed soy protein is faster and more efficiently absorbed in 
humans [18].

Soy Isoflavones

The other major bioactive compounds in soybeans are the 
isoflavones, which are associated with the soy proteins. Isofla-
vones are phytochemicals, often referred to as phytoestrogens 
because they structurally resemble 17β-estradiol, and can bind 
both Estrogen Receptors α and β (ERα/β), but have a higher af-
finity for ERβ [19-22]. They possess both estrogenic and anti-
estrogenic properties as shown in cell culture and clinical stud-
ies. Most of the isoflavones are naturally present in soybeans 
as glycosides, genistin, diadzin, and glycetin. However, upon 
digestion or fermentation by β-glucosidases they are converted 
to the bioactive form, aglycones: genistein, diadzein, and glyce-
tein [6,8]. Soy isoflavones have been linked with beneficial ef-
fects in preventing heart disease, diabetes, menopausal symp-
toms, osteoporosis, and prostate and breast cancers [23-26] in 
humans because of their hormonal and antioxidant properties 
[23,27]. The large variation in abundance of each isoflavone in 
soybeans and soy foods and their bioavailability results in in-
consistent physiological functions found among different stud-
ies [3,8,23,25,26].

Soy Saponins

A minor bioactive component in soybeans are the saponins 
which are amphiphilic oleanane triterpenoid glycosides with 
polar sugar chains conjugated to a nonpolar pentacyclic ring 
[28]. It is suggested that saponins have anti-inflammatory, anti-
carcinogenic, antimicrobial, and hepato- and cardio-protective 
effects [28]. The effect of saponins is not further discussed in 
this review, which mainly focuses on bioactive soy peptides.

Methods of Bioactive Peptide Production

Soy bioactive peptides are small protein fragments produced 
by enzymatic hydrolysis, fermentation, food processing, and 
gastrointestinal digestion of larger soybean proteins [11,29] 
and are associated with a multitude of beneficial metabolic ef-
fects [16]. The peptide production and composition by different 
methods are affected by the enzymes (in vitro enzymatic hydro-
lysis) or bacteria (in fermentation) used and also related to the 
type of soy proteins.

Gastrointestinal Digestion

In its simplest form, soy bioactive peptides are released 
upon ingestion and digestion of soybeans by acid and digestive 
enzymes from the stomach, small intestine, and pancreas such 
as pepsin, trypsin, chymotrypsin, and pancreatin. These small 
peptides are absorbed through the walls of the small intestine 
into the bloodstream where they can have systemic effects or 
target specific tissues [30-32].

In Vitro Enzymatic Hydrolysis

In vitro enzymatic hydrolysis is applied commercially in larger 
volumes, which can have better quality control and are more ef-
fective and stable in obtaining peptides with specific molecular 
weight and peptide profiles [16]. In vitro enzymatic hydrolysis 
can also utilize a combination of specific and nonspecific pro-
teases such as pepsin, trypsin, chymotrypsin, papain, and pep-
tidase to obtain peptides from digestion of soy proteins under 
their optimal pH and temperature conditions.

Food Processing

Bioactive peptides can be formed during food processing 
because of structural or chemical alterations. For example, pH 
modifications or chemical treatments may lead to the modifi-
cation of amino acids, altering functional properties [33]. Im-
proved functionality can lead to improvements in digestibility, 
protein or peptide enrichment, or reduction of trypsin inhibi-
tor activity, which can arise from acylation, glycosylation, phos-
phorylation, reductive alkylation, succinylation, or lipophiliza-
tion [33]. Common food processing techniques include heat 
treatment, pH modification, protein separation, ultra-high-
pressure processing, and storage conditions [33,34].

Bacterial Fermentation

Traditionally, Asian countries like Korea, China, and Japan 
have been consuming fermented soybean foods such as soy 
sauce, soy paste, natto, tempeh, and miso for a long time [3]. 
Fermentation is an efficient and cost-effective method for 
generating bioactive peptides and food-grade hydrolyzed pro-
teins through microbial activity or microbial enzymatic activity 
[16,34]. A large group of bacteria known as lactic acid bacteria 
found in the upper gastrointestinal tract are frequently used 
in fermentation to produce bioactive peptides [16]. However, 
fermentation may not fully hydrolyze soybean proteins with 
post-translational modification and complex tertiary structures. 
It is necessary to supply additional enzymes such as pronase, 
trypsin, and plasma proteases to produce smaller peptides with 
better bioactivity [16,34,35]. In addition, fermentation plays an 
important role in texture and flavor development [16].

