Research Article

Word-in-Noise Perception Test in Children

Seyede Faranak Emami, PhD^{1*}; Elnaz Shariatpanahi, MD; Nasrin Gohari, PhD; Mobina Mehrabifard

¹Associate Professor, Department of Audiology, School of Rehabilitation Sciences, Hearing Disorder Research Center, Hamadan University of Medical Sciences, Hamadan, Iran

²Assistant Professor, Department of Otorhinolaryngology, School of Medicine, Hearing Disorder Research Center, Hamadan University of Medical Sciences, Hamadan, Iran ³Assistant Professor, Department of Audiology, School of Rehabilitation Sciences, Hearing Disorder Research Center, Hamadan University of Medical Sciences, Hamadan, Iran

⁴BS Student, Department of Audiology, School of Rehabilitation Sciences, Hamadan University of Medical Sciences, Hamadan, Iran

*Corresponding author: Seyede Faranak Emami, PhD

Associate Professor, Department of Audiology, School of Rehabilitation Sciences, Hearing Disorder Research Center, Hamadan University of Medical Sciences, Hamadan, Iran. Tel: 989188118476 Email: faranak_imami@yahoo.com

Received: May 14, 2024 **Accepted:** June 07, 2024 **Published:** June 14, 2024

Abstract

Background: The word discrimination test in noise is one of the speech recognition assessments that includes the recognition of the phonological aspects of speech and is based on the detection of vowels. While Word-In-Noise Perception (WINP) test is one of the speech perception exams and evaluates the ability to understand the meaning of words by discovering the consonants.

Until now, all word-in-noise tests have assessed speech discrimination performance, and for the first time, the normal values of WINP test for adults have been determined. Since the normal values of WINP scores in children have not been reported, our research was aimed to determine the normal values of the WINP test in children aged 5 to 13 years.

In this cross-sectional study, 120 ***-speaking children with normal hearing thresholds were evaluated from the beginning to the end of spring 2023. We divided them into 4 age groups (A=5-7<years, B=7-9<years, C=9-11<years, D=11-13<years). The evaluations included general audiology tests and WINP test using homtonic-monosyllabic words (HMWs) at a signal-to-noise ratio of 5 dB.

Results: Significant difference was observed between the mean scores of the WINP test in age group A (54%) compared to age group B (66%), (Pv=0.04). Also, the differences between the mean scores of age group A compared to age groups C (70%) and D (69%) were significant (Pv=0.01, Pv=0.03).

Conclusions: This article presented the norm values of WINP test scores for ***-speaking children aged 5 to 13 years. The norm values of WINP test scores in the age group of 5-7 years were lower than in the age groups of 7-13 years. The biggest change in the performance of speech perception in noise was observed in the age range of 7-9 years.

Keywords: Speech; Word; Perception; Noise; Children

Abbreviations: WINP: Word-in-Noise Perception Test; HMWs: Homtonic-Monosyllabic Words.

r discrimination score tests and using the list of non-homtonicmonosyllabic words (non-HMWs) that have different vowels. 3. Interpreting or learning the first words in the mother tongue and understanding their meaning. 4. Perception or understanding the meaning and grammatical position of the learned words is done by the WINP test, and the test materials include HMWs, that have a fixed vowel in each list (Appendix.1), [1,2,3,4].

Perception and production of speech interact with each other and each is a substructure of the other [4]. In such a way that without understanding the meaning of a sentence, it is not possible to express that sentence and without expressing a sen-

Background

For non-tonal languages, there are two main mechanisms for speech processing: *Phonological* and *semantic* [1]. Phonological processing includes features of pitch, accent and rhythm of speech. Semantic processing includes choosing the correct word for a specific concept, as well as recognizing the features and syntax of words in a sentence [1,2]. Speech processing is carried out in steps: 1. Detction, which consist of recognizing separate syllables of a two-syllable word, which is the same mechanism of hearing the sound and is performed by the speech reception threshold test. 2. Recognition or differentiating monosyllabic words from each other based on the discovery of their vowels, which is done by word-in-noise recognition or speech

Journal of Pediatrics & Child Health Care Volume 9, Issue 1 (2024) www.austinpublishinggroup.com Emami SF © All rights are reserved **Citation:** Emami SF, Shariatpanahi E, Gohari N, Mehrabifard M. Word-in-Noise Perception Test in Children. J Pediatr & Child Health Care. 2024; 9(1): 1063.

tence, it is not possible to understand it [1,2]. This cooperation improves language processing in the central nervous system. For example, young children pronounce voiced vowels and consonants and are unable to produce voiceless consonants. These incomplete words they produce are meaningful to them, although they may not be understandable to others [3,4].

