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Abstract

In 2012, RET rearrangements are observed in 1-2% of Non-Small-
Cell Lung Cancer (NSCLC) patients and result in the constitutive ac-
tivation of downstream pathways normally implied in cell prolifera-
tion, growth, differentiation and survival. Several compounds have 
been reported, including some traditional kinases inhibitors and 
the discovery of some new structure of natural products. Cabozan-
tinib and vandetanib are multikinase inhibitors have been explored 
in the clinic for NSCLC patients. As a result of the nonselective na-
ture of these multikinase inhibitors, patients had off-target adverse 
effects. Then, the discovery and clinical validation of highly potent 
selective RET inhibitors such as pralsetinib and selpercatinib dem-
onstrating improved effificacy and a more favorable toxicity profile. 
However, acquired resistance mediated by secondary mutations in 
the solvent-front region of the kinase (e.g. G810C/S/R) becomes 
a major challenge for selective RET inhibitor therapies. In this re-
view, we will highlight typical RET inhibitors developed during these 
years and provide a reference for more potential RET inhibitors ex-
ploration in the future.

Keywords: REarranged during transfection (RET) kinase; Non-
small cell lung cancer (NSCLC); Resistance; Inhibitors

Introduction

Lung cancer is the most common oncological disease, which 
is responsible for 11.6 % and 18.4 % of global cancer morbid-
ity and mortality, respectively. It is classified for Small-Cell Lung 
Cancer (SCLC) and Non-Small Cell Lung Cancer (NSCLC). NSCLC 
is significantly more common than SCLC that accounts for about 
85% and is further subdivided for squamous and non-squamous 
histological types [1]. Like other common NSCLC drivers, such 
as sensitizing Epidermal Growth Factor Receptor (EGFR) mu-
tations and Anaplastic Lymphoma Kinase (ALK) or c-Rosproto-
Oncogene 1 (ROS1) rearrangements, the oncogenic Rearranged 
during Transfection (RET) gene fusion was first identified in 
2012 that was tend to occur in approximately 1-2 % of NSCLC 
and it was found to be more common in non-smoking or light 
smoking, young lung adenocarcinoma patients. RET gene was 
derived by DNA rearrangement during transfection of mouse 
NIH3T3 cells with human lymphoma DNA and located in the 
long arm of human chromosome 10 [2]. It encodes a recep-
tor tyrosine kinase protein composed of 1143 transmembrane 
amino acid residues, and and consists of three regions. Up to 
now, 48 unique fusion partners in RET have been identified, 
such as KIF5B-RET, CCDC6-RET, and NCOA4-RET et al., [3]. These 
fusions lead to ligand-independent constitutive activation of 
the RET pathway and increased oncogenic signaling, resulting in 

RET gene overexpression. Interestingly, RET fusions were mutu-
ally exclusive with other oncogenic driver genes [4]. As patients 
harboring RET aberrations, selectively inhibiting the kinase is a 
promising therapeutic strategy [5].

For the treatment of NSCLC patients with RET alterations, 
several Multiple-targeted Kinase Inhibitors (MKIs) were ap-
proved [6,7]. Horeover, limited clinical benefits, relatively low 
tolerated doses, obvious adverse effects and mutations in the 
kinase prevent the broad application of these multiple-targeted 
drugs [8-14]. In 2020, two selective RET inhibitors, selpercatinib 
and pralsetinib were approved by US Food and Drug Adminis-
tration (FDA). Several other highly promising selective RET in-
hibitors were also developed in different stages of clinical in-
vestigation [15-35]. However, acquired resistance conferred by 
secondary mutations were also identified. In this review, we 
focus on the present state of the RET inhibitors in the treatment 
of NSCLC, discuss the future perspectives for RET positive NSCLC 
patients and provide an updated panorama of this topic.

The Structure of RET

In 1985, Takahashi et al. [2] identified the protooncogene 
RET is a transforming gene located in the long arm of human 
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chromosome 10 and was derived by DNA rearrangement dur-
ing transfection of mouse NIH3T3 cells with human lymphoma 
DNA. The RET gene encodes a Receptor Tyrosine Kinase (RTK) 
protein composed of 1143 transmembrane amino acid residues 
and contains a large extracellular domain, a transmembrane do-
main and an intracellular tyrosine kinase domain [36]. The RET 
protein formed by in-frame fusion of the 5'-terminus of a chap-
erone gene with the 3'-terminus of RET containing its kinase 
structural domain [37]. The extracellular domain contains four 
Cadherin-Like Domains (CLD1-4), calcium binding site that be-
tween CLD2 and CLD3, a cysteine-richdomain and a conserved 
cysteinerich domain (Figure 1). Then, as the intracellular region 
contains a tyrosine kinase domain and tyrosine phosphorylation 
sites located next to the C terminal region. The C-terminal tail 
of RET has two major forms, which diverge after residue G1063 
because of alternative splicing a short 9-amino acid one (RET9) 
and a long 51-amino acid one (RET51). Although the two iso-
forms share a largely common sequence and are coexpressed in 
many tissues, numerous studies have demonstrated differences 
in their temporal and spatial regulation of expression, cellular 
localization and trafficking and biologic functions. It has been 
suggested that RET51 is the more prominent isoform in tumors 
and it is more effective than RET9 at promoting cell prolifera-
tion, migration and anchorage-independent growth [38,39]. 
The combination of the intracellular kinase structural domain 
of RET and the coiled helix structural domain of the chaperone 
gene, leading to ligand-independent homodimerization and ac-
tivation of RET by autophosphorylation tyrosine kinase, which 
in turn activates downstream pathways leading to tumorigen-
esis and development [36]. RET as the receptor is activated by 
the ligands and the function of the RET receptor which will be 
discussed as followed.