Soy Bioactive Peptides and Their Properties

Over the last decade or so, the focus of soy research has 
shifted to the identification and characterization of bioactive 
peptides and their corresponding physiological functions. Nu-
merous soy peptides with widespread beneficial physiological 
effects have been identified as shown in Table 1. These include 
lipid lowering (hypocholesterolemic, hypotriglyceridemic, anti-
obesity) to anti-diabetic, anti-cancer, hypotensive, anti-inflam-
matory, and antioxidant in a variety of experimental models.

Hypolipidemic

The best studied bioactivity of soy peptides is their hypo-
lipidemic property. Many soy peptides have been identified to 
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lower cholesterol and triglycerides, and to suppress fat synthe-
sis and storage in different experimental systems. LPYPR from 
the glycinin subunit of the soybean was one of the initial hypo-
cholesterolemic peptides discovered by Yoshikawa et al. (2000). 
Administration of this peptide at a dose of 50 mg/kg of body 
weight without isoflavones for 2 days reduced both serum total 
and Low-Density Lipoprotein (LDL) cholesterol in rats by ~25% 
[53]. Subsequent studies further showed that, more specifi-
cally, LPYP was hypocholesterolemic [84] and acting as a com-
petitive inhibitor of 3-Hydroxy-3-Methylglutaryl CoA Reductase 
(HMGR), the major rate-limiting enzyme in cholesterol biosyn-
thesis [49]. This peptide increased LDL uptake in cultured liver 
cells through activating the LDL Receptor (LDLR)–Sterol Regula-
tory Element-Binding Protein 2 (SREBP2) pathway [36].

Two other cholesterol-lowering peptides derived from gly-
cinin are IAVPGEVA and IAVPTGVA [50,51]. Similar to LPYP, 
these peptides were shown to inhibit HMGR activity in cultured 
HepG2 cells and promote LDL uptake via the LDLR–SREBP2 
pathway [36,49]. Lammi et al. uncovered two hypocholester-
olemic peptides—YVVNPDNDEN and YVVNPDNNEN—derived 
from soy βCG, which also modulate cholesterol by an identi-
cal mechanism [37]. Some other hypocholesterolemic soy pep-
tides include lunasin (2S) peptides [29], SFGVAE [49], WGAPSL 
[12,16], LLPHH [34], RPLKPW [34], VAWWMY [85-87], and FV-
VNATSN [88].

Moreover, several hypotriglyceridemic di-peptides have 
been identified from soybean components. These are KA (from 
glycinin, βCG, trypsin inhibitor, and lipoxygenase), VK (from 
glycinin, trypsin inhibitor, and lipoxygenase), and SY (from gly-
cinin, βCG, and lipoxygenase) [67]. βCG was shown to inhibit 
fatty acid synthesis in the liver leading to a reduction in serum 
triglycerides in rats [68]. Further studies have identified that 
the peptides KNPQLR, EITPEKNPQLR, and RKQEEDEDEEQQRE 
in this protein were able to suppress Fatty Acid Synthase (FAS) 
activity [16,42]. βCG subunits demonstrated a better ability to 
reduce lipid levels in mouse 3T3-L1 adipocytes by embedding 
more active peptides in the cells than glycinin subunits [89], and 
to suppress lipid accumulation by downregulating lipoprotein 
lipase and FAS [90]. Peptides ILL, LLL, and VHVV derived from 
Flavourzyme®-treated soy protein isolate showed lipolysis-stim-
ulating activity in 3T3-L1 mouse adipocytes [76,91].

