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Abstract

Compared to other cancer types, squamous cell carcinomas of the head and neck 
(HNSCC) have been understudied.Studies in other cancer types have demonstrated 
immunological changes that occur with the development of cancer.However, few studies 
have looked at the immune changes that occur in premalignant lesions.HNSCC is often 
preceded by the appearance of premalignant oral lesions.However, information about 
the immune shifts that occur as a result of the premalignant oral lesions and following 
progression to HNSCC is sparse.This review aims to pull together studies with patients and 
animal models to summarize the multiplicities of immune activities that are associated with 
premalignant oral lesions and HSNCC.In general, the immune phenotype in premalignant 
oral lesions and regional lymph nodes is inflammatory and activated.However, development 
of HNSCC results in a shift to an immune inhibitory environment.

Keywords: Cytokines, Head and neck cancer, HNSCC, Immune, Inflammation, Oral 
cancer, Premalignant oral lesions

is highly fragmented, although there are more fragments that can 
be assembled to understand the immune status in overt HNSCC, as 
compared to the absence of information pertaining to the impact of 
the immune milieu on premalignant oral lesions.

The Immunological Environment of 
Premalignant Oral Lesions

Discussion of the immunological environment of premalignant 
oral lesions needs to focus not only on the epithelium undergoing 
transformation, but the myriad of associated cells that comprise 
the premalignant oral lesion.This includes immune modulatory 
cells such as endothelial cells of the expanding vasculature, the 
immune infiltrate consisting of a spectrum of cells further described 
below, smooth muscle cells and fibroblasts[2,15-17]. A prominent 
immunological impact of the development of the premalignant 
oral lesion is seen not only within the premalignant lesions, but 
throughout the oral cavity,within regional lymph nodes and, in 
some instances, in the circulation (Table 2). For example, compared 
to levels in the peripheral blood of healthy control patients,patients 
with premalignant oral lesions have an increased proportion of NK 
cells and activated B‑cells [18]. Levels of the inflammatory cytokines 
interleukin (IL)‑17 and IL‑6 are increased in the peripheral blood 
of patients with premalignant oral lesions [19]. Other circulating 
inflammatory mediators whose levels are increased in patients with 
premalignant lesions are transforming growth factor-β(TGF‑β) and 
C-reactive protein [20]. Also, levels of the inflammatory mediators IL‑
6 and tumor necrosis factor-α (TNF‑α) have been shown to be elevated 
in the saliva of patients with premalignant oral lesions, although 
a separate study showed that salivary levels of the inflammatory 
mediator IL‑8 not to be elevated [21,22]. Such studies raise the 
possibility of using salivary levels of select cytokines as biomarkers 
for oral carcinogenesis.Such immune reactivities to premalignant 
oral lesions can be triggered by the increased expression of some of 

Overview of the Immune Influences on 
Premalignant Oral Lesions and Their 
Progression to Cancer

Despite advances in diagnosis and treatment, the 5-year survival 
rates for patients with head and neck squamous cell carcinoma 
(HNSCC) have not improved over 60% [1]. HNSCC is a highly 
aggressive disease that develops from the oral epithelium and its 
appearance is often preceded by premalignant oral lesions, most 
commonly leukoplakias [2]. Even with advanced treatments for 
premalignant oral lesions, about 30% progress to cancer [3]. Persistent 
infection with high-risk human Papillomaviruses (HPV) is associated 
with increased risk of oral cancer.Also associated with risk for HNSCC 
are alcohol consumption and tobacco.Each of these contributors to 
the development of epithelial dysplasia and progression to cancer are 
immune modulatory and complicate the immunological phenotype 
of oral tissues that are progressing to cancer [4-6].