The Functions of RET

In the decades that have passed since the discovery of RET, 
a lot of studies have clarified its function and biology and much 
has been uncovered related to its role in cancer. To date, three 
general mechanisms of aberrant RET activation have been re-
ported in cancer. One of them is in-frame RET gene fusions 
[2,40], the other is targeted mutation of the RET gene itself 
[41-43] and the third one is aberrant overexpression of the RET 
gene [44,45]. These three mechanisms appear to share in com-
mon is the inappropriate activation of the tyrosine kinase, most 
commonly in the complete absence of ligand. In consideration 
of the RET ligands, including glial cell line derived neurotrophic 
factor (GDNF), neurturin, artemin and persephin, all belong-
ing to the GDNF family (GFLs) [46]. These GFLs do not directly 
bind to RET and instead bind to GDNF family receptor-a (GFRa) 
coreceptors, which in turn recruit RET for dimerization [47,48]. 
Then, RET receptor is activated by a binary complex of glial cell 
GDNF family ligands with the coreceptor GDNF family receptor 
α(GFRα) [49,50]. GFL/GFRα/RET ternary complex triggers phos-
phorylation of the intracellular tyrosine residues and multiple 
downstream signaling activation including RAS/MAPK, PI3K/
AKT and JAK/STAT pathways to regulate cell migration, prolif-
eration and differentiation in physiological conditions [46,51] 
(Figure 2).

RET is activated in cancer mainly through chromosomal rear-
rangements that generate fusion genes containing the kinase 
domain of RET and gain-of-function missense mutations in both 
the extracellular and cytoplasmic regions of RET protein. Apart 
from these mechanisms, the increased expression level of wild-
type RET has been linked to the pathogenesis of several cancer 
types.

RET plays important roles in the development of the kidney 
and nervous system. Studies in mouse models have shown that 
RET and the phosphorylation of its docking sites are critical for 
the growth and branching morphogenesis of ureteric bud cells 
from the metanephric mesenchyme [52,53]. RET is expressed in 
neural crest cells and required for the proliferation, differentia-
tion, and survival of these cells [52,54]. RET is also involved in 
motoneuron survival and connectivity [55,56]. In addition, RET 
signaling contributes to the regulation and function of hemato-
poietic cells and spermatogenesis [57,58]. Loss-of-function RET 
mutations in humans have been linked to Hirschsprung disease, 
congenital anomalies of kidney or urinary tract, and congenital 
central hypoventilation syndrome [6]. RET gain-of-function al-
terations have been identified in multiple solid tumours. By se-
quencing more than 10,000 different metastatic tumours, RET 
alterations have been found in 2.4% of all cases, primarily in 
thyroid cancers and NSCLC. It is worth mentioning that, abnor-
mal activation of RET mediated by mutation, overexpression, or 
rearrangement with other oncogenic partners are identified as 
driver forces in a variety of human malignancies [59-61]. The 
mutation and fusion of RET and it’s pathogenic factors will be 
discussed next.

RET Fusions

RET fusions are thought to be oncogenic for two reasons. 
First, fusion provides a mechanism to aberrantly express RET 
in a cell type where it is normally transcriptionally silent. Sec-
ond, in all cases the extracellular domain is replaced with a 
protein dimerization domain. The outcome is the production of 
an intracellular RET tyrosine kinase domain capable of ligand-
independent activation. RET fusions mainly identified as solid 
therapeutic targets, are found in 1-2% of NSCLC, implying that 
RET addicted malignancies are sensitive to targeted inhibition.

Testing for RET fusions is highly recommended in NSCLC, since 
it can predict benefits from targeted inhibition. Specifically, a 
variety of diagnostic tools are used to detect gene fusions at the 
DNA, RNA, and protein levels. The first RET fusion rearrangement 

Figure 1: Structure of wild-type and rearranged RET proteins in a 
cancer cell.

