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Abstract
Increasing evidence over the last two decades has indicated that the 

pathophysiology of Major Depressive Disorder (MDD) and the action of 
antidepressants both involve Brain-Derived Neurotrophic Factor (BDNF), 
a major neuronal growth factor in the brain. MDD is a complex disorder that 
results from genetic and environmental influences, singly or in combination. This 
article reviews the current knowledge of BDNF and depression therapeutics, 
focusing especially on the gene regulation of BDNF and other BDNF-related 
mechanisms for recent depression therapeutics, including glutamatergic 
antidepressants and brain stimulation. It is still unclear why some people are 
more susceptible to MDD and why many show individual differences in their 
treatment responses. This article also briefly reviews more recent findings on 
the epigenetic and genetic status of the BDNF gene in brain and blood, which 
may explain MDD susceptibility and predict response to depression treatment.

therapeutics (e.g., antidepressants and brain stimulations, 3 and 4 
below) increase BDNF levels and can reverse the stress-induced BDNF 
reduction [19]. Direct antidepressant effects of BDNF have been also 
reported; infusion of BDNF into the hippocampus produced sustained 
antidepressant-like effects in rodents [20-23]. These findings give 
hope that increasing the levels of BDNF in the related brain regions 
and targeting the involved pathways may become a new strategy for 
the prevention and treatment of MDD.

Gene regulation of BDNF
The expression of BDNF is tightly regulated by at least 9 promoters 

in both humans [24,25] and rodents [26,27]. Each promoter regulates 
BDNF expression differently in a region/cell-specific manner and has 
distinct function responding to stress, neuronal activity and MDD 
treatments (see [6] for review). Stress reduces the activity of BDNF 
promoters IV and VI through epigenetic regulation processes that 
involve increases in Histone H3 lysine 27 (H3K27) trimethylation 
[17,28] ( [29] for detailed epigenetic mechanisms of the BDNF 
gene). Recent studies have shown that the post-mortem brain of 
suicidal human subjects also display increased methylation at BDNF 
promoter/exon IV; this reduces transcription of the Bdnf gene [30]. 
Further, early-life maltreatment of infants has been reported to 
increase methylation of the promoter IV-controlled Bdnf DNA (exons 
IV and IX) and leads to persistent reduction in BDNF expression in 
the prefrontal cortex in adulthood [31]. Our group recently showed 
that a lack of promoter IV-driven BDNF [32] leads to depression-
like behavior in mice [33]. Promoter IV is the best-known activity-
dependent promoter among the known promoters; it responds to 
neuronal activity to increase BDNF levels [34-36], particularly in the 
cortex and hippocampus [37,38]. These findings suggest an intriguing 
hypothesis for critical roles of activity-dependent expression of BDNF 
in sustaining neuronal activity by a positive feedback mechanism [6]; 
namely, increased neuronal activity induces activity-dependent BDNF 
expression, which then induces neuronal activity to maintain active 
brain functions. Any disruption in the activity-dependent BDNF 

Introduction
Major Depressive Disorder (MDD) is the leading cause of 

disability in developed countries (~350 million people are affected 
worldwide), with devastating symptoms including depressed mood, 
loss of interest or pleasure, executive dysfunctions, psychomotor 
retardation, suicide ideation, and eating and sleep disturbances [1]. 
However, the current treatment outcome is suboptimal—only one-
third of patients show remission after a first-line treatment and only 
about a half of patients show complete remission following multiple 
treatments that take several months to years [2]. A more efficacious 
treatment and preventions are needed to combat MDD and to increase 
quality of life and reduce the disease burden. It is therefore imperative 
to understand the mechanisms of this disorder and its recovery.