The multifaceted aspects of the immune system have placed it into 
opposing roles in the development and progression of cancer (Table 
1). On one hand, immune activation, and in particular inflammation, 
is considered to be among the contributors of cancer onset.Examples 
of this include associations between cancer and inflammation 
associated with obesity, inflammatory bowel disease and even oral 
irritation[7-11]. On the other hand, immune activation can also 
repress tumor development, as demonstrated through clinical 
immunotherapeutic trials using various iterations of cancer vaccines 
or other immune modulatory approaches.Immune protection against 
cancer is also demonstrated by the increased cancer development in 
immune compromised individuals such as the increased incidence of 
non-AIDS-defining cancers in patients with HIV infection [12-14]. 
These opposing capabilities of the immune system to promote or 
protect against cancer raise the question of its role in the development 
of oral lesions and progression to cancer.The answer to this question 
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the same tumor antigens on lesions as are prominent in HNSCC [23]. 
In fact, this tumor antigen expression on premalignant oral lesions 
can be used to stimulate immune reactivity by autologous blood 
lymphocytes.Among these tumor antigens are the mucinMUC‑1 and 
epidermal growth factor receptor (EGFR).

Studies using a carcinogen-induced mouse premalignant oral 
lesion model that progresses to oral cancer have allowed more 
detailed assessments of the immunological changes that occur in 
the course of the development of lesions than would be allowed with 
patient specimens.Mice treated with the carcinogen 4-nitroquinoline 
1-oxide (4NQO) in drinking water develop premalignant oral lesions 
predominantly on the tongue.These premalignant oral lesions 
progress to HNSCC.Studies with this model have shown prominent 
immune stimulation and increased cytokine production by the 
premalignant lesions as well as within regional lymph nodes [15,24]. 
Increased immune reactivity and, in particular, inflammation occur 
within both regional lymph nodes and premalignant oral lesion 
tissues of 4NQO-treated mice.The lymph nodes of these mice with 
premalignant oral lesions are enlarged, and the level and composition 
of the immune infiltrate within the lesions is increased.Also seen is an 
increase in conventional CD4+ and CD8+ T-cells that express markers 
for activation compared to what is seen in either healthy controls 
or HNSCC-bearing mice[15]. These mice with premalignant oral 
lesions have increased levels of Th1/Tc1 cells expressing interferon‑γ 
(IFN‑γ) and IL‑2, and CD4+Th17 cells producing the inflammatory 
cytokine IL‑17.Heightened levels of cytokines and chemokines are 
also secreted by lymph node cells from 4NQO-treated mice with 
premalignant lesions.These include IFN-γ, IL-2, and members of 
the chemokine (C‑C motif) ligand family CCL 5 (RANTES), CCL3 
(macrophage inflammatory protein‑1, MIP-1α) and CCL4 (MIP-1β) 
[15].

While few studies have examined the immunological milieu 

within the premalignant oral lesion tissues of patients, there have 
been reports indicating that, like that seen in the mouse models of 
premalignant oral lesions, inflammation and immune activation also 
occur in patients with lesions.Similar to the increases seen in levels of 
NK cells in the peripheral blood, NK cells are also increased within 
premalignant oral lesions [25]. An analysis of the immune infiltrate 
in leukoplakias with or without dysplasia showed an increased 
in numbers of CD8+ T‑cells within the epithelium of lesions with 
dysplasia as compared to levels in lesions without dysplasia or in 
HNSCC [26]. Also increased in these leukoplakias with dysplasia is 
the number of dendritic Langerhans cells, with prominent localization 
with infiltrating T‑cells [25,26]. There have been demonstrations 
of increased levels of Th1 cytokines such as IL‑2 and IFN‑γ, as well 
as inflammatory cytokines IL‑6 and IL‑17within premalignant oral 
lesions [19]. A separate study comparing cytokine mRNA levels 
among premalignant oral lesions and healthy gingiva showed no 
statisticalincrease in TNF‑α expression, but significant increases in 
expression of TGF‑β and in select growth factors [27]. In contrast, 
TNF‑α was shown to be expressed by immunohistochemistry 
throughout the epithelia of premalignant oral lesions, but only rarely 
in normal oral tissues [28]. Levels of CD8+ T‑cells expressing perforin 
or granzyme B are also increased in premalignant oral lesions 
compared to control tissue [29]. Half of the premalignant oral lesions 
examined expressed the inflammatory and pro-angiogenic chemokine 
C‑X‑C motif chemokine 12 (CXCL12, stromal cell-derived factor‑1) 
and over a third expressed its C‑X‑C receptor, CXCR4 [30]. This 
CXCL12/CXCR4 axis could contribute not only to the inflammatory 
cell influx, but can also promotethe angiogenesis that is needed by 
the progressing lesion and subsequent cancer [31]. Expression levels 
of Toll-like receptors TLR4 and TLR9, which have an essential role 
in innate immunity activation, is increased in premalignant oral 
lesions compared to that in control normal mucosa, and the level of 
expression coincides with the magnitude of dysplasia [32].