The cochlea of the inner ear reaches full maturity in the first months after birth. At birth, there is no ability to recognize the gender differences in speakers' voices, and this ability gradually develops with age [1]. Determining the difference between noise and the speaker's speech requires a decade of listening experience [4]. Since the maturation of the neural system of speech perception and its related areas continues until the age of 14, at younger ages, the ability to understand speech in noise is weaker than that of adults [4,5]. The maturity of the ears is also different from each other, the right ear reaches full development and adult function sooner, while this situation is associated with a delay for the left ear [1,4]. In addition, the cooperation of non-sensory and cognitive issues such as attention, memory, internal body sounds, auditory programs are effective in creating differences between children and adults in the temporal processing of sounds [3,5,6]. Therefore, this study was aimed to determine the normal values of the WINP test in children aged 5 to 13 years.

Methods

This research was a cross-sectional work. Its practical measure was done from the beginning to the end of spring 2023. The participants involve 120 children in four age groups (A=5-7<years, n= 24; B=7-9<years, n=36; C=9-11<years, n= 41, D=11-13<years, n=29). The inclusion criteria were monolingualism (***native speaking children), normal hearing in the frequency range of 250 to 8000 Hz with thresholds better than or equivalent to 15 dB [6], no history of underlying disoders, no ear diseases, no history of cognitive and listening problems. The exclusion criteria contained reluctance to participate in research, suffering from ear and cognitive difficulties, learning complications, hearing and speech perception problems, and bilingualism.

The practical measure: At the beginning of the work, the study procedure were explained to all participants and their parents signed the consent forms. They were evaluated by general audiological assessments, which included otoscopic examination, acoustic immittance testing (by clarinet middleear analyzer), pure tone audiometry (using AC33 audiometer, Interacoustics, Denmark) and WINP test (with an audio file). The HMWs were selected for the WINP test, which have consonant-vowel-consonant (CVC) format (Appendix.1), [1,2,4]. Since there are 6 vowels in the *** language, 6 lists of 25-HMWs were used. All HMWs were presented using an audio file recorded by a woman's voice through high-quality headphones. To calculate the norm criterion of WINP test, we multiplied the number of HMWs that the subject repeated correctly by 4, and the normatic criteria expressed as percentages (25 × 4 = 100%). WINP test total mean was calculated by rounding the values obtained for the right and left ears [1,2,4].

Statistical analysis: Statistical analysis was done by SPSS17 and the normal distribution of variables were confirmed by Kolmogorov-Smirnov test. Normal values and norm criteria were determined by mean and standard deviation. Multiple comparisons of the variables were checked by Mann-Whitney test and the significance level was less than 0.05.

Results

In age group A (5-7<years): The mean total age = 5.46 (1.49), mean age of girls = 5.35 (0.97), mean age of boys = 5.60 (0.84), mean WINP test for right ears = 54.95 (9.41), mean WINP test for left ears = 53.43 (12.09), the total mean (norm value) of WINP test = 54%. In age group B (7-9<years): the mean age = 8.46 (6.98), mean age of girls = 7.97 (0.52), mean age of boys = 8.95 (1.27), mean WINP test for right ears = 66.13 (0.76), mean WINP test for left ears = 65.48(0.69). The overall mean of the WINP test = 66%. In age group C (9-11<years): the mean age = 9.91 (0.29), mean age of girls = 10.14 (0.84), mean age of boys = 9.97 (1.36), mean WINP test for right ears = 70.27 (0.39), mean WINP test for left ears = 69.69 (0.99). The overall mean of the WINP test for left ears = 69.69 (0.99). The overall mean of the WINP test for left ears = 69.69 (0.99). The overall mean of the WINP test for left ears = 69.69 (0.99). The overall mean of the WINP test for left ears = 69.69 (0.99). The overall mean of the WINP test for left ears = 69.69 (0.99). The overall mean of the WINP test for left ears = 69.69 (0.99). The overall mean of the WINP test for left ears = 69.69 (0.99). The overall mean of the WINP test for left ears = 69.69 (0.99). The overall mean of the WINP test for left ears = 69.69 (0.99). The overall mean of the WINP test for left ears = 69.69 (0.99). The overall mean of the WINP test = 70%.