Figure 2: GDNF signaling via the GDNF-GFRα1-RET complex.
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and adenocarcinomas among NSCLC patients was identified by 
Kohno and Lipson and was reported in 2012 [3,62]. KIF5B-RET 
is the most frequent and the best characterized RET fusion, 
derived from a 10.6 Mb pericentric inversion on chromosome 
10. CCDC6, NCOA4, and TRIM33 are also partner 5′ genes for 
RET fusion in NSCLCs [63]. Until now, a total of 48 unique fusion 
partners in RET have been identified and at least 12 fusion RET 
partner genes have been identified in NSCLCs (Figure 3)

The report revealed the prevalence of RET fusion genes 
was 1.8% in the overall population but among the 159 EGFR, 
ALK, ROS1, v-raf murine sarcoma viral oncogene homologue 
B1(BRAF), Kirsten Rat Sarcoma viral oncogene (KRAS), Human 
Epidermal growth factor Receptor 2 (HER2) WT patients, 
there was a 6.3% rate. Furthermore, Takeuchi et al. screened 
1529 Japanese NSCLC patients, reporting RET chromosomal 
rearrangement in 0.9% of patients [64]. Thus, the prevalence 
of the RET fusion gene in lung adenocarcinoma is 0.9-1.8%. 
For all RET fusion variants, a chromosomal rearrangement 
leads to a blend between the coiled coil domain of the partner 
gene and RET intracellular kinase domain, whose function 
remains preserved despite the breakpoint. The coil coiled 
domain of the RET partner gene induces ligand independent 
homodimerization and activates the RET tyrosine kinase domain 
by auto-phosphorylation [65]. Among the downstream signals 
activated, preclinical models showed that RET fusion oncogenes 
(KIF5B-RET and CCDC6-RET) enhanced cell proliferation and 
survival via direct phosphorylation of STAT3 or activation of JAK/
STAT3 and RAS/RAF/MEK/ERK signalling pathways [66]. It is also 
important to point out that key regulatory mechanisms of RET 
inactivation, such as endocytosis and recruitment of membrane 
associated ubiquitin ligases, do not appear to impact the fusion 

proteins, which additionally may enhance their oncogenicity 
[67,68]. Need to add that, the mechanism of activation of RET 
fusion proteins is analogous to the oncogenic activation of 
rearranged ALK in NSCLC, but clearly differs from ROS1. In the 
EML4-ALK fusion gene, a coiled-coil domain in EML4 is fused 
to the ALK kinase domain, conferring oligomerization and 
constitutive kinase activation [69], while coil-coiled domains are 
not consistently present in ROS1 fusion genes in NSCLC and they 
are not necessary to drive oncogenesis [64]. The tumorigenic 
potential of RET fusion proteins has been demonstrated in vitro 
in Ba/F3 (pro-B lymphocyte) [3] or NIH3T3 (fibroblast) cell lines 
[62,64], and in CCDC6-RET-positive LC-2 lung adenocarcinoma 
cells [70,71]. Furthermore, the transforming potential of RET 
fusion gene was also evaluated in vivo, in athymic mice through 
subcutaneous injection of KIF5B-RET transfected NIH3T3 
cells [64], and in transgenic immunocompetent KIF5B-RET-
rearranged mice [18,58]. Of note, in the latter in vivo models, 
after tumour development, continuous KIF5B–RET fusion gene 
expression was required for lung tumour survival. Furthermore, 
RET-rearranged lung adenocarcinoma in transgenic mice 
presented a strong desmoplastic reaction and aggressive 
features [72].

In addition, RET fusions are often present in NSCLC patients 
without other oncogenic drivers. Thus, the clinical and 
pathological characteristics of RET+ patients may differ from 
what has been observed for those with other oncogenic drivers. 
Moreover, some initial reports showed that lymphangitic 
spread and psammoma bodies were frequently reported in 
a small series of RET-rearranged NSCLC, suggesting that RET 
assessment should be encouraged in those cases as mentioned 
[73].

As RET was first identified more than 10 years ago, 
which is activated in cancer mainly through chromosomal 
rearrangements that generate fusion genes containing the 
kinase domain of RET, implying that RET addicted malignancies 
are sensitive to targeted inhibition. With the study of RET in 
NSCLC, clinical treatments and inhibitors of it were gradually 
from bench to bedside, especially opening the door for small 
molecule inhibitors. We will discuss the multikinase inhibitors 
(MKIs), the selective inhibitors and some other reported 
inhibitors as follows.

RET Inhibitors

Multiple-Targeted Kinase Inhibitors

Cabozantinib: The first glimmer of hope for the patients with 
RET-rearranged NSCLC came with the discovery of multikinase 
inhibitors (MKIs) (Figure 4) The first multitarget inhibitors of RET 
we discuss is cabozantinib (1), which was approved by the US 
FDA in 2016. Cabozantinib (XL-184), with the structure of N-(4-
((6,7-dimethoxyquinolin-4-yl)oxy)phenyl)-N-(4-fluorophenyl)
cyclopropane-1,1-dicarboxamide, was developed by Exelixis 
Inc. The drug has low nanomolar activity against RET (the IC50 
for RET is 5.2 nM), and it also has activity against ROS1, MET, 
VEGFR2, AXL, TIE2, and vkit Hardy-Zuckerman 4 feline sarcoma 
viral oncogene homologue (KIT) [74].