Of interest is that shifts in cytokine phenotypes in the patients’ oral 
lesions do not always coincide with what’s seen in the peripheral blood.
While IL‑17 and IL‑6 levels are increased in both premalignant lesions 
and blood, levels of the Th1 cytokines IL‑2 and IFN‑γare increased 
only in the premalignant lesions, but not in the blood of patients 
with lesions [19]. However, the cytokine shifts in the regional lymph 
nodes coincide more closely with what is seen in the premalignant 
oral lesions.Thus, the cytokine phenotype within regional lymph 
nodes may be more representative of that within the premalignant 
oral lesions than the peripheral blood cytokine phenotype.Consistent 
with the immune activation seen in premalignant oral lesions, is a 
diminished level of the non-classicmajor histocompatibility class 
Ib antigen, which lessens its capacity to subvert immune responses 
[33]. The decline in this immune moderator could contribute to the 
increased immune reactivity seen in premalignant oral lesions.

The sources of the immune mediators that are produced within 
the premalignant lesions are multiple, including the lesion cells 
themselves.Immune mediators that are produced directly by the 
epithelium of premalignant lesions have been defined by establishing 
primary premalignant lesion cell cultures from tongue tissue of 
mice with carcinogen-induced lesions.These cultures produce 
high levels of pro-inflammatory and Th1-associated cytokines 
including granulocyte colony-stimulating factor (G‑CSF), CCL5, 

Immune contribution to cancer Immune protection against 
cancer

Inflammation Inflammation
Increased cancer in inflammation associated 

with obesity, oral irritation
Indication of failed immune 

anti-tumor attempt?
Immune inhibitory cell populations Immunotherapy

Suppress immune anti-tumor defenses Show potential of immune anti-
tumor reactivity

Table 1: Opposing roles of immune system in development and progression of 
cancer.

Premalignant lesion patient sample 4NQO mouse premalignant lesion model

Lesion tissue & blood Lesions and regional lymph nodes
↑NK cells
↑CD8+ granzyme b+ T-cells
↑dendritic cells

↑Tc1 and Th1 T-cells

↑Inflammatory mediators ↑Inflammatory mediators

IL-6
IL-17
TGF-β
TNF-α

IL-6                          IL-17
IL-23                        TGF-β
TNF-α                      C-reactive protein
CCL2                        CCL3
CCL4                         CCL5
PGE2 

↑Immune stimulatory cytokines ↑Immune stimulatory cytokines
IFN-γ
IL-2

IFN-γ
IL-2

Table 2: Inflammatory and immune stimulatory phenotype associated with 
premalignant oral lesions.
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and CCL2 (monocyte chemotactic protein 1, MCP‑1), with the levels 
produced being greater than those produced by primary HNSCC 
cultures established from mice whose lesions progressed to HNSCC 
[15,24]. Consistent with the increased production of inflammatory 
mediators was an increased production of prostaglandin E2 (PGE2) 
by premalignant lesion cells as compared to levels produced by 
HNSCC.IL‑23, which is critical to the maintenance of IL‑17 cells, is 
also produced in increased levels by premalignant oral lesion cells, 
suggesting this to be a route by which lesion cells may be stimulating 
the Th17 cell content [19]. These studies suggest that Th1/Tc1 and 
inflammatory immune reactivities are stimulated early prior to the 
appearance of HNSCC, during the premalignant lesion stages, and 
are more prominent than in HNSCC.