BDNF and depression 

A large body of evidence over the past decade has suggested 
that the pathophysiology of MDD and its recovery involve gene 
regulation of Brain-Derived Neurotrophic Factor (BDNF) [3-6]. 
BDNF is a major neuronal growth factor in the brain, which regulates 
neurogenesis, neuronal maturation and survival, and synaptic 
plasticity. Low levels of BDNF have been observed in the brain of 
suicide subjects and depressed patients [7-10], particularly in the 
regions (i.e., hippocampus, prefrontal cortex and amygdala) that 
show atrophy in depressed patients and stressed animals [11-13]. 
Reduced BDNF levels have been also observed in blood of depressed 
patients, and these low levels can be reversed following depression 
treatment [14]. Causal relations between stress and BDNF have 
been clarified by using rodents; physical stress (acute and chronic 
immobilization) and corticosterone (a hormone induced by stress) 
have been shown to decrease BDNF levels in the hippocampus [15]. 
Negative environmental effects like psychological stress (re-exposure 
to cue associated with foot shocks [16] and chronic social defeat 
[17]) and chronic alcohol intake [18] also decrease BDNF levels in 
the hippocampus. On the other hand, different types of depression 
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expression would therefore lead to a decrease in neuronal activity and 
function, which could in turn lead to depression [Figure 1].

and Monoamine Oxidase Inhibitors treatments (MAOI)] increase 
monoamine levels in the brain, but direct application of monoamines 
(serotonin, norepinephrine, dopamine) to hippocampal neurons 
has failed to induce BDNF expression in an acute phase (3 hrs) [55]. 
However, chronic (>3 weeks) administration of different classes of 
monoaminergic antidepressants has been shown to increase Bdnf 
gene expression through different promoters in the hippocampus and 
cortex. For example, fluoxetine (SSRI) works on promoter II [56]; 
phenelzine (MAOI) works on promoters I and VI [56]; duloxetine 
(a Serotonin–Norepinephrine Reuptake Inhibitor, SNRI) works 
on promoters III and IXa [57]; and imipramine (TCA) works on 
promoters IV and VI [17]. However, the amount of increase is not 
robust compared to that seen with neuronal depolarization ( [6] for 
review).  

The recent development of mutant mice that lack promoter IV-
driven BDNF but retain intact other promoters and the BDNF coding 
region (KIV, [32]) has begun to answer some of the questions about 
the role of endogenous gene regulation of BDNF in antidepressant 
effects. In our investigations, we have not been able reproduce 
previous results showing that chronic (3 weeks) treatments with 
different kinds of antidepressants increased hippocampal BDNF 
levels in both normal and mutant mice [58]. The previously reported 
increases in BDNF levels in response to chronic monoaminergic 
antidepressant treatment may in fact have been a secondary effect due 
to increased behavioral activity over the time (>3 weeks) induced by 
the increased monoamine levels. The behavioral activity, and thus the 
behavioral activity-driven BDNF induction, may be compromised 
in a certain laboratory setting. In the depression mouse model that 
lacks promoter IV-driven BDNF, an enriched environment treatment 
showed a better effect in increasing BDNF levels through multiple 
promoters and neurogenesis and in reversing depression-like 
behavior than did treatments with different types of monoaminergic 
antidepressants [43,50]. These findings indicate that neuronal activity, 
rather than the monoamine modulation itself, may be a strong inducer 
of BDNF levels. It should be noted that the chronic treatment with the 
monoaminergic antidepressants and enriched environment produced 
antidepressanion-like behavioral effects tested in the tail suspension 
test in KIV mice        [43,50]. This fact indicates that promoter IV-
driven BDNF is not required for the preclinical antidepressant-like 
effects.

Bidirectional roles of BDNF depending on the brain regions: 
BDNF mRNA levels are abundant in the cortex and hippocampus 
but are much less in the ventral brain regions except some thalamic 
nucleus [59], where activity of promoters I, II and VI have been 
observed [38]. However, the ventral brain regions show moderate 
BDNF protein expression by anterograde transport of BDNF [60]. 
The BDNF regulation by stress and its effect in the ventral brain 
regions are opposite to that in the cortex and hippocampus: Stress 
increases BDNF protein levels in the nucleus accumbens and BDNF 
in this region causes depression-like behavior [61, 62]. It remains 
unclear which promoter is responsible for this stress-induced BDNF 
increase and how these changes affect the neural network functions in 
the connected brain regions. 