Anti-Diabetic

Obesity and hyperlipidemia are often associated with insulin 
resistance and type II diabetes leading to the metabolic disease 
phenotype. Interestingly, many soy peptides with hypolipid-
emic function also possess anti-diabetic activity in different ex-
perimental models. For example, the hypocholesterolemic soy 
peptides LPYP, IAVPGEVA, and IAVPTGVA also improved glucose 
metabolism by increasing glucose uptake in cultured hepatic 
cells via Glucose Transporters (GLUT) 1 and 4 [36,92]. Further in 
vitro and in silico studies demonstrated that peptide IAVPTGVA 
was an efficient inhibitor of Dipeptidyl Peptidase IV (DPP-IV), 
a serine exopeptidase. DPP-IV is responsible for the hydrolysis 
of glucagon-like peptide and glucose-dependent insulinotropic 
polypeptide which are critical for maintaining glucose homeo-
stasis [52]. Although the peptides YVVNPDNDEN and YVVNP-
DNNEN had similar hypocholesterolemic activity as IAVPTGVA, 
they were ineffective at inhibiting DPP-IV due to their longer 
peptide sequence and lack of Pro as the fourth N-terminal resi-
due [52].

Both soy protein and isoflavones have been linked with im-

provements in diabetic rodent models [93–95] such as lowered 
serum glucose levels, increased insulin secretion, and reduced 
fasting plasma glucose. However, fermented soybean products 
containing soy peptides like natto and chungkookjang may be 
even better in the prevention of the onset of type II diabetes in 
human and mouse models [10,96-98]. Consumption of a diet 
containing soy protein (35% animal protein, 35% soy protein, 
and 30% other plant proteins) for 6 weeks by women aged 18–
40 years (at week 24–28 of gestation) with gestational diabetes 
mellitus (n=34) was associated with significant improvements 
in fasting plasma glucose, serum insulin levels, homeostasis 
model of assessment—insulin resistance, and quantitative insu-
lin sensitivity check index compared with the control diet group 
consisting of 70% animal and 30% plant proteins (n=34) [99]. 
Studies by Oliva et al. demonstrated that dyslipidemic insulin-
resistant Wistar rats fed a sucrose-rich diet supplemented with 
soy protein had decreased hepatic triglyceride and cholesterol 
storage and steatosis, functional muscle glucose transporter 
GLUT4, and normalized glucose-6-phosphate and glycogen 
levels [100]. In spontaneously diabetic Goto-Kakikazi rats, con-
sumption of βCG specifically improved muscle glucose uptake 
with higher plasma adiponectin, increased GLUT4 translocation, 
and phosphorylated Adenosine Monophosphate-Activated 
Protein Kinase (AMPK) [101]. Similarly, soymorphin-5 (YPFVV), 
a soy-derived µ-opioid peptide derived from the β-subunit of 
the βCG lowered glucose and triglyceride levels in diabetic 
KKAy mice through activation of adiponectin and Peroxisome 
Proliferator-Activated Receptor α (PPARα) [43]. Roblet et al. uti-
lized electrodialysis with an ultrafiltration membrane to isolate 
low-molecular-weight (300–500 Da) soy peptides from a com-
plex soy mixture [102]. This peptide fraction improved glucose 
uptake in cultured rat muscle cells through activation of AMPK 
by phosphorylation [102]. Another study showed that the soy-
bean peptide, Vglycin, is resistant to digestive enzymes and has 
anti-diabetic function in type II diabetic Wistar rats [66]. Vglycin 
comprises 37 amino acids with 6 half-cysteines that are part of 3 
pairs of disulfide bonds. When administered to diabetic Wistar 
rats for 4 weeks, it normalized fasting glucose levels, increased 
insulin sensitivity, and restored insulin signaling and pancreatic 
function [66].

Anti-Hypertensive

High blood pressure or hypertension is another risk factor 
for coronary heart disease. Interestingly, antihypertensive pep-
tides are the most commonly occurring and best studied bioac-
tive peptides in foods [11,16]. Antihypertensive peptides func-
tion by blocking Angiotensin-Converting Enzyme (ACE), which 
modulates the rennin–angiotensin system, thereby regulating 
blood pressure [11,34]. The dipeptidyl carboxypeptidase activ-
ity of ACE converts the decapeptide angiotensin I into the va-
soconstricting octapeptide angiotensin II, resulting in increased 
blood pressure [11]. Traditional Asian fermented soybean foods 
such as soybean paste [77], soy sauce [103], natto [104], and 
tempeh [105] are rich in ACE inhibitory peptides [81,106]. Ko-
rean fermented soybean paste treated with chymotrypsin con-
tains the hypotensive tripeptide, HHL [12,16], while soybean 
fermented with Bacillus natto or Bacillus subtilis was shown 
to contain two ACE inhibitor peptides, VAHINVGZK and YVWK 
[16,34]. Fermented soybean seasoning was shown to have a 
higher ACE inhibitory activity compared with soy sauce [82] 
and this was attributed to the peptides SY and GY, which de-
creased hypertension in salt-sensitive Dahl rats by suppressing 
the renin–angiotensin system and lowering serum aldosterone 
levels [83]. Okara, a soy pulp extract that is a by-product of tofu 
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production, has been shown to have ACE inhibitory activity due 
to the presence of some small antihypertensive peptides [107].