How Can A Small Premalignant Oral Lesion 
Cause Distant Immune Alterations?

One might ask- how can premalignant oral lesions that may 
be only a few millimeters in diameter cause significant immune 
alterations at distant sites?While premalignant lesion cells produce 
mediators that can alter immune reactivity, it is likely that much 
of the immunological skewing associated with premalignant oral 
lesions is the result of amplifications in cytokine cascades.For 
example, mediators from premalignant lesion cells can stimulate 
normal resting spleen cells to produce increased levels of Th1 and 
inflammatory cytokines, thus triggering greater reactivity than would 
be possible by the lesion cells alone [24]. This capacity is accentuated 
by the lesion production of chemokines that, in turn, stimulate an 
influx of immune cells that are then also exposed to the cytokine-
triggering mediators produced by premalignant lesions [24,30]. As 
indicated above, these infiltrating cells include, but are not limited 
to, T‑cells expressing markers of activations, skewed macrophages 
and neutrophils that are also recruited by chemokines, and activated 
endothelial cells associated with the premalignant lesions [15,17].

What is not often appreciated is the role of endothelial cells 
as immune regulatory cells.The development of premalignant 
oral lesions and their progression to cancer requires a healthy and 
increasing vasculature.The pro‑inflammatory potential of endothelial 
cells, especially following stimulation, has been reasonably well 
described [34-36]. Because of their location, vascular endothelial cells 
have an intimate relationship with immune cells, which facilitates 
their recruitment of the immune infiltrate.Endothelial cells can secrete 
numerous immune suppressive as well as inflammatory products 
including vascular endothelial cell growth factor (VEGF), PGE2, 
TGF-β, IL‑6 and IL‑10 [37,38]. In addition, endothelial cell-derived 
mediators can stimulate spleen cell production of pro‑inflammatory 
cytokines such as IL‑6, IL‑9, IL‑17, and TNF‑α; production of the 
predominantly T‑cell derived chemokine CCL5; and production of 
several predominantly monocyte-derived chemokines to include 
CXCL9 (monokine induced by γ‑interferon, MIG) and CCL2 [39].

While premalignant oral lesions may be small in relative size, 
their immunological impact can be highly prominent.This prominent 
impact is orchestrated by the dysplastic epithelium, and accentuated 
by soldiers in the cascade including the endothelium and infiltrating 
immune cells.Whether this escalation of immune reactivity is an 
attempt to mount an immune response to the developing malignancy 
or whether it contributed to the progression toward cancer is not 

certain, although these two possibilities are not necessarily mutually 
exclusive.What is certain is that if it is an attempt to eliminate the 
dysplastic epithelial cells, the attempt often times fails with the 
resulting emergence of HNSCC.

The Immunological Environment of HNSCC
While the immune phenotype of premalignant oral lesions is 

stimulated and inflammatory in nature, the immune phenotype of 
HNSCC is different as immune inhibitory mediators and suppressor 
cells become more prominent (Table 3). As for premalignant oral 
lesions, levels of CD4+ and CD8+ cells in patient HNSCC tissue 
specimens are increased compared to that seen in normal healthy oral 
tissue [40,41]. Also increased are levels of dendritic cells in HNSCC, 
with the dendritic cells co-localizing with the T‑cell infiltrate [26]. 
There are, however, some region-specific differences.For example, 
levels of CD8+ cells expressing perforin and granzyme B are increased 
in squamous carcinoma of the lip versus oral cavity [29]. Increases in 
the immune infiltrate and cytokines are also seen in HNSCC tissue 
and lymph nodes from the 4NQO HNSCC model compared to that 
seen in healthy control epithelium [15,19].