Drilon et al. evaluated the safety and activity of cabozantinib 
in 26 patients with advanced RET-rearranged NSCLC in an open-
label, single-arm, phase II trial [8]. It was the first study of 
cabozantinib to demonstrate the activity of a RET inhibitor in a 
molecularly enriched cohort of patients with advanced-stage, 
RET-rearranged NSCLC [8,75]. In this trial, the primary objective 

Figure 3: RET fusion.

Figure 4: Multikinase inhibitors and RET-selective inhibitors in 
patients with RET-positive lung cancer.
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was to determine the overall response, and secondary outcomes 
included Progression-Free Survival (PFS), Overall Survival (OS), 
and safety. The Overall Response Rate (ORR) was 28%, with 7 
of 25 evaluable patients achieving a partial response, including 
patients with KIF5B–RET, TRIM33–RET, and CLIP1–RET fusions. 
The median progression-free (mPFS) survival was 5.5 months, 
and median overall survival was 9.9 months.

In this disease context, this trial was followed by two phase 
II trials of vandetanib, one conducted in Japan (LURET) [76] and 
the other one in South Korea [9] ,which will be discussed next. 
The common adverse reactions caused by cabozantinib include 
abdominal complex signs of diarrhea, cavity inflammation, 
Palmar-Plantar Erythrodysesthesia Syndrome (PPES), body 
mass reduction, appetite lethargy, nausea, fatigue, oral pain, 
hair color change, taste disturbance, high blood pressure, 
abdominal pain and constipation [77,78].

Vandetanib: Vandetanib (ZD6474) is a 4-anilinoquinazoline-
like drug molecule, with the structure of N-(2,4-difluorophenyl)-
6-methoxy-7-((1-methylpiperidin-4-yl)methoxy) quinazoline-4 
amine(2), which was developed by AstraZeneca (UK) and 
approved by the US FDA in 2011. Vandetanib is an orally active 
low-molecular multitargeted tyrosine kinase inhibitor with 
activity against EGFR, VEGFR-2 and RET(the IC50 for RET is 
100 nM) [79]. Preclinical studies demonstrated the antitumor 
activity of vandetanib both in vitro and in vivo against LC-2/ad 
cells carrying the CCDC6-RET fusion [70]. As mentioned above, 
in Japan (LURET) phase II study, the enrolled 19 Japanese RET 
fusion patients received the vandetanib treatment, the mPFS 
was 4.7 months, the median OS was 11.1 months, and the OS 
at 12 months was 52.6%. Eleven patients (57.9%) had adverse 
events leading to a dose reduction [38]. Another phase II study 
explored the efficacy of vandetanib in Korean patients with 
metastatic or recurrent RET fusion NSCLC. This study showed 
the mPFS was 4.5 months, the median OS was 11.6 months. The 
most common grade 3 adverseevents (AEs) were hypertension 
(17%), a prolonged QTc interval (11%), and transaminitis (6%) 
[80].

In the clinical trial of vandertanil for NSCLC described above, 
patients died most are caused by disease progression, but 
there are also side effects that cannot be tolerated discontinue 
the medication. Common side effects were diarrhea, rash, 
hypertension, and asymptomatic prolonged QT interval, nausea, 
vomiting, neutropenia, anemia, fatigue, etc. But most can be 
tolerated or can be relieved after symptomatic treatment. 

Also, the adverse reaction was higher of Vandertanil combined 
application [81-84].

Lenvatinib: Lenvatinib (E7080) with the structure 
of 4-(3-chloro-4-(3-cyclopropylureido)phenoxy)-7-
methoxyquinoline-6-carboxamide(3) is a multitargeted tyrosine 
kinase inhibitor of VEGFR1-3, fibroblast growth factor receptors 
(FGFR)1-4, platelet-derived growth factor receptor alpha 
(PDGFRα), KIT, and RET(the IC50 for RET is 1.5 nM) [87-90]. It 
was developed by Eisai Inc. and was approved by the US FDA 
in 2015 [87]. In a phase II trial, lenvatinib (24 mg/d) was tested 
in 25 patients with RET-rearranged NSCLC. Of them, 52% had 
a KIF5B-RET rearrangement and 48% had different known RET 
fusion genes. Interestingly, 28% of patients received lenvatinib 
after a previous line of anti-RET therapy. The ORR, Disease 
control rates (DCR), and mPFS times were 16%, 76%, and 7.3 
months, respectively. In seven patients who had received 
previous RET therapy, ORR with lenvatinib was superimposable 
(14%) on the response seen in RET TKI-naive patients. Although 
the ORR was equivalent (15%-17%) in patients with the KIF5B-
RET rearrangement and in patients with different known RETS 
fusion genes, the mPFS was lower in patients with the KIF5B-
RET rearrangement than in patients with other known fusion 
variants (3.6 versus 9.1 months). Lenvatinib induced grade 
3 to 4 AEs in 92% of the patients (hypertension in 58% and 
proteinuria in 16%); dose reduction and drug discontinuation 
occurred in 64% and 76% of patients, respectively. Lenvatinib 
also has side effects like high blood pressure, diarrhea, and 
thrombocytopenia [89].