New-lines of depression therapeutics
Antidepressants acting on glutamate receptors

Figure 1: Activity-dependent BDNF hypothesis of depression. Increased 
neuronal activity, induced by an enriched environment (e.g., physical 
exercise, mental stimulation with learning exercise and sensory input, and 
social interactions) and/or medication up-regulates BDNF expression in the 
hippocampus and cortex. This, in turn, increases neuronal activity and this 
positive feedback loop can maintain an active mind state. In contrast, any 
disruption in BDNF expression, caused by epigenetic regulation processes, 
stress, and/or reduced neuronal activity, would lead to decreases in neuronal 
activity and activity-driven BDNF expression. This vicious cycle of decreased 
neuronal activity and reduced BDNF expression may cause depression. 
Modified and used with permission from [6].

It should be noted that BDNF increases activity/functions of 
both excitatory and inhibitory neurons. In particular, activity-driven 
BDNF expression is critical for increasing maturation and functions 
of the GABAergic inhibitory neurons [32,39-42]. Thus, the activated 
excitatory neurons likely receive tight inhibition by the nearby 
GABAergic neurons via the activity-driven BDNF expression. This 
enhancement of neuronal excitation and inhibition may increase 
synchronous neuronal activity in a neuronal circuit to control timing-
dependent signal processing [32]. The enhanced timing-dependent 
excitation and inhibition may be critical for flexible learning (e.g., 
extinction of bad memories and fear) and recovery from MDD [43]. 
The neural functions of BDNF in the neuronal network including all 
kinds of neurons remain to be elucidated in the future. 

In contrast to stress/negative factors, healthy factors such as long-
term (4-8 weeks) physical exercise [44-46], learning training [47,48], 
and being reared in an enriched environment [49,50], all induce 
expression of BDNF in the hippocampus and cortex, controlled via its 
multiple promoters ( [6] for review). For example, physical exercise (4 
weeks of running) induces relatively strong BDNF expression through 
promoters I, II, and III (but not through promoters IV and VI) [50-
52], while novel objects (e.g. toys) induces moderate BDNF expression 
through promoter I, II, III, IV and VI in the hippocampus [52]. 
Stimuli that induce Long-Term Potentiation (LTP), a form of synaptic 
plasticity, also induce BDNF mRNA expression in the hippocampus—
the brain region important for memory formation, suggesting a role of 
BDNF in learning [53,54]. The currently prescribed monoaminergic 
antidepressants [e.g., Selective Serotonin Reuptake Inhibitors 
(SSRI), tricyclic antidepressants (TCA), tetracyclic antidepressants, 
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Neuronal activity-driven BDNF induction via glutamate, the major 
excitatory neurotransmitter, and depolarization has been well studied 
over the last two decades [55,63,64]. Recently, glutamatergic drugs 
(including agonists and antagonists) have been shown to have acute 
antidepressant effects (see reviews [65,66]). Glutamate receptors are 
classified as ionotropic (i) and metabotropic (m) glutamate receptors 
(GluRs). The iGluRs include N-methyl-D-aspartate (NMDA) and 
α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) 
receptors, while mGluRs, which are coupled with ion channels or 
G-proteins, include the group containing mGluR1 through mGluR8. 
Interestingly, almost all of these glutamatergic drugs that show 
antidepressant (-like) effects also increase BDNF levels and act on its 
signaling pathways [Table 1]. 

Ketamine, a NMDR receptor antagonist, produces an acute 
antidepressant effects that lasts for a week in patients with depression 
when provided at a low dose [67-69]. Ketamine is thought to block 
NMDA receptors on GABAergic neurons, thereby inhibiting 
GABA neurons (reducing GABAergic inhibition) and increasing 
the excitability of glutamatergic neurons [70]. Ketamine rapidly 
increases BDNF-protein levels without BDNF gene upregulation in 
the rodent brain, while protein synthesis is necessary for ketamine’s 
antidepressant-like effects [71]. This protein up–regulation, while 
bypassing BDNF gene upregulation, may account for the fast action 
of ketamine. In a clinical study, ketamine has been also reported to 
increase plasma BDNF levels in depression patients at 4 hr post-
infusion [72]. Interestingly, responders show a greater induction of 
BDNF than do non-responders [72].	  

MK-0657, a selective NR2B antagonist, also exerts a relatively 
acute antidepressant effect in treatment-resistant depression patients 
within 5 days, while increased plasma BDNF levels are observed after 
9 days of treatment [73].