The increases in immune infiltration may give the perception 
of anti‑tumor immune reactivity, but a prevailing inflammatory 
and immune inhibitory environment merges with the appearance 
of HNSCC.Inflammatory mediators whose levels are increased 
in the peripheral blood of HNSCC patients include IL‑6, TGF‑β 
and C‑reactive protein, and increased levels of these mediators are 
associated with increased cancer aggressiveness and recurrence 
[20]. Some of these mediators, such as TGF‑β and IL‑6, have dual 
roles of being able to be both inflammatory and immune inhibitory.
Levels of the pro-inflammatory mediator IL‑8 have also been shown 
to be increased in the saliva of patients with HNSCC, although no 
association was seen between the levels of IL‑8 and the cancer TNM 
stage [22].

The inhibitory immune environment within HNSCC as well as 
systemically in the HNSCC bearer is viewed as a major mechanism 
of immune evasion by the HNSCC. By secreting cytokines such 
as TGF‑βand IL‑10, HNSCC tumor cells promote a Th2-skewed 
response, which is associated with decreased antitumor efficacy 
[42,43]. This Th2-skewing is evident systemically as peripheral blood 

HNSCC patient sample 4NQO mouse HNSCC model

Lesion tissue & blood Lesions and regional lymph nodes

↑Th2/Tc2
↑MDSC and CD34+ cells
↑Treg
↑Th2-skewed dendritic cells

↑Th2/Tc2
↑MDSC and CD34+ cells
↑Treg
↑Th2-skewed dendritic cells
↑M2 macrophages

↑Inflammatory mediators ↑Inflammatory mediators
IL-1
IL-6
PGE2
TNF-α
TGF-β

IL-6
PGE2
TNF-α
TGF-β

↑Immune inhibitory mediators ↑Immune inhibitory cytokines
IL-6
IL-10
PGE2
TGF-β

IL-6
IL-10
PGE2
TGF-β

Table 3: Shift to inhibitory phenotype in HNSCC.
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leukocytes isolated from HNSCC patients secrete abnormally high 
levels of Th2 cytokines [44,45]. Th2 cytokines include IL‑10, whose 
levels are increased in HNSCC patients [46]. These studies also 
showed that select polymorphisms of plasma IL‑10 are associated 
with more advanced disease.

Along with Th2-skewed cytokines, HNSCC tumor secretionof 
factors such as TGF-β function to directly inhibit cytotoxic T cell-
mediated immunity and to recruit to the tumor site additional 
immunosuppressive cells, including myeloid-derived suppressor 
cells (MDSCs),the less mature CD34+ progenitor cells, as well as 
M2-skewed macrophages [47,48]. Tumor-secreted granulocyte-
macrophage colony-stimulating factor (GM‑CSF) promotes MDSC 
and CD34+ progenitor cells, and high levels of GM‑CSF in HNSCC 
patients are associated with a poorer prognosis [49,50]. Once at the 
tumor site, these immunosuppressive cells facilitate tumor-promoting 
functions, resulting in increased tumor growth and angiogenesis.

HNSCC tumor secretion of factors that are typically associated 
with a pro‑inflammatory response harnesses these immune 
modulators to favor growth, angiogenesis and, paradoxically, 
immune escape. GM-CSF, TNF‑α, IL‑1 and PGE2, which have 
traditional pro‑inflammatory roles, are significantly increased in 
HNSCC tissues fromthe 4NQO carcinogenmouse model [51]. 
Many of these mediators are also produced by HNSCC cell lines 
established from patients with head and neck cancer [52]. Increased 
levels of PGE2 are associated with invasion and angiogenesis in 
aggressive early-stage tumors [53]. Studies in other models have 
shown that PGE2 also has inhibitory effects on granulocyte function 
and macrophage phagocytosis, IL-2 production by T cells, T‑cell 
responsiveness to IL‑2, and antigen-specific T cell responses [54-
56]. Dendritic cells have also been shown to be impacted by PGE2, 
as it inhibits their differentiation and alters the activity of Th1-
associated dendritic cells to result in decreased IL‑12 production and 
their increased promotion of Th2-skewed mature T‑cells [57-59]. 
Blocking PGE2 signaling reduces accumulation of MDSC and delays 
tumor growth [60]. A retrospective review of HNSCC patients taking 
cyclooxygenase inhibitors showed an increased survival over those 
not taking cyclooxygenase inhibitors following cancer treatment [61].