The other antihypertensive soy peptides include PGTAVFK, 
IVF, LLF, LNF, LSW, LEF, YVVFK, IPPGVPYWT, PNNKPFQ, NWGPLV, 
and TPRVF [16,34]. Treatment of soy milk with the industrial 
protease PROTIN SD-NY10 produced FFYY, WHP, FVP, LHPGDA-
QR, IAV, VNP, LEPP, and WNPR peptides that had enhanced ACE 
inhibitory activity compared with regular soy milk [80]. In soy 
βCG, LAIPVNKP and LPHF were demonstrated to have ACE in-
hibitory activity, while glycinin was found to contain the ACE 
inhibitory peptides VLIVP, SPYP, and WL, and more specifically, 
the A4 and A5 subunits of glycinin comprised the antihyperten-
sive peptide sequence of NWGPLV [9,12]. It has been revealed 
that some structural similarities exist among the bioactive pep-
tides with blood pressure lowering properties. The presence of 
Pro or hydroxyl-Pro at the C-terminus made the peptides gener-
ally resistant to degradation by digestive enzymes, while Pro, 
Lys, or Arg were preferred at the C-terminus for ACE inhibitory 
potency [9,34]. It was also observed that dipeptides with a C-
terminal Tyr had higher antihypertension effect than dipeptides 
with C-terminal Phe [9].

Anti-Cancer

Soy isoflavones have drawn much scrutiny over the years 
in terms of their role in cancer from both a promotion and 
prevention standpoint [3,6]. However, soy peptides have also 
been identified in different experimental systems to have an-
ti-cancer properties [11,12,16,29,56]. Back in 2000, Kim et al. 
purified the hydrophobic peptide X-MLPSYSPY from defatted 
soy protein that arrested the cell cycle progression of murine 
lymphoma cells (P388D1) at G2/M phase [69]. Further studies 
have shown that most of the anti-cancer soy peptides belong 
to the minor 2S fraction of soybean proteins: lunasin and BBI 
[12,16,29,56–58]. The BBI is a low-molecular-weight protein, 
can inhibit trypsin and chymotrypsin activity, and has been 
considered as an anti-nutrient for a long time [57,108]. It has 
demonstrated anti-carcinogenicity in different species includ-
ing humans and tissue types including colon, liver, esophagus, 
breast, prostrate, and was considered as an FDA Investigational 
Drug in 1992 [57,108]. In both Phases I and II human trials, the 
BBI promised to be a safe cancer chemopreventive agent that 
prevents and suppresses malignant transformation and carcino-
genesis at doses from 800 to 2000 chymotrypsin inhibitor units 
[108,109]. The mechanism by which BBI exerts its anti-cancer 
activity involves apoptosis through reactive-oxygen-species-in-
duced mitochondrial damage after proteasomal inhibition and 
anti-angiogenesis [110–113].

L u n a s i n S K W Q H Q Q D S C R KQ KQ G V N LT P C E K H I M E -
KIQGRGDDDDDDDDD) is another chemopreventive peptide 
that is closely associated with the BBI. It is 43 residues long with 
a C-terminal of 9 aspartic acid residues and cell adhesion motif, 
RGD that enables binding to non-acetylated H3 and H4 histones 
to prevent their acetylation, providing its anti-carcinogenic ac-
tivity [16,34]. Park et al. showed that the BBI has a function of 
protecting lunasin from gastrointestinal degradation when soy 
protein is consumed orally [58]. Lunasin decreased skin tumor 
incidence in the SENCAR mice skin cancer model by ~70% when 
topically applied at a dose of 250 µg, and promoted colony sup-
pression of mammalian cells induced by carcinogens and viral 
oncogenes E1A and RAS by 30–43% [11,12,114-117]. Howev-
er, its effects on human breast cancer cell line MCF-7 appear 
to be inconsistent. Lunasin did not inhibit the growth rate of 
MCF-7 and mouse fibroblase NIH 3T3 cancer cells in vitro [117], 

