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Abstract

Siderophores are low molecular weight (200-2000D) metal-che-
lating agents that can form complexes with iron and other essen-
tial elements. Siderophores are classified into three main classes: 
hydroxamate, phenolate and catecholate, and carboxylate. Natural 
and artificial siderophores have been widely used in a wide vari-
ety of environmental and medical applications. Siderophores have 
been utilized as antimicrobial agents or delivery carriers for anti-
biotics in the treatment of gram-negative resistant bacterial infec-
tions. They are also used as anticancer agents, antimalarial agents, 
and biosensors.

Keywords: Anti-microbial; Anti-cancer; Anti-malarial; Sidero-
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Introduction

Iron plays a crucial role in biochemical processes of all mi-
croorganisms, plants, and animals. Although, iron is abundant 
in the earth’s crust, it sometimes has limited bioavailability in 
aerobic environments [1]. As a result, the living microorgan-
isms and plants have developed strategies to absorb iron from 
the surrounding environment, such as soil and marine water. 
One of those strategies is biosynthesis of siderophores [2]. Sid-
erophores are metal-chelating agents with masses ranging be-
tween 200 and 2000D that form complexes with iron and other 
essential elements, such as Mn, Co and Ni from the environ-
ment and render them bioavailable for microbial cells [2,3].

Siderophores are classified into three main classes: hydrox-
amates, catecholates and phenolates, and carboxylates, based 
on their chemical structures [4,5]. Hydroxamate siderophores 
have N-hydroxyamide (hydroxamate) functional group (-C(=O)-
N(OH)-R), such as shizokinen, rhizobactin, as shown in Figure 
1. Agrobactin, aminochelin and protochelin are examples of 
catecholate-based siderophores that are shown in Figure 2 [6].

Rhizoferrin is an example of carboxylate-type siderophore, 
which is produced by the fungus Rhizopus microspores. The 
structure of rhizoferrin is shown in Figure 3 [7,8]. Some sidero-
phores are of mixed type, such as rhizobactin that has both hy-
droxamate and carboxylate functional groups (Figure 1).

Microbial and plant siderophores, in addition to structurally 
related synthesized siderophores have been widely employed 
in many applications, including agriculture and medicine. In 
this review, we will discuss the medical applications of sidero-

phores, such as anti-microbial therapy, chemotherapy, biosen-
sors and vaccines [9].

Figure 1: Examples of hydroxamate siderophores with encircled 
hydroxamate functional group.

Figure 2: Examples of catecholate siderophores with encircled 
catecholate functional group.
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Medical Applications of Siderophores

Siderophores as Antimicrobial Agents

Multi-drug bacterial resistance is one of the most challeng-
ing health issues that results in an urgent need for development 
of new antibiotics. Siderophores have attracted much attention 
as an alternative to overcome bacterial resistance. For example, 
Cefiderocol is a cephalosporin antibiotic-catecholate sidero-
phore conjugate that displays a significant antimicrobial activ-
ity against cephalosporin-resistant Enterobacteriaceae (Figure 
4) [10].

One of the main factors that contributes to antibiotic re-
sistance in gram-negative bacteria is inability of antibiotics to 
diffuse through the outer bacterial cell membrane [11]. Inter-
estingly, siderophores have been utilized as carriers to deliver 
antibiotics through the outer bacterial membrane via iron-up-
take pathways [12,13]. This strategy to overcome bacterial re-
sistance is called “Trojan Horse” strategy [11]. For example, Peu-
kert et al. reported the conjugation of daptomycin antibiotic to 
tetrapodal 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraace-
tic amide (DOTAM) siderophore (Figure 5). It was observed that 
daptomycin-DOTAM conjugate has an enhanced uptake and 
significant antimicrobial effect against multidrug-resistant Aci-
netobacter baumannii [14].

Siderophores as Anticancer Agents

Iron plays a crucial role in the growth of tumor tissues. Con-

sequently, the ability of siderophores to scavenge iron from cel-
lular environment has been harnessed to inhibit the prolifera-
tion of cancer cells, and tumor growth [15]. It was reported that 
fungal hydroxamate siderophores produced by Aspergillus spp. 
exhibit a significant does-dependent inhibition effect on the 
growth and proliferation of hepatocellular carcinoma cell line 
HepG2 [16]. Enterobactin, a bacterial catecholate siderophore 
shown in Figure 6 was also reported to exhibit a significant cyto-
toxic effect on monocyte-related tumor cell lines [17].

Siderophores as Antimalarial Agents and Vaccines

Malaria is caused by Plasmodium parasites that are trans-
mitted by mosquito bites. Iron is essential for several parasite’s 
metabolic processes, such as DNA synthesis that is catalyzed by 
iron-dependent ribonucleotide reductase [18]. Interestingly, 
siderophores that deprive the parasite from iron can be utilized 
in treatment of malaria. For example, desferrioxamine B (DFO-
B) or Desferal®, a natural siderophore produced by Streptomy-
ces sp. was reported to inhibit several iron-dependent metabol-
ic processes of P. falciparum [19]. Also, artificial siderophores 
have been developed for treatment of malaria, such as DFO-
ozonide conjugates [20].

Siderophores can also trigger production of antibodies when 
combined with carrier proteins. For example, it was demon-
strated that enterobactin conjugated to cholera toxin subunit B 
evolves an immune response, leading to reduction in the sever-
ity of colitis caused by E. coli in mouse models with Inflamma-
tory Bowel Diseases (IBD) [21].

Siderophores as Biosensors

Siderophores have high affinities to form complexes with a 
wide range of metal ions, such as Fe(III), Cu(II) and Mn(II). They 
can be utilized to detect metals in biological media. In addition, 
siderophores can be employed in medical diagnosis and detec-
tion of pathogens as a result of their high affinity for bacterial 
cell membrane receptors [22].

Conclusion

Siderophores have been a multidisciplinary endeavor that 
attracts attention of researchers to mitigate some global con-
cerns and threatening health issues, such as cancer and antibi-
otic resistance. Siderophores have been an intriguing approach 
with an outstanding potential activity in the medical field. 
Nevertheless, other prospects of medical use of siderophores 
should be considered. For example, the iron-chelating efficiency 
of siderophores can be harnessed in treatment of iron overload 
diseases, such as hemochromatosis, in which excess iron is 
absorbed from food and stored in body organs, such as liver 
and heart, causing liver diseases and heart problems. The lead-
absorption efficiency of siderophores can also be evaluated to 
overcome lead poisoning in children. Furthermore, the ability 

Figure 3: Structure of rhizoferrin, an example of carboxylate-type 
siderophores.

Figure 4: Structure of cefiderocol.

Figure 5: Structure of daptomycin-DOTAM conjugate.

Figure 6: Structure of enterobactin.
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of siderophores to scavenge iron that affects the lipid degrada-
tion process can be considered for treatment of arteriosclerosis. 
In a response to high demand for siderophores in the medical 
field, researchers have been developing new techniques for ex-
traction of natural siderophores from plants, fungi, and marine 
water, in addition to synthesis of structurally related artificial 
siderophores for more effective incorporation of siderophores 
into medical practice.
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