Acamprosate, an NMDA and mGluR5 antagonist, has shown 
antidepressant effects in a preclinical study and promotes increases 
in BDNF levels in the serum of human subjects [74]. However, the 
results of a clinical pilot study are still inconclusive regarding its 
efficacy as an antidepressant medication [75]. 

Memantine, another NMDA receptor antagonist, induces BDNF 
expression in rat brain [76,77]; however, a recent clinical study does 
not support its antidepressant efficacy [78].

Ampakines, which are drugs that potentiate AMPA receptors, also 
increase BDNF expression in the hippocampus and prefrontal cortex 
in rodents [79-83]. Ampakines show antidepressant effects in both 
rodents (LY392098 [84]) and in depressed patients (Org 26576, [85]).

The mGlu2/3 receptor ligands (both agonists and antagonists) 
involve BDNF and are being tested as adjunctive therapy in patients 
with major depression [90]. These compounds appear to shorten 
the latency of antidepressant medication. An mGluR2/3 agonist, 
LY379268, when administered to rodents, produces antidepressant-
like behavioral effects when combined with 3 days of fluoxetine and 
chlorimipramine, although it produces only small antidepressant-like 
effects on its own [86]. LY379268 acutely increases the amount of 
Gadd45-β (growth arrest and DNA-damage-inducible beta) that binds 
to BDNF promoter IX [87]. Gadd45- β increases DNA demethylation.  
LY379268 also increases BDNF mRNA levels in the cerebral cortex 
and hippocampus with a peak at 3 h from treatment [88]. Chronic 
treatment (10 weeks) of LY379268 also increases cortical BDNF levels 
[89]. An mGluR2/3 antagonist, LY341495, also exerts antidepressant-
like effects in 30 min and after 24 hr in rodents [91]. Interestingly, 
the sustained antidepressant-like effect (after 24 hr), but not the 
acute effect (in 30 min), depends on the activation of BDNF and its 
receptor TrkB signaling [91]. LY341495 has been also reported to 
enhance BDNF mRNA induction when combined with 5-dimethoxy-
4-iodoamphetamine (DOI), a serotonin receptor 2 agonist, but it does 
not induce BDNF levels on its own [92]. 

A selective mGluR5 antagonist, 2-methyl-6-(phenylethynyl) 
pyridine (MPEP), produces antidepressant-like effects in rodents 
([93,94], see review [95]). Chronic MPEP treatment increases 
hippocampal but reduces cortical BDNF mRNA levels [96]. Repeated 
MPEP administration for 12 days reduces mRNA levels of the 
NMDA receptor NR1 subunit in the forebrain [100]; thus, a final 
antidepressant effect of mGlu5 antagonism is proposed to be similar 
to that evoked by NMDA receptor antagonists [101], such as ketamine 
[67,68].

Target Drug Major mechanism of action Antidepressant effects
in humans

Antidepressant effects
in rodents

BDNF 
levels

in humans

BDNF levels
in rodents Reference

NMDAR Ketamine Non-competitive antagonist Yes Yes   [67-72]

NMDAR MK-0657 Selective NR2B antagonist Yes  [73]

NMDAR Acamprosate NMDA and mGluR5 
antagonist Inconclusive Yes  [73-75]

NMDAR Memantine Non-competitive low-affinity 
antagonist No  [76-78]

AMPAR Ampakines Positive allosteric modulator Yes Yes  [79-85]

mGluR2/3 LY379268 Agonist Clinical trials 
undergoing

Yes (enhancement with 
antidepressants)

 (with 
antidepressants) [86-90]

mGluR2/3 LY341495 Antagonist Clinical trials 
undergoing Yes  (enhancement with 

DOI) [91, 92]

mGluR5 MPEP Selective antagonist Yes
 (hippocampus)

(cortex)


[93-96]

Other Riluzole

Reduces extra-synaptic 
glutamate by inhibiting 

presynaptic release and 
enhancing glial uptake

Yes (preliminary)  [97-99]