Sorafenib: Sorafenib (BAY 43-9006) with the structure of 
4-(4-(3-(4-chloro-3-(trifluoromethyl)phenyl)ureido)phenoxy)-
N-methylpicolinamide(4), targets VEGFR1, VEGFR2, VEGFR3, 
platelet derived growth factor receptor beta (PDGFRB), c-KIT, 
Fms-Like Tyrosine kinase 3 (FLT3), and also RET (the IC50 for 
RET inhibition was 15-150 nM) [81]. It was developed by Bayer 
and was approved by the US FDA in 2005. In vitro, sorafenib 
suppressed the growth of KIF5B-RET-transfected Ba/F3 pro-B 
lymphocytes [3]. In vivo, the efficacy of sorafenib has been 
tested in a limited number of patients (n=3) in a study by Horiike 
et al. [89] One patient experienced Stable Disease (SD) while 
two showed Progressive Disease (PD) as best responses to 
treatment. However, the antitumor activity of sorafenib does 
not appear to be significant. The most common side effects were 
palmar metatarsal syndrome, hypertension, and diarrhea [90].

Whereas multikinase inhibitors are active in patients with 
RET-driven NSCLCs, response rates achieved in prospective 
series are lower than those observed in other driver-positive, 
advanced-stage tumours with matched targeted therapies. One 
possible explanation for the limited efficacy of RET-directed 
therapy with multikinase inhibitors relates to the inhibition 
of non-RET kinases, as well as non-kinase targets. It has been 
validated that selectively inhibiting the kinase is a promising 
therapeutic strategy for patients harboring RET aberrations. 
Two highly potent and selective RET TKIs, selpercatinib and pral-
setinib have been developed and their activity has been investi-
gated, which will be discussed below.

Selective RET Inhibitors

Small, highly selective RET inhibitors have been developed 
with the aim of overcoming treatment-related toxicities com-
monly seen with non-selective RET inhibitors. Among these, 
selpercatinib and pralsetinib received FDA approval for the 
treatment of NSCLC harbouring RET alterations.

Figure 5: Chemical structures of several other selective RET inhibi-
tors.

Figure 6: Several RET inhibitors suppressing resistant mutants in 
solvent-front regions.
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Selpercatinib

Selpercatinib (LOXO-292) with the structure of 6-(2-hydroxy-
2-methylpropoxy)-4-(6-(6-((6-methoxypyridin-3-yl)methyl)-
3,6-diazabicyclo[3.1.1]heptan-3-yl)pyridin-3-yl)pyrazolo[1,5-a]
pyridine-3-carbonitrile(5) has been developed as a selective, 
ATP-competitive RET-inhibitor (the IC50 for RET is 2.0 nM), which 
was developed by Lilly. Selpercatinib is a highly selective RET in-
hibitor because it could block the adenosine triphosphate bind-
ing site of RET receptor tyrosine kinase [91]. Data on its preclini-
cal characterization and activity was published in 2018 [92]. On 
May 8th of 2020, the US FDA approved selpercatinib as the first 
targeted therapy for RET-rearranged NSCLC [93].

The approval for selpercatinib was based on the ORR with 
prolonged duration of responses seen in a multicenter, open-
label, multicohort clinical trial (LIBRETTO-001, NCT03157128)
[94]. The accelerated approval of selpercatinib was based on 
the benefit-risk evaluation of the results of LIBRETTO-001. After 
that, the efficacy of selpercatinib in RET fusion-positive NSCLC 
was evaluated in 105 patients previously treated with platinum 
chemotherapy and 39 treatment-naive patients. ORRs for previ-
ously treated and treatment-naive patients were 64% and 85%, 
respectively. Patients with RET-mutant MTC were also divided 
into two cohorts: a) previously treated with cabozantinib or 
vandetanib (N=55) and b) cabozantinib and vandetanib naive 
(N=88). ORRs for the cohorts were 69% and 73%, respectively. 
The trial is still active and intends to further study the clinical 
benefits of selpercatinib [95].

In 2021, selpercatinib was approved by the European Medi-
cines Agency (EMA) and Swiss-Medic for second line or poste-
rior line therapy. The clinical trial LIBRETTO-321 was conducted 
to evaluate the efficacy of selpercatinib for Chinese RET fusion 
NSCLC patients. The ORR was 61.1% in the selpercatinib treated 
population. About 90% of the patients remained in continuous 
remission after 6 months [96]. This study indicated that selper-
catinib was also a promising therapeutic option for Chinese RET 
fusion NSCLC patients. Common AEs with selpercatinib included 
increased glutamic transaminase (AST) levels (51%), increased 
Alanine aminotransferase (ALT) levels (45%), dry mouth (39%), 
diarrhea (37%), hypertension (35%) and rash (27%), and most 
of the AEs were grade 1 or 2 [96].