Other factors secreted by HNSCC tumors, such as the 
chemokine CCL2 (MCP-1), have been shown to contribute to 
immunosuppression at the tumor site by recruiting a population 
of M2-skewed tumor-associated macrophages secreting IL‑10 and 
TGF‑β [62]. The cytokine macrophage inhibitory factor could 
also contribute to the accumulation of these macrophages as 
levels of this mediator are increased within the tumors as well as 
in the inflammatory infiltrate [63]. By secreting a host of immune 
modulators, HNSCC tumors thwart an effective immune response 
and become increasingly difficult to treat.Combinations of cytokines, 
such as PGE2 together with IL‑6, can heighten the induction of 
immune inhibitory populations including Th2-skewed T‑cells, M2-
skewed macrophages, Treg and MDSC [64-66].

The developing HNSCC has prominent impacts on immune 
reactivity distal from the HNSCC site, with the phenotypes of both 
the distant and intratumoralreactivities being associated with patient 
outcomes [67-69]. Most studies involving the impact of HNSCC 
on patient immune status have assessed immune capabilities and 

phenotypes of patient peripheral blood.Peripheral blood lymphocytes 
have a reduced reactive capability to either proliferate or to release 
cytokines that evoke anti-tumor reactivity [70,71]. Circulating Treg 
cells from patients with advanced HNSCC were inhibitorier to the 
proliferation of effector T‑cells than Treg from healthy controls or 
from patients without nodal involvement [72]. The activation status 
of peripheral blood CD8+T‑cells was reduced with increased cancer 
aggressiveness [73]. Thus, it is clear that the immune modulations in 
HNSCC patients can impact on clinical outcome [74,75].

Transition from Premalignant Lesions to 
HNSCC

While there have only been a few studies examining the 
immunological status of patients with premalignant oral lesions 
as well as those with HNSCC, they have shown a shift from an 
immune stimulatory or inflammatory environment to an immune 
suppressive phenotype.In most instances, however, these studies 
have not necessarily used the same immunological measurements 
and have certainly not tracked the same patients with premalignant 
oral lesions that subsequently develop HNSCC.Such analyses have 
more reliably been conducted in murine models where premalignant 
oral lesions progress to oral cancer.Nevertheless, the culmination of 
these studies has shown increased cellularity within regional lymph 
nodes, but differences in cellular and cytokines phenotypes, with 
a greater number of Treg, MDSC, Th2 cells, and M2 macrophages 
within HNSCC as compared to that seen in cervical lymph nodes or 
blood of those with premalignant lesions [15,19,24]. Contributing 
to the immune infiltrate within premalignant lesions and HNSCC is 
the increased expression of the chemokine CXCL12 in lesions and 
more so in HNSCC, which is capable of recruiting inflammatory 
and immune inhibitory cells such as macrophages, which can be 
skewed to become immune inhibitory M2 macrophages in the 
tumor environment [31,76]. The increased expression of select TLRs 
as premalignant lesions become more dysplastic and progress to 
HNSCC has led to suggestions that their role in activation of innate 
immunity could contribute to tumorigenesis [32]. An increased 
level of Th17 cells and Th1/Tc1 cells in mice with premalignant oral 
lesions compared to those with HNSCC suggests robust immune 
reactivity being attempted against the lesions, but which doesn’t 
persist once HNSCCdevelops [15,19]. The simultaneous increase in 
expression of not only markers for activation, but also for exhaustion 
in mice with premalignant oral lesions could be an early indicator of 
a failing response against the lesions since they indicate that T‑cells 
have been activated, but they are at the point their lifespan where, 
upon further stimulation, they will undergo programmed cell death 
rather than perform effector functions [15,77,78]. This suggests that 
the exhaustion is a reflection of a failed attempt to immunologically 
prevent the progression of premalignant oral lesions to cancer.This 
attempted, but failing, response is far less evident in HNSCC and, 
as HNSCC progresses, is instead replaced by pronounced levels of 
a broad myriad of immune inhibitory cells and their inhibitory 
cytokines [15,19,24]. Also, the levels and select polymorphisms of 
the Th2 cytokine IL‑10 in patients with premalignant lesions were 
associated with increased risk of progression to HNSCC [46].