Table 1: Glutamatergic drugs, antidepressant effects and BDNF
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Riluzole, another type of glutamatergic modulator, reduces extra-
synaptic glutamate by inhibiting presynaptic release and enhancing 
astroglial uptake. This compound has also shown antidepressant 
efficacy in clinical pilot studies: Open-label trials in treatment-
resistant depression patients have yielded promising results [97,98]. 
Repeated, but not single, injections of riluzole have been reported 
to result in prolonged elevation of hippocampal BDNF [99]. The 
BDNF induction seems paradoxical since riluzole inhibits voltage-
dependent sodium channels and reduces extra-synaptic glutamate 
levels, whereas BDNF is induced by neuronal activity and glutamate. 
One explanation could be that the mechanisms other than neuronal 
activity/glutamate mediate the BDNF induction since riluzole has 
complex mechanisms of action (e.g., it dose and dependently affects 
various calcium/potassium channels and GABAA receptors [102]). A 
study has shown that the BDNF increase by riluzole requires activation 
of the p38 mitogen-activated protein kinase via N-type Ca2+ channels 
and adenosine A1 receptors [103]. It remains unknown whether the 
reduced neuronal activity and glutamate levels are actually involved in 
the BDNF induction by riluzole.  

An agonist for the BDNF receptor, TrkB

 Recently, 7,8-dihydroxyflavone (7,8-DHF) was identified as the 
first selective TrkB agonist [104]. Chronic oral administration of this 
compound has been reported to produce antidepressant-like effects 
in rodents [105], suggesting its future use in the treatment of various 
disorders, including MDD. A systemic administration of 7,8-DHF 
in rodents has been shown to enhance extinction of conditioned 
fear, and particularly strikingly in mice that had previously been 
stressed [106]. Fear extinction is a BDNF-dependent process, arising 
particularly within the pathways of hippocampus [107], prefrontal 
cortex [43,108], and amygdala [109]. Deficits in extinction of 
conditioned fear have been suggested to underlie aspects of stress 
disorders including Posttraumatic Stress Disorder (PTSD) [110]. This 
TrkB agonist shows potential for the treatment of stress disorders 
including PTSD and MDD. However, some caution should be taken 
when considering TrkB activation. Previous studies have shown that 
the antidepressant effects of BDNF are bidirectional and dependent 
on dorsal or ventral brain regions: a BDNF increase in the dorsal 
brain regions (e.g., hippocampus and prefrontal cortex) produces 
antidepressant-like effects [20-23], while an increase in the ventral 
brain regions (e.g., nucleus accumbens and ventral tegmental area) 
causes depression [61,62]. Thus, 7,8-DHF may need to be directly 
targeted into specific brain regions (e.g., hippocampus and prefrontal 
cortex). The TrkB activation should also be within an endogenous 
range of TrkB activation in order to avoid desensitization of the 
endogenous BDNF system due to the exogenous force. Future studies 
need to investigate the safety (e.g., carcinogenic potential) and efficacy 
of this TrkB agonist for psychiatric disorders including MDD.

Brain stimulation

Electroconvulsive Shock (ECS) therapy is most often used for 
patients with severe major depression who have not responded to 
other antidepressant treatments. Both acute (2 h) and chronic (10 
day) ECS has been shown to increase BDNF mRNA approximately 2- 
to 3-fold in the hippocampus [19]. Deep brain stimulation is also used 
for treatment resistant depression, and it also increases BDNF levels in 
the rat brain [111] and in human serum [112]. Vagal Nerve Stimulation 

(VNS) has been approved for treatment resistant depression by the 
Food and Drug Administration since 2005. VNS given for just three 
hours increases BDNF mRNA levels in rat hippocampus and cerebral 
cortex [113], while chronic VNS increases BDNF mRNA levels in the 
hippocampus [114]. 

