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should be avoided and food restricted to maintain mitochondrial 
apoptosis versus mitochondrial biogenesis [16-18].

The treatment of obesity linked diabetes by appetite control now 
identifies the appetite gene Sirtuin 1 (Sirt 1) as the gene involved in 
nitric oxide metabolism, defective lipid metabolism in various tissues 
such as the adipocyte, liver and brain [19] with relevance to improved 
post-prandial lipid metabolism and relevant to reversal of obesity and 
Type 3 diabetes [20]. Sirt 1 regulation is critical for insulin therapy and 
mitochondrial biogenesis with appetite control essential to improve 
post-prandial metabolism. Nutritional regulation of Sirt 1 in many 
tissues is linked to mitochondrial biogenesis and inhibitors such as 
palmitic acid/LPS of nuclear receptor Sirt 1 is associated with appetite 
dysregulation by interference with neuropeptides (neuropeptide Y, 
brain derived neurotrophic factor) and endocrine hormones such as 
thyroid hormone that are linked to mitochondrial biogenesis [21,22].

Appetite control in rodents and man can be measured with 
relevance to Sirt 1 regulation of Fibroblast Growth Factor 21 (FGF21) 
that has effects on the central nervous system and injected FGF21 
therapy has become important to the treatment of metabolic stress 
in obesity and diabetes [23-25]. In the aging process the delayed post-
prandial lipid metabolism is connected with inactivation of the AMP-
Activated Protein Kinase (AMPK)-Sirt 1 pathway that is responsible 
for mitochondrial biogenesis and nitric oxide homeostasis [26-28] 
with FGF21 essential for this integrated signaling network [29]. 
FGF21 therapy has important implications to the treatment of 
obesity linked diabetes with activation of the adipose tissue cross-talk 
associated with accelerated hepatic lipid metabolism.

Assessment of gene-environment interactions that regulate 
mitochondrial biogenesis have become of major research interest to 
the survival of the species with a single gene such as Sirt 1 defective 
and involved with nutrigenomic diet treatment in global populations 

Keywords
Food; Restriction; Mitochondria; Metabolism; Post-prandial; 

Sirtuin 1; Insulin resistance

Editorial
In various communities in the developing and developed world 

the understanding of the ingestion of a healthy diet [1] and hepatic 
fat metabolism has become of critical importance to the treatment 
of obesity linked Type 2 diabetes that is now linked to various organ 
diseases [2]. In the developing world transition to healthy diets has 
become urgent to prevent insulin resistance [3,4] and the obesity 
pandemic [5-8]. The liver is the major organ for the metabolism of 
dietary fat and after consumption of a meal in healthy individuals the 
fat is rapidly metabolized by the liver. In obesity linked Type 2 diabetes 
the post-prandial metabolism of a fat meal by the liver is defective 
with fat transport to the adipocyte relevant to adipocyte and brain 
appetite centre dysfunction [9-11] (Figure 1). In obese and diabetic 
mice post-prandial lipid metabolism has been shown to be defective 
with defects in the appetite centre associated with hyperglycemia and 
hyperphagia. Activation of hepatic fat metabolism with restricted 
food intake in these rodent studies may be relevant to adipocyte lipid 
metabolism and adipocyte signals that relate to appetite control [12] 
are vital to the treatment of obesity linked diabetes [13].

Interests in appetite control with food restriction of ingested fat 
in chronic diseases has accelerated to reduce plasma chylomicrons 
and lipoproteins that contain bacterial Lipopolysaccharides (LPS), 
lipophilic xenobiotics and lipophilic drugs that may be toxic to 
mitochondrial biogenesis with delayed post-prandial metabolism 
related to liver and adipose mitochondrial apoptosis. Interest in lipid 
science and technology has accelerated to reverse mitochondrial 
apoptosis [14] that is now a major defect in obesity linked diabetes 
and autonomous organ disease [11]. Appetite control involves nitric 
oxide consumption [15] and foods that contain excessive nitric oxide 
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[30]. In the developing world the obesity and diabetes epidemic may 
indicate that specific activators (magnesium, zinc) of Sirt 1 may 
be decreased in the plasma of these insulin resistant individuals. 
Magnesium is an important activator of Sirt 1 with connections to 
both appetite control and mitochondrial biogenesis [31]. Magnesium 
therapy is important to maintenance of glucose control and duration 
and amount of food intake may be relevant to magnesium binding 
to cell membranes to maintain magnesium/Sirt 1 cellular functions.

In the developing world the gene-environment interactions 
may have changed with relevance to the global aluminium industry. 
Aluminium has specific cell membrane lipid binding sites [15] with 
interactions with phosphatidylinositol and 1-palmitoyl-2-oleolyl-
phosphatidylcholine and food levels of aluminium indicate that 
consumption of aluminium may have reached between 3-12 mg/
day [15]. The relevance to magnesium therapy indicate possible 
competition between aluminium and magnesium for lipid membrane 
binding sites [15] with increased magnesium consumption required 
to prevent membrane lipid peroxidation by aluminium [32]. Zinc 
deficiency in obesity has been reported in global populations with 
relevance to appetite and mitochondrial biogenesis but excessive 
zinc replacement should be monitored carefully with relevance 
to interference with magnesium absorption [33-36]. Foods that 
are contaminated with LPS should be restricted for consumption 
with relevance to LPS effects on zinc and magnesium deficiency 
[1,30,37,38].

In obesity linked diabetes the use of magnesium therapy in mi-
RNA stability may be essential for Sirt 1 regulation of hepatic lipid 
metabolism to prevent liver steatosis and NAFLD [31]. Zinc deficiency 
is associated with increased expression of mi-RNA 34a in cells [39,40] 
with mi-RNA 34a involved as a transactivation inhibitor of p53 [41] 
linked to p53/Sirt 1 [30] expression. Regulation of magnesium and 
zinc levels has become important in global populations to reduce 
miR-34a levels and maintain mitochondrial biogenesis and prevent 
the development of liver steatosis and NAFLD [42]. In the developing 
world the rising plasma LPS levels associated with antibiotic resistance 
[43] induce a direct p53 associated mitochondrial dysfunction 
that interfere with hepatic lipid metabolism and induce NAFLD 
[30,37,44,45]. Mi-RNA 34a is released by many cells and tissues with 
elevated mi-RNA 34a associated with cardiac disease [46,47] and blood 
brain barrier disruption [48] with zinc deficiency and magnesium 
deficiency involved in brain appetite centre dysregulation.

Conclusion
The development of hyperphagia is associated with accelerated 

corruption of the adipose tissue-liver crosstalk with delayed post-
prandial lipid metabolism associated with mitochondrial apoptosis 
and liver disease. In the developing world the rising LPS levels delay 
post-prandial lipid metabolism in individuals with obesity-linked 
diabetes and food restriction is required to reduce nitric oxide 
consumption to maintain mitochondrial biogenesis. Healthy diets 
lower the defective transcriptional activation of nuclear receptors 
by miR-34a/Sirt 1 interactions and allow effective FGF21 therapy 
via AMPK-Sirt 1 signaling with relevance to nitric oxide and 
appetite control that involve neuropeptide and endocrine hormone 
interactions. In the developed world the nature of the food system 
(magnesium/zinc/aluminium) and its distribution [49] may be 

relevant to mitochondrial apoptosis with delayed post-prandial 
lipid metabolism involved in the induction of global obesity-linked 
diabetes. Consumption of appropriate magnesium and zinc levels 
are needed to regulate the appetite centre, prevent hyperphagia and 
activate the adipose tissue-liver interactions to accelerate the hepatic 
metabolism of fats.
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