whereas more recent study showed that lunasin induced apop-
tosis in MCF-7 cells by upregulation of tumor suppressor PTEN 
similar to the soy isoflavone genistein [56]. Lunasin is also able 
to inactivate the tumor suppressor proteins, Rb, p53, and pp32, 
and competes with the histone acetyltransferases in binding to 
the core deacetylated histones H3 and H4, and switching off the 
transcription, leading to arrest of the G1/S phase and causing 
apoptosis [29].

Antioxidant and Anti-Inflammatory

Carcinogenesis and cancer development depend in part on 
pro-inflammatory, pro-oxidant, and immunosuppressive mech-
anisms that lead to abnormal growth of tissue. Consequently, 
proteins and peptides with anti-cancer properties often also 
exhibit anti-inflammatory and antioxidant effects [29,70]. Soy 
protein with or without isoflavones was shown to reduce oxida-
tive stress and have anti-inflammatory properties by inhibiting 
nuclear factor-kappa B (NF-κB) and blocking the secretion of 
pro-inflammatory cytokines in an oxidative-stress–inducible rat 
model, a hyperlipidemic mouse model, humans with end-stage 
renal disease, and healthy women over 70 years of age [70]. 
Soy milk digested with pepsin and pancreatin produced the 
bioactive peptides RQRK and VIK, which inhibited lipopolysac-
charide-induced inflammation in murine macrophages. These 
hydrolysates inhibited the production of nitric oxide, Interleu-
kin (IL)-1β, nitric oxide synthase, and cyclooxygenase-2 [79]. Lu-
nasin’s anti-cancer potential arises from its dual anti-oxidative 
and anti-inflammatory capacity [29]. As an anti-oxidant, lunasin 
was shown to inhibit 2, 20-azino-bis (3-ethylbenzothiazoline-
6sulfonic acid) diammonium salt radical scavenger, reactive oxy-
gen species production, and the secretion of pro-inflammatory 
cytokines (Tumor Necrosis Factor-α and IL-6) in mouse RAW 
264.7 macrophages [29,118]. It acts as a potent peroxyl and 
superoxide scavenger, and can prevent glutathione peroxidase 
and catalase activities [119]. The RGD motif of lunasin was re-
sponsible for blocking inflammation in human macrophages by 
interacting with αVβ3 integrin through an Akt-mediating NF-κB 
pathway [120]. A trial in healthy men demonstrated that inges-
tion of 50 g of soy protein resulted in the absorption rate of 
~4.5% of the total lunasin ingested [121].

Immunomodulatory

Closely associated with anti-cancer, anti-oxidant, and anti-
inflammatory peptides are immunomodulatory peptides. Im-
munomodulatory peptides boost immune cell functions; for 
example, natural killer cell activity or cytokine regulation [16]. 
These peptides have been found in soy protein hydrolysates 
that are enzymatically digested [34]. The hydrolysates prepared 
from insoluble soy protein with alcalase had the greatest mu-
rine splenic lymphocyte proliferation and phagocytosis capabil-
ity in peritoneal macrophages [16,122]. The peptides HCGAPA 
and GAPA from the glycinin component of soy protein hydroly-
sate stimulated phagocytosis [39,54]. The trypsin digests of soy 
proteins revealed that the sequence MITLAIPVNKPGR was able 
to stimulate phagocytosis in leukocytes [34,39]. This peptide is 
derived from the α’-subunit of βCG and was named soymetide 
and later soymetide-13 since Met at its N-terminus was essen-
tial for its activity [34,39]. Some of the C-terminus residues of 
soymetide-13 could be removed to form soymetide-9 (MIT-
LAIPVN) which had the highest activity. Soymetide-4 (MITL) was 
the minimal sequence required for its activity [39]. In general, 
the soymetides had an affinity for the N-formyl-methionyl-
leucyl-phenylalanine receptor despite not being formylated at 
the N-terminus Met [39,40].
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Table 1: Soy bioactive peptides and their properties.