Antidepressant effect acting on TrkB without 
gene induction of BDNF

Recent findings suggest that treatments for depression may 
acutely act on the BDNF pathway, but without BDNF gene induction, 
which takes hours. For example, the rapid antidepressant response 
seen following ketamine administration is mediated by BDNF-
protein induction in the absence of BDNF gene up-regulation [71]. 
Antidepressant treatments (fluoxetine and imipramine) rapidly 
increase phosphorylation of the BDNF receptor, TrkB, in the PFC 
and hippocampus within 30–60 min of drug administration; these 
processes occur without BDNF induction [115,116]. Increased 
intracellular cAMP and membrane depolarization are known to 
rapidly increase the incorporation of TrkB into the neuronal plasma 
membrane [117]. Moreover, both acute and chronic VNS also 
elevate phosphorylation of TrkB at tyrosines 515, 705 and 816 in 
the hippocampus, while traditional antidepressants (fluoxetine or 
desipramine) elevate phosphorylation of TrkB at tyrosines 705 and 
816, but not at tyrosine 515 [118]. These TrkB phosphorylations 
induced by antidepressants and VNS activate phospholipase-Cγ 
signaling and lead to the phosphorylations of CREB [116,119] and 
Akt/ERK [118]. These phosphorylations can then induce transcription 
of genes involved in neurogenesis and neuronal growth, including 
induction of other growth factors as well as BDNF itself [120], thereby 
producing positive neurotrophic effects. 

BDNF mRNA trafficking and local protein 
synthesis

The acute effects of antidepressants and VNS in increasing BDNF 
protein levels and TrkB phosphorylation may involve local protein 
synthesis and release of BDNF. The Bdnf gene has two polyadenylation 
sites that lead to either a short or long 3’ Untranslated Region (UTR). 
The long 3’-UTR, which is mainly localized in dendrites [121] and 
stabilized by neuronal activity [122], is involved in rapid activity-
dependent translation of the BDNF protein [123]. A single-nucleotide 
polymorphism (SNP) in the BDNF gene can create a difference in the 
local protein synthesis and release of BDNF. One of the best known of 
these SNPs is an amino acid substitution of valine (Val) to methionine 
(Met) at codon 66 (Val66Met) in the proBDNF protein. This BNDF 
Val66Met SNP influences the function of BDNF by reducing 
trafficking and activity-dependent secretion of BNDF protein in the 
brain [124-127]. These changes in BDNF mRNA trafficking and local 
protein synthesis may affect the activity-dependent remodeling of 
spine/dendrite structure and synaptic plasticity, and thus affect the 
response to depression treatments (see [4,11, 13,128-130] for review). 

Individual differences in treatment 
responses due to epigenetic and genetic 
status

Recent studies have shown that different epigenetic and genetic 
statuses of the BDNF gene may account for variations in MDD 
treatment responses. Decreased methylation of H3K27 at BDNF 

http://en.wikipedia.org/wiki/Clinical_depression
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promoter/exon IV (which increases expression of BDNF exon 
IV) in the postmortem prefrontal cortex has been observed in 
depressed subjects with a history of antidepressant treatment [131]. 
Only responders to chronic antidepressant treatment (8 weeks of 
citalopram), but not non-responders, showed decreased methylation 
of H3K27 at promoter/exon IV and increased BDNF exon IV mRNA 
levels in blood cells [132]. These findings suggest that the histone 
methylation at promoter/exon IV may be a biomarker of treatment 
response. 

Another study by Perroud et al. recently reported that the presence 
of DNA methylation in CpG islands in promoter IV/exon IV in the 
blood cells can also predict the treatment response in borderline 
personality disorder [133]. They showed that 4 weeks of intensive 
dialectical behavior therapy decreased the BDNF methylation status 
(which increases BDNF transcription) in responders, but increased it 
in nonresponders [133]. They also found a relationship between child 
maltreatment and higher methylation of BDNF DNA, but found no 
correlation between the BDNF DNA methylation levels and serum 
BDNF protein levels [133]. On the other hand, other studies have 
shown that a failure of BDNF to increase in serum [134] or plasma 
[135] during the first week of antidepressant treatment predicts 
the final non-response and non-remission with high sensitivity, 
suggesting that early changes in peripheral BDNF may constitute or 
reflect a necessary prerequisite for final treatment response. 

Tadić et al. reported that major MDD patients showing 
hypomethylation of the BDNF promoter region (at CpG site −87 of 
exon IV) are unlikely to benefit from antidepressant pharmacotherapy, 
and that they show a decrease in plasma BDNF levels during the first 
week of treatment [136]. These studies suggest that measuring BDNF 
RNA levels and its methylation status in the blood cells may serve as 
a biomarker of depression recovery and response to antidepressants. 