What then triggers the shift from robust immune reactivity in 
the premalignant lesion environment to the immune suppressive 
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environment in HNSCC?Possibilities include the contribution of 
the inflammatory state that is so prominent in the premalignant oral 
lesion stage.Among the inflammatory mediators are PGE2 and IL
‑6.These mediators can be produced by a multitude of cell types in 
the lesion and developing HNSCC environment, including epithelial 
cells, fibroblasts, and infiltrating immune cells and cancer cells 
[79]. Furthermore, the role of PGE2 seems to shift during tumor 
progression whereas in the early stages of inflammation, PGE2 
promotes the infiltration of neutrophils, macrophages and mast cells 
[80-82]. However, PGE2and IL‑6 can also skew the immune infiltrate 
toward an immune inhibitory phenotype consisting of Th2 T-cells, 
M2 macrophages, Treg and MDSC, thereby contributing to the 
shift from an immune stimulatory to inhibitory environment [64-
66,83,84]. Among the mediators whose levels are also increased in 
premalignant lesions and regional lymph nodes is TGF‑β [19] Studies 
with a mouse skin carcinogenesis model showed that inhibition of 
TGF‑β signaling lessened the level of inflammation that is associated 
with carcinogenesis, but increased premalignant progression to 
squamous cell carcinoma, raising the question of the pro‑tumorigenic 
or anti-tumorigenic roles of inflammation [85].

TGF‑β and IL‑6 levels could be contributors to the increase 
levels of Th17 cells in premalignant oral lesions, whose phenotype is 
stabilized by IL‑23, which is also in increased levels in premalignant 
lesions.However, IL‑23 levels decline and TGF‑β levels further 
increase in the HNSCC environment[19]. Since changing the balance 
to increased TGF‑β levels while also reducing IL‑23 levels favors 
skewing of T‑cells toward suppressive Th2 cells, shifts in the levels 
of these mediators could be a cause of the decline in the Th17 cells 
that are seen in premalignant lesions to an increase in Th2 cells seen 
in HSNCC.The role of Th17 cells in tumor progression or protection 
from tumor is also controversial [86-88]. Th17 cell presence has been 
associated with improved prognosis in early stage ovarian cancer 
and malignant pleural effusions, as they promote a Th1 cytokine 
environment through the combined effect of IL‑17 plus IFN‑γ 
stimulation of CXCL9 and CXCL10 (interferon γ-induced protein 
10, IP‑10) to recruit effector T‑cells [87,89]. Th17 cells have also been 
shown to have direct anti-proliferative and apoptosis-inducing effects 
toward HNSCC [86]. In other cancer scenarios, the presence of Th17 
cells has been associated with increased cancer development [90]. 
These studies with Th17 cells and their plasticity to become Th2 cells 
suggest it may not be the cytokines per se that direct an inflammatory 
versus inhibitory environment, but the ratios of the cytokines may be 
equally important.

Overall, the diversity of the immune responses that are triggered 
by the premalignant oral lesion environment and the HNSCC 
environment is broad, reflecting attempts to eradicate the dysplastic 
cells, the failure of the immune eradiation, and the capture of 
immune reactivities by the emerging tumor to be subversive to 
anti‑tumor immune defenses.Difficulties in deciphering, the aspects 
of the immunological components that are anti-tumorigenic versus 
pro-tumorigenic are compounded by the plasticity of immune 
cells and their phenotypic and functional shifts.A more thorough 
understanding of the roles of the immunological statesin the 
premalignant lesion versus HNSCC environments will allow targeted 
modulation of immune responsesto sustain the immunological 
attempt to eradicate the developing tumor.
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