Pralsetinib: Pralsetinib (BLU-667) with the structure of 
(1s,4R)-N-((S)-1-(6-(4-fluoro-1H-pyrazol-1-yl)pyridin-3-yl)ethyl)-
1-methoxy-4-(4-methyl-6-((5-methyl-1H-pyrazol-3-yl)methyl)
pyrimidin-2-yl)cyclohexane-1-carboxamide(6), is an oral Tyro-
sine Kinase Inhibitors (TKI) with potent and specifific activity 
against the RET kinase domain(the IC50 for RET inhibition was 
0.4 nM), including multiple RET alterations such as fusions, ac-
tivating point mutations and predicted acquired resistance mu-
tations, which was developed by Blueprint Medicines Corpora-
tion.

In vitro studies demonstrated that, compared with cabozan-
tinib and vandetanib, pralsetinib is 8 to 28-fold more potent 
against the wild-type RET kinase domain. Moreover, pralsetinib 
also displays a strong activity against common oncogenic RET 
alterations, such as RET M918T, KIF5B–RET and CCDC6–RET fu-
sions [97].

The clinical activity and safety of pralsetinib was investigated 
by the ARROW study (Global multicentric single-arm phase I/II 
trial) [98]. Based on the result of this study, pralsetinib was ap-
proved as first-line or post-line treatment for RET fusion NSCLC 

by FDA in September 2020 [99,100]. Updated data reported 
by the American Society of Clinical Oncology(ASCO) in 2021 
showed that the ORR was 17.1 months, the CR was 6%, and 
the mPFS was 16.5 months (n=136). Nine patients with measur-
able brain metastases all showed an intracranial reduction to a 
certain extent (intracranial Response Rate (RR) 56%, intracranial 
Complete Remission (CR) 33%). It was also demonstrated that 
pralsetinib had signifificant intracranial activity. As the excel-
lent effificacy and low off-target toxicity in RET cancer patients, 
pralsetinib was also approved by China’s State Food and Drug 
Administration (NMPA) in March, 2021 [101]. This is the first 
RET inhibitor approved in China and is of great signifificance 
[94,102,103].

In terms of side effects, pralsetinib has been well tolerated 
with mainly low grade toxicities (28% had ≥ grade 3 events). 
The most commonly observed adverse events were AST and 
ALT increase (22% and 17%, respectively), hypertension (18%), 
constipation (17%), neutropenia (15%) and fatigue (15%) [104].

Other RET inhibitors in development: Except for selp-
ercatinib and pralsetinib, BOS172738/Zeteletinib (Phase I, 
NCT03780517)[105,106], GSK3179106 (phase I, NCT02727283) 
[107], SY-5007 (phase I, NCT05278364), KL590586 (phase I/II, 
NCT05265091) and HS-10365 (phase I, NCT05207787), were 
also developed in different stages of clinical investigation. For 
example, BOS172738(7) is a targeted inhibitor of aberrant mu-
tations in RET. A phase I clinical trial of BOS172738 reported 
that BOS172738 showed good safety for long-term administra-
tion. The overall efficacy ORR assessed by the investigator was 
33% (n=18/54), and the NSCLC cohort ORR was 33% (n=10/30) 
[108,109]. Currently, multiple clinical trials are being conduct-
ed, including LIBRETTO-431, LIBRETTO-531, NCT04211337, and 
NCT03780517 [110].

In addition, N-phenyl-7,8-dihydro-6H-pyrimido[5,4-b][1,4]
oxazin-4-amine derivatives have been reported as a new class 
of RET inhibitors and one of the representative compounds 
17d(8) [35], 1-(5-(tert-butyl)isoxazol-3-yl)-3-(4-((6,7,8,9-
tetrahydropyrimido[5,4-b][1,4]oxazepin-4-yl)amino)phenyl)
urea, potently inhibits RET(the IC50 for RET is 10 nM) and its drug 
resistance mutants RET-V804M and RET-V804L. Lakkaniga et al. 
[24] investigated a series of pyrrolo[2,3-d]pyrimidine-based de-
rivatives and identified a lead compound, named 59(9), is a type 
II inhibitor of RET, which shows low nanomolar potency against 
RET(the IC50 for RET is 6.8 nM) and RETV804M (the IC50 for RET is 
13.5 nM) and additionally proposed a binding pose of this com-
pound in RET pocket. The group of Moccia et al. [20] identified 
the clinical drug candidates Pz-1(10) and NPA101.3(11) with the 
IC50 for RET is less than 1.0 nM and 1.0 nM respectively. Interest-
ingly, Pz-1(10) and NPA101.3(11) lacking the structural liability 
for demethylation showed a selective inhibitory profile for both 
VEGFR2 and RET (WT and V804M).