In age group D (11-13<years): the mean age = 12.80 (1.08), mean age of girls = 12.36 (0.69), mean age of boys = 11.95 (1.14), mean WINP test for right ears = 69.11 (0.60), mean WINP test for left ears = 68.73(0.58). The overall mean of the WINP test = 69%. Significant difference was observed between the mean scores of the WINP test in age group A compared to age group B (P=0.04). Also, the differences between the mean of age group A compared to age groups C (P_c=0.01) and D were significant (P_p=0.03). There was no significant difference between the mean WINP scores of girls compared to boys (Pv=0.39). The mean WINP of the right ears was higher than that of the left ears (Table-1), but the differences were not significant (Pv = 0.51). **Table 1:** Mean ± Standard Deviation (S.D) of word-in-noise perception test of research participatients (Right ears = 120, Left ears = 120).

Age (year)	Ear	Mean (S.D) % Max		Min
	Right	54.95 (9.41)	60	22
5-7<	Left	53.43 (12.09)	58	20
	Right	66.13 (0.76)	68	24
7-9<	Left	65.48(0.69)	68	26
	Right	70.27 (0.39)	72	26
9-11<	Left	69.69 (0.99)	70	24
	Right	69.11 (0.60)	82	32
11-13<	Left	68.73(0.58)	80	30

Table 2: Lists of Phonetically balanced monosyllabic words of *** language with the arrangement of homotonic-monosyllabic words for word-in-noise perception test, based on the *** international transliteration alphabet [1,2,4].

n	Vowel	Vowel	Vowel	Vowel	Vowel	Vowel
	/ E /	/0/	/ I: /	/ ::/	/Æ/	/ U: /
1.	Σen	ΣοΙ	Si:b	Kp:r	Sær	gu:∫
2.	Sen	Pol	Σi:b	Bo:r	Dær	Mu:∫
3.	Dʒen	gol	Dʒiːb	Mp:r	Kær	Du:∫
4.	gel	Kol	Si:r	Qp:r	Σær	Nu:∫
5.	Del	Khol	Pi:r	Zp:r	Pær	Hu:∫
6.	Hel	Qom	Di:r	Jp:r	Sær	Dʒu:∫
7.	Sel	gom	Σi:r	Hp:r	Xær	T∫u:b
8.	Vel	Xom	Qi:r	Dp:r	Nær	Mu:r
9.	3el	Dom	Zi:r	Np:r	Tær	Σu:r
10.	Beh	Som	D3i:r	Sp:r	gær	Su:r
11.	Meh	Σok	Mi:r	Xo:l	Sæm	Du:r
12.	Deh	Nok	Ti:r	Sp:l	Næm	Zu:r
13.	Leh	Σod	Mi:∫	l:aM	Xæm	Ku:r
14.	Deq	Xod	Ni:∫	Bo:l	Gæm	Dʒuːr
15.	Neq	Por	Pi:∫	Zp:l	Dæm	Nu:r
16.	Nej	Sor	Ki:∫	Kp:l	Bæm	Bu:r
17.	Dej	Σor	Bi:∫	Σρ:Ι	Kæm	Tu:r
18.	Ke∫	Lor	Fi:l	l:a∫T	Qæm	Du:d
19.	Σe∫	Lop	Mi:l	Np:m	Jæx	Su:d
20.	Fer	Boz	Bi:l	Σp:m	Σæb	Ru:d
21.	Qer	Hoz	Si:x	Dp:m	Tæb	Ku:d
22.	Kez	Moz	Mi:x	Dʒɒːm	Læb	Bu:d
23.	Vez	Mot∫	Ni:m	Kp:m	Σæk	Zu:d
24.	Mes	Xo∫	Bi:m	M:aV	Tæk	Bu:q
25.	Hes	Σο∫	Si:m	Rp:m	Sæg	Du:q

 Table 3: Mean ± Standard Deviation (S.D) of word-in-noise perception

 test of research participatients (Right ears = 120, Left ears = 120).

Age (year)	Ear	Mean (S.D) %	Max	Min
9-May	Right	65.46 (10.75)	92	28
9-May	Left	64.95 (11.21)	96	20
13-Oct	Right	67.97 (11.43)	92	52
13-Oct	Left	67.32 (12.6)	92	48

Discussion

Until now, only the WINP test norm values have been determined for adults [4], and in this research, we determined its norm values for ***speaking children aged 5 to 13 years. The findings showed that the mean WINP test scores for children aged 5 to <7 years was lower than that of children aged >7 to 13 years, and their differences were significant. The values obtained for the mean of the right and left ears of adults (14 to 35 years old) based on the WINP test were 67.47 (17.059) and 66.67 (15.548) [4], which they are very similar to the values obtained of this research;

In age group 7-9<years: Right ears = 66.13 (0.76), and left ears = 65.48(0.69).