Soy Protein 
Source

Bioactive  Peptide Properties Tested Model Reference

βCG

YVVNPDNDE N
Hypocholesterolemic HepG2 human liver cells [36,37]

YVVNPDNNE N
LAIPVNKP

ACE inhibition In vitro ACE inhibitory activity assay [12,38]
LPHF

βCG (a'-
subunit)

Soymetide-13: MITLA 
IPVNKPGR

lmmunostimulating
Male ICR mice and fM LP receptor binding as-
say; Phagocytosis assay;

[12,34,39]
Soymetide-9: MITLA 
IPVN
Soymetide-4:  MITL Anti-alopecia in neonatal rat model [34 ,39-41 ]
KNPQLR; 
EITPEKNPQ  LR; 
RKQEEDEDEEQQRE

FAS inhibitor FAS inhibition studies; 3T3-L1 mouse adipocyte [16,42]

βCG  
(β-subunit)

Soymorphin-5: YPFVV
Anti-diabetic Triglyceride-lowering immunostimu-
lating Suppress feeding and intestinal transit

Guinea pig ileum assay opioid activity; Diabetic 
KKA y mice

[39,43-45]Soymorphin-6: YPFVVN Elevated Plus-Maze Test in Male ddY Mice
Soymorphin-7: YPFV-
VNA

Male BALB/c and ddY mice

VRIRLLQRFNKRS Appetite supressant
Male BALB/c and ddY mice; Male Sprague-
Dawley rat; Mouse intestinal STC-1 cells

[9,39,46-48]

Glycinin

IAVPGEVA
Hypocholesterolemic Anti-diabetic

HMGR activity assay; [9,39,49,50]
IAVPTGVA

HepG2 human liver cells; DPP-IV activity assay
[36,50-52]

LPYP [36,37,39,49,53]
VLIVP

ACE inhibition ACE inhibitory assay [12]SPYP
WL
SFGVAE Hypocholesterolemic HMGR activity [49]

Phagocytosis
HCQRPR

stimulatory peptide Macrophages; Human polymorphonuclear 
leukocytes; C3H/He mouse [16,39,54]

QRPR

Glycinin (A4 
and A5)

LPYPR Hypocholesterolemic
Mice at dose of 50 mg/kg for 2 days; HMGR 
activity assay;

[9,16,34,39,53]

NWGPLV ACE inhibition Spontaneously Hypertensive model rats [9,12,55]

Lunasin
SKWQHQQDSCRKQKQ 
GVNLTPCEKHIMEKIQ 
GRGDDDDDDDDD

Antioxidative 
Anti-inflammatory 
Anti-cancer 
Hypocholesterolemic

Suppression of skin papilloma development in 
SENCAR mice by acting as an antimitotic agent; 
Synergistically works with cytokines (IL-12 or 
IL-2) to improve the tumoricidal activity of 
natural killer cells in in vitro and in vivo tumor 
models; 
TEN-mediated apoptosis of MCF-7 breast 
cancer cells; 
Inhibits production of HMGR and increases 
LDLR expression; 
Antioxidant in Caco-2 cells; 
Inhibit ROS generation in HepG2 cells; Inhibit 
proinflammatory cascades in 
THP-1 macrophages

[11,12,16,29,56]

Bowman-Birk 
Inhibitor

Vglycin

Anti-cancer 
Proteinase inhibition Chemoprevention

50% reduction in the frequency of chromo-
somal abnormalities and sister chromatid 
exchange in blood syndrome patients; Shrink 
precancerous lesions in the mouth that lead 
to oral cancer called leukoplakia in humans in 
Phase I and II clinical trials; 
Reduction in the level of serum PSA in males 
with benign prostatic hyperplasia; 
Blocks the generation of ROS in prostate cancer 
cells (BRF-55T, 267B1/Ki-ras, LNCaP, and PC-3 
cells); protected Balb c/3T3 cells (clones A 31) 
exposed to 
UVC irradiation and reduced transformation;

[57-65]

Anti-diabetic
Normalize fasting glucose and restore pancre-
atic function in Type 2 diabetic Wistar rats

[66]

Source Bioactive Peptide Properties Tested Model Reference
Glycinin, βCG-α, βCG-α’,

KA
Triglyceride-lower-
ing HepG2 cells;