What is more, during the past 10 years, Wang et al.[80] syn-
thesized various nicotinamide analogs based on the scaffold of 
benzamide aminonaphthyridine HSN356, which was reported 
to inhibit RET kinase [111]. HSN608(12), the nicotinamide an-
alog of HSN356 exerts strong RET inhibition and also inhibit 
RET(V804M/L) and RET(S905F) mutants better than alectinib, 
sorafenib, vandetanib and apatinib, and comparable to pral-
setinib.

RET inhibitors was also discovered by virtual screening of 
Natural Product (NP) libraries, four natural product (NP) librar-
ies encompassing Otava NP , NPASS (Natural Product Activity & 
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Species Source) NP, IBS (InterBioScreen) NP , and LC (Life Chemi-
cals) NP were screened using the produced model. The model 
as a 3D query was employed to screen four natural product (NP) 
libraries, including a total of 102,829 NPs. Subsequent virtual 
screening procured 198 compounds, which were subjected to 
computer-aided drug designing (CADD). Among the investi-
gated candidates, STOCK1N-98911 (13) and STOCK1N-84953 
(14) exhibited favorable interaction energies towards RET and 
another kinases [112]. Even the compounds did not have the 
activity as much as other inhibitors, but it show us another way 
to discovery new structure RET inhibitors.

Despite the significant progress and promising clinical out-
comes of the selective RET kinases inhibitors, acquired resis-
tance conferred by secondary mutations, e.g. G810C/S/R in Sol-
vent-Front region (SF), Y806 C/N (in hinge residue) or V738A (in 
β2 strand) [96,113], was identified. Consequently, substantial 
efforts have been devoted to discover new generation selective 
RET inhibitors for combating unsolved clinical needs [114,115], 
and at least 4 candidates have been advanced into clinical tri-
als. Examples include TPX-0046 (Phase I/II, NCT04161391) 
[116,117], LOXO-260 (Phase I, NCT05241834) [118] and 
TAS0953/HM06 (phase I/II, NCT04683250) [119], Investigation 
New Drug (IND) was also filed for APS03118 (undisclosed struc-
ture) based on the company’s announcement [120], which will 
be discussed next.

TPX-0046 with  a small and rigid macrocyclic struc-
ture of (13E,14E,15aR,18aS,5S)-35-fluoro-5-methyl-
15,15a,16,17,18,18a-hexahydro-4-oxa-7-aza-1(5,3)-
cyclopenta[b]pyrazolo[1' ,5' :1,2]pyrimido[4,5-e][1,4]
oxazina-3(1,2)-benzenacyclooctaphan-8-one(14), is developed 
by Turning Point Therapeutics. It is a potent and selective next-
generation orally bioavailable RET/SRC kinase inhibitor with a 
small and rigid macrocyclic structure that is structurally differ-
entiated from current RET inhibitors. In enzymatic assays, TPX-
0046 demonstrated low nanomolar potency against WT and 
many mutated RETs, as well as SRC. which is VEGFR2-sparing. 
TPX-0046 potently inhibited RET phosphorylation and cell pro-
liferation in in-house engineered Ba/F3 KIF5B-RET, TT, and LC2/
ad cells with IC50 of approximately 1nM. TPX-0046 is also potent 
against the Solvent Front Mutations (SFM) G810R in Ba/F3 cell 
proliferation assay with a mean IC50 of 17 nM, whereas compa-
rable proxy molecules for pralsetinib and selpercatinib have IC50 
>500 nM. TPX-0046 demonstrated marked anti-tumor efficacy 
in vivo in multiple RET-driven cancer cell-derived and patient-
derived xenograft tumor models [116]. The clinical trial (Clini-
calTrials.gov Identifier: NCT04161391) employing TPX-0046 is 
underway [121,122]. 

However, other compounds like LOXO-260 (Phase I, 
NCT05241834) [120], TAS0953/HM06 (phase I/II, NCT04683250) 
[121] and APS03118 which is filed by Investigation New Drug 
(IND) haven’t shown any clinical data until now. The only thing 
about APS03118 is the IC50 for mutant RET inhibition was less 
than 0.4 nM) which is based on the company’s announcement, 
but the structure of it was undisclosed [122].

Lately, Ding’s group [123], reported a structure-based de-
sign of 1-methyl-3-((4-(quinolin-4-yloxy)phenyl)amino)-1H-
pyrazole-4-carboxamide derivatives recently. One of the rep-
resentative compounds, named 8q(15), potently suppressed 
wild-type RET kinase with an IC50 value of 13.7 nM. It also strongly 
inhibited the proliferation of BaF3 cells stably expressing various 
oncogenic fusions of RET kinase with solvent-front mutations , 
e.g. CCDC6-RETG810C, CCDC6-RETG810R, KIF5BRETG810C and 

KIF5B-RETG810R, with IC50 values of 15.4, 53.2, 54.2 and 120.0 
nM, respectively. Furthermore, it also dose-dependently inhib-
ited the activation of RET and downstream signals and obvious-
ly triggered apoptosis in Ba/F3-CCDC6-RETG810C/R cells. The 
compound also exhibited significant anti-tumor efficacy with a 
Tumor Growth Inhibition (TGI) value of 66.9% at 30 mg/kg/day 
via i. p. in a Ba/F3-CCDC6-RET G810C xenograft mouse model.