In age group 9-11<years: Right ears = 70.27 (0.39), and left ears = 69.69 (0.99).

In age group 11-13<years: Right ears = 69.11 (0.60), and left ears = 68.73(0.58).

While the mean obtained for the right [54.95 (9.41)] and left [53.43 (12.09)] ears of children aged 5 to 9 years was lower. Also, the mean WINP test scores of the right ears were higher than the left ears, which could be due to the superiority of the left hemisphere for speech perception. Also, the left hemisphere receives the neural signals that cross from the right ear, and thus a relative improvement in processing the signals of the right ear compared to the left side is created [3,6].

Other researches in the field of speech recognition and speech perception using other speech tests have been done by different researchers, which are as follows. Corbin et al. reported that speech perception in continuous speech noise reaches the level of young adults' abilities until about 10 years of age, but the speech perception score in intermittent speech noise reaches maturity and growth by 13-14 years of age, almost all children over the age of 14 will become adults [7]. Calandruccio et al reported that in children, speech perception performance in noise is better when the noise is continuous compared to intermittent speech noise, and the performance of 11- to 13-year-old children is similar to that of young adults. While in spoken conversations, their scores are 10% poorer than young adults [8].

Wightman et al, stated that compared to adults, children have more problems in understanding speech in noise, which is caused by the immaturity of the nervous system and delayed development. A significant difference in the performance of children and adults causes a 36% decrease in recognizing words in noise for children aged 5-7 compared to adults aged 19-34 [9]. However, the materials used in each test can have very significant effects on the results of the work [1,3,7].

Darwin and his colleagues confirmed that speech perception performance in noise is related to a series of dominant and specific sound characteristics, which include the basic frequency of the human voice, the frequency of formants, the length of the vocal cords, the size and length of the speech organs [10]. Leibold and his colleagues reported that in 7-13-year-old children, the difference in the gender of speakers does not improve the speech perception score in noise, which is due to the immaturity of the neural system of speech perception. In other words, the recognition of the diversity of sounds based on gender is absent at birth and gradually develops during development [11].

Ren et al investigated word perception performance in noise in 3- to 6-year-old children. Their findings showed that the features of the words in terms of the degree of familiarity and commonness in the language have an effect on the scores of understanding the word in noise, and in the words that were more difficult and unfamiliar, their scores are lower. Also, with increasing age, the percentage of the scores increases, and that in the condition of silence, the scores of all children were better than they had in noise [12].

Liu et al conducted a word recognition test in noise for children aged 4-7 years. Their findings showed that familiar and easier words produce better scores and the percentage of scores increases as children age [13].

Buss and colleagues investigated the speech discrimination score in the presence of speech and continuous noises for children aged 5-10 years and adults 18-41 years. Their findings displayed that the scores of both groups were lower in the presence of speech noise than continuous noise, and both speech noise and speaker's speech characteristics affect the obtained scores. They reported that the type of mask has a significant effect on word recognition ability in competitive conditions, and the more similar the frequency spectrum of the speaker's voice and the speech masker sound, the poorer the word discrimination performance will be [14].

Petley and colleagues reported that children who have normal hearing thresholds in pure tone audiogram and have difficulty understanding speech in noise are suspected of having cognitive impairment and central auditory processing disorders. Therefore, they are in the category of subclinical hearing loss, and it is necessary for all children who have problems understanding speech in the presence of noise to be diagnosed by school health care workers, teachers, or children's parents through specialized speech comprehension tests [15]. Dubas et al investigated the performance of word recognition and discrimination in noise in preschool children. Their findings showed that the age factor and the characteristics of the words have a direct effect on the obtained scores. As the age of the child increases and the difficulty of the words decreases, the performance of speech recognition and discrimination improves [16].

In total, the normal values of the WINP test for children, which were obtained based on our research, can be used in the diagnosis, treatment and rehabilitation of all kinds of peripheral and central hearing damage, cognitive disorders, learning disorders, and developmental defects of the central nervous system. The limitations of this study were the age of the participating children. The WINP test requires the cooperation of the child. It cannot be implemented in age groups less than 5 years old, who do not cooperate properly in mental tests [1,3]. Also, the low maturity of the nervous system in young children can distort the results in the WINP test [4,6].