In addition to the epigenetic regulation of the BDNF promoters, 
studies have indicated that the differences in treatment effects for 
MDD can also depend on the polymorphisms of the BDNF gene. 
The well-studied Val66Met SNP (Met allele) causes reductions in 
dendritic trafficking and activity-dependent secretion of BDNF 
[125-127]. A recent study showed that the BDNF Met allele in mice 
caused a blockage of synaptogenic and antidepressant actions of 
ketamine, suggesting that the therapeutic response to this drug might 
be attenuated or blocked in depressed patients who carry the loss of 
function Met allele [137]. However, a meta-analysis did not reveal any 
BDNF Val66Met polymorphism associated with treatment response 
in patients with MDD [138]. Another study reported the opposite 
result, where BDNF Met carriers showed a higher remission rate for 
geriatric depression than was seen for BDNF (Val/Val) homozygotes 
[139]. 

Studies on the MDD risk of the Val66Met SNP in human subjects 
have produced inconsistent results, which may reflect factors such as 
the size and ethnicity of the studied populations [140-142] (review 
[6]). In addition to the Val66Met SNP, recent studies have revealed new 
SNPs in the Bdnf gene: Six SNPs and two haplotypes (one including 
Val66Met, another near exon VIIIh) are associated with MDD and 
eight SNPs are associated with response to antidepressant treatment 
[143]. The intronic variants 5’-upstream of the BDNF coding region 
located near exons VIIh and V show the most significant effects in 

MDD and antidepressant response, respectively [143]. Further, 
another SNP (rs12273363) in the upstream of the Bdnf gene has 
been associated with MDD susceptibility in patients with a history 
of childhood adversity [144], and that this SNP was recently found 
to reduce promoter IV activity [145]. In addition, novel SNPs in the 
BDNF promoters I, -281A and G-712A, have been reported to protect 
against anxiety or are associated with substance abuse [146,147]. 
Promoter I is another activity-dependent promoter [37,148] and a 
recent study has also reported changes in its DNA methylation profiles 
in the blood cells of MDD patients [149]. Future studies remain to 
elucidate the effect of these SNPs on the Bdnf gene regulation in the 
brain and on MDD treatment responses.

A combination of several independent risk alleles within the 
TrkB gene has also been associated with suicide attempts among 
patients with MDD [150]. These findings suggest that the individual 
differences in the BDNF-TrkB pathway due to epigenetic/genetic 
status may contribute to the risk of MDD and to the differences in 
treatment response. 

Conclusions
Stress reduces BDNF levels via epigenetic regulations. On the 

other hand, most of the currently used therapeutics for MDD (e.g., 
reducing stress, antidepressant treatments, introducing exercise 
and enriched environments, and brain stimulation) increase BDNF 
levels. Drugs that can target the mechanisms that induce BDNF and 
activate BDNF-TrkB signaling (e.g., increasing BDNF promoter 
activity, transcription stability, trafficking, activity-driven release, 
TrkB agonists, drugs that increase TrkB phosphorylation and activate 
PI3/Akt/ERK, etc.) may therefore become potent antidepressant 
treatments. Further understanding of the BDNF mechanisms will 
provide information regarding the potential targets for novel drugs 
and other interventions for combating MDD. In particular, the 
mechanisms that explain how individual differences in epigenetic 
condition and SNPs in the Bdnf gene affect the BDNF mechanisms 
(transcription, translation, trafficking, secretion, receptor activation, 
etc.) may help to develop individualized treatment of MDD. We still 
do not understand why some people are more susceptible to MDD 
while others better tolerate the same stress, and why so many patients 
fail to respond to current treatments. Specific epigenetic and genetic 
factors may act complementarily, and further clarification of this 
stress/treatment x genetic/epigenetic interaction may provide the 
required insight for prediction of MDD risks and MDD treatment 
responses, thereby leading to effective individualized prevention and 
treatment of MDD. Knowledge obtained from preclinical and clinical 
studies will be critical for further advancement of our understanding 
of the role of BDNF in MDD treatment. In addition, elucidating 
BDNF mechanisms in blood and monitoring blood BDNF levels may 
become useful for developing indicators/predictors of depression 
recovery. 
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