Male Otsuka Long-Evans Tokushima fatty rats; Male 
Wistar rats

[67,68]βCG-β, Trypsin Inhibitor & Lipoxygen-
ase|
Glycinin, Trypsin Inhibitor & Lipoxygen-
ase| VK

Glycinin, βCG-α,
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βCG-α’, βCG-β & Lipoxygenase

Defatted soy protein X-MLPSYSPY Anti-cancer
Arrest P388D1 mouse monocyte macrophages at 
G2/M phase to block cell cycle progression

Soy protein

YVVFK; IPPGVPYWT; 
PNNKPFQ; NWGPLV; 
TPRVF

Hypotensive Spontaneously hypertensive rats [16,34,69]

Anti-inflammatory Postmenopausal women; ApoE knockout mice [70–74]

WGAPSL; VAWWMY; 
FVVNATSN

Hypocholesterol-
emic

Rats; HepG2 cells [12,16,39]

Soybean
PGTAVFK Hypotensive IC50 = 26.5 µM [16,34]
IVF; LLF; LNF; LSW; LEF ACE inhibition ACE inhibitory activity assay and UPLC-MS/MS [75]

Flavouzyme®treated soy protein isolate ILL; LLL; VHVV Lipolysis 3T3-L1 mouse adipocytes [76]
Chymotrypsin Korean fermented soy-
bean paste

HHL Hypotensive Spontaneously hypertensive rats [77]

Genetically modified soybean protein LLPHH; RPLKPW
Antioxidative; Anti-
hypertensive

[34]

Black soybean protein IQN
Adipogenesis inhibi-
tion

3T3-L1 mouse adipocytes [16,78]

Soymilk RQRK; VIK Anti-inflammatory RAW 264.7 mouse macrophages [79]

Protease (PROTIN SD-NY10) treated soy 
milk|

FFYY; WHP; FVP; LHPG-
DAQR; IAV; VNP; LEPP; 
WNPR|

ACE inhibitory activity assay [39,80]

Fermented soybean, Bacillus natto
VAHINVGK

ACE inhibition ACE inhibitory activity assay and simulated [81]gastrointestinal diges-
tion or subtilis

Fermented soybean seasoning
SY

Spontaneously hypertensive rats [82,83]
GY

Neuromodulatory

The β-subunit of βCG contains the sequence for human 
β-casophormin-4 (YPFV), an opioid peptide that has morphine-
like activity. This has resulted in the discovery of three peptides 
with anxiolytic activities: soymorphin-5 (YPFVV), soymorphin-6 
(YPFVVN), and soymorphin-7 (YPFVVNA) [44]. These peptides 
were selective for the µ opioid receptor and were shown to sup-
press food intake and small intestinal transit due to the coupling 
of the receptor to neurotransmitters in mice [45]. In addition, 
soymorphin-5 was shown to improve glucose and triglyceride 
levels in a KKAy diabetic mouse model by activating adiponec-
tin and PPARα, and promoting β-oxidation and energy expen-
diture [43]. These peptides may not need to be absorbed into 
the blood circulation for their anxiolytic effects. The β-subunit 
of βCG also contains the peptide VRIRLLQRFNKRS (fragment 
51–63) which suppressed food intake and gastric emptying in 
rats by stimulating a mediator of satiety, plasma cholecystoki-
nin, through an extracellular calcium-sensing receptor [46-48].

Conclusions

Soybean is a promising source of peptides that have a wide 
range of biological activities such as hypolipidemic, anti-diabet-
ic, anti-hypertensive, anti-cancer, antioxidant, anti-inflammato-
ry, immunostimulatory, and neuromodulatory properties dem-
onstrated in different models. Further studies are warranted 
for better understanding of their absorption, metabolism, and 
target tissues, as well as for elucidating their mechanisms of 
actions. A high quality of human trials will help in this regard 
as well as address the bioavailability of the peptides. Certain 
functions of the soy peptides such as the anxiolytic effects of 
soymorphins may not require their absorption into the blood 
circulation. However, anti-cancer or hypolipidemic peptides 
need to be bioavailable to pass through the small intestines into 
the bloodstream to reach their target tissues. More studies are 
needed to identify the quantity of the active soybean peptides 
released by different methods (for example, in vivo or in vitro 
digestions), and the impact of gender and age on the action or 
production of bioactive soybean peptides.
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