Conclusion

This article presented the norm values of WINP test scores for ***-speaking children aged 5 to 13 years. The norm of WINP test scores in the age group of 5-7 years was lower than in the age groups of 7-13 years. The biggest change in the performance of speech perception in noise was observed in the age range of 7-9 years.

Author Statements

Ethics Approval and Consent to Participate

The study was approved by the research ethics committee of Hamadan University of Medical Sciences (Code: IR.UMSHA. REC.1401.571).

Consent for Publication

Available data were extracted based on written consent.

Availability of Data and Materials

The datasets generated and/or analysed during the current study are not publicly available due [REASON WHY DATA ARE NOT PUBLIC] but are available from the corresponding author on reasonable request.

Funding

The financial sponsor of this research was Hamadan University of Medical Sciences (registered number: 140107266322).

Author's Contribution

SFE was the project designer, data analyst and author of the paper. ES was the scientific advisor of the research. NG and MM also collected the data. All authors read and approved the final manuscript.

Competing Interest

The authors declare that they have no competing interests.

Acknowledgments

The authors know to thank and appreciate the esteemed participants who cooperated in this research.

References

- 1. Emami SF. The use of homotonic monosyllabic words in the Persian language for the word-in-noise perception test. Aud Vestib Res. 2024: 33.
- Emami SF, Momtaz HE, Mehrabifard M. Central auditory processing impairment in renal failure. Indian J Otolaryngol Head Neck Surg. 2023; 76: 1010-1013.

- 3. Emami SF, Shariatpanahi E. Central representation of speechin-noise perception: a narrative review. Aud Vestib Res. 2023; 32: 166-73.
- 4. Emami SF, Shariatpanahi E, Gohari N, Mehrabifard M. Aging and speech-in-noise perception. Indian J Otolaryngol Head Neck Surg. 2023; 3: 1579-1585.
- 5. Emami SF. Central representation of cervical vestibular evoked myogenic potentials. Indian J Otolaryngol Head Neck Surg. 2023; 75; 2722-2728.
- Kashani A, Shariatpanahi E, Ayubi E, Emami SF. The best users of cochlear implants. Indian J Otolaryngol Head Neck Surg. 2023; 75: 3639-3644.
- Corbin NE, Bonino AY, Buss E, Leibold LJ. Development of openset word recognition in children: Speech-shaped noise and twotalker speech maskers. Ear Hea. 2016; 37: 55–63.
- 8. Calandruccio L, Leibold LJ, Buss E. Linguistic masking release in school-age children and adults. AJA. 2016; 25: 34–40.
- Wightman FL, Kistler DJ, Brungart D. Informational masking of speech in children: Auditory–visual integration. J Acoust Soc Am. 2006; 119: 3940–3949.
- Darwin CJ, Brungart DS, Simpson BD. Effects of fundamental frequency and vocal-tract length changes on attention to one of two simultaneous talkers. J Acoust Soc Am. 2003; 114: 2913– 2922.
- Leibold LJ, Taylor CN, Hillock-Dunn A, Buss E. Effect of talker sex on infants' detection of spondee words in a two-talker or a speech-shaped noise masker. J Acoust Soc Am. 2013; 19: 060074.
- 12. Ren C, Liu S, Liu H, Kong Y, Liu X, Li S. Lexical and age effects on word recognition in noise in normal-hearing children. Int J Pediatr Otorhinolaryngol. 2015;79(12):2023-7.
- Liu C, Liu S, Zhang N, Yang Y, Kong Y, Zhang L. Standard-Chinese Lexical Neighborhood Test in normal-hearing young children. Int J Pediatr Otorhinolaryngol. 2011; 75: 774-81.
- Buss E, Calandruccio L, Oleson J, Leibold LJ. Contribution of Stimulus Variability to Word Recognition in Noise Versus Two-Talker Speech for School-Age Children and Adults. Ear Hear. 2021; 42: 313-322.
- 15. Cleary M, Pisoni DB, Kirk KI. Influence of voice similarity on talker discrimination in children with normal hearing and children with cochlear implants. J Speech Lang Hear Res. 2005; 48: 204-23.
- 16. Dubas C. Speech-in-speech recognition in preschoolers. Int J Audiol. 2023; 62: 261-268.