Nevertheless, no drug is approved for overcoming acquired 
resistance against the 2nd generation selective RET inhibitor 
therapies to date. As metioned, some mutation occured in RET-
positivite NSCLCs, we will discuss next.

RET Mutations

It was an intraget kinase-acquired resistance that dynami-
cally evolves under kinase inhibitor selection pressure, mak-
ing the kinase continuously activated under medication condi-
tions. Gatekeeper mutations and solvent-front mutations were 
included. It has been reported that resistance mechanisms in 
MKIs include RET V804M gatekeeper mutations and RET S904F 
[113]. In RET positive NSCLS patients, the primary V804 M/L/E 
and S904F mutations in the kinase gatekeeper and activation 
loop, respectively, formed steric clashes with the drugs [124-
126].

The selective RET inhibitor selpercatinib and pralsetinib 
induced a pre-lytic mutation (G810A/S) [127]. It also demon-
strated that it increased kinase activity and conferred resistance 
through allosteric effects. Also, selective RET inhibitors have 
been designed to overcome gatekeeper mutations. The concur-
rent RET V804M gatekeeper mutation was associated with a 
G810 resolute mutation in an NSCLC patient.

The selective RET inhibitor selpercatinib and pralsetinib 
induced a pre-lytic mutation (G810A/S) [126]. It also demon-
strated that it increased kinase activity and conferred resistance 
through allosteric effects. Also, selective RET inhibitors have 
been designed to overcome gatekeeper mutations. The concur-
rent RET V804M gatekeeper mutation was associated with a 
G810 resolute mutation in an NSCLC patient.

For example, RET mutations located at the floor of the sol-
vent-front (G810C/S/R), the hinge (Y806C/N), and the β2 strand 
(V738A) of the RET ATP-binding site [95,108,113] in addition to 
target-by pass mechanisms [108,128,129]. Among these mu-
tations, the G810C/S/R mutations displayed the strongest re-
sistance[95] and were observed more often in patients whose 
tumors developed resistance to selpercatinib. Selpercatinib-
resistant RET mutations identified so far were cross-resistant 
to pralsetinib [95]. Interestingly, Wu’s group reported that the 
L730V/I mutations at the roof of the solvent-front site of the 
RET kinase were strongly resistant to pralsetinib but not to selp-
ercatinib [130].

Conclusions and Perspectives

NSCLC takes a leading position with regard to recent im-
provements in life expectancy as compared to other common 
tumor types, the use of appropriate targeted drugs results in 
manifold increase of their overall survival. The development of 
mutation-tailored drugs is reaching some plateau, particularly, 
some kinase inhibitors that are focus on suppressing resistant 
mutants in solvent-front regions. As NSCLC exome sequencing 
studies did not reveal significant number of novel potentially 
druggable targets. With the increasing demand for combining 
the expertize in molecular biology, pathology and clinical as-
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pects of cancer management, the front-line of integration of 
clinical research, NSCLC may serve as an example of precision 
medicine, which will allow development of ideal treatment 
strategies for RET positive NSCLC patients. 

In the past decades RET oncogene has emerged as a criti-
cal tumorigenesis driver. RET mutations and rearrangements 
now represent a well-established mechanism that drives tu-
mor growth across several types of neoplasms, including thy-
roid and lung cancer. Treatment with non-specific MKIs in RET 
fusion-positive NSCLC achieved modest clinical outcomes and 
limited response durability, especially when compared with 
those achieved by targeting oncogenic drivers other than RET. 
Therefore, the two highly selective RET inhibitors, pralsetinib 
and selpercatinib, were specifically developed to target RET ki-
nases selectivity and to overcome resistances to MKIs. These 
compounds have received FDA breakthrough designation and 
have been approved for clinic use based on the results of the 
LIBRETTO-001 and ARROW trials. Although these agents have 
been developed to overcome MKIs limits and have demonstrat-
ed remarkable clinical activity, new mechanisms of acquired 
resistance have already been reported. The emergence of off-
target RET-independent mechanisms of resistance to pralsetinb 
and selpercatinib has highlighted the necessity to test further 
next-generation agents and to explore new therapeutic strate-
gies, including concurrent inhibition of RET and parallel signal-
ing pathways of resistance. What’s more, the treatment of two 
selective RET inhibitors costs are high. For example, selperca-
tinib is priced at $20,600 a month. It is difficult for the average 
patients to benefit.

Within the next decade, the field of RET inhibition in NSCLC 
is on the verge of a breakthrough that will give physicians and 
patients promising new therapeutic options. Identifying potent, 
selective, and less toxic RET target agents, looking for com-
pounds with RET activity from natural products, exploring the 
potential impact of different fusion variants, characterizing con-
comitant molecular alterations and mechanisms of resistance 
to RET inhibition to identify optimal therapeutic combinations 
represent the challenges for future research in this field of 
NSCLC